1
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
2
|
Shi B, Amin A, Dalvi P, Wang W, Lukacs N, Kai L, Cheresh P, Peclat TR, Chini CC, Chini EN, van Schooten W, Varga J. Heavy-chain antibody targeting of CD38 NAD + hydrolase ectoenzyme to prevent fibrosis in multiple organs. Sci Rep 2023; 13:22085. [PMID: 38086958 PMCID: PMC10716202 DOI: 10.1038/s41598-023-49450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
The functionally pleiotropic ectoenzyme CD38 is a glycohydrolase widely expressed on immune and non-hematopoietic cells. By converting NAD+ to ADP-ribose and nicotinamide, CD38 governs organismal NAD+ homeostasis and the activity of NAD+-dependent cellular enzymes. CD38 has emerged as a major driver of age-related NAD+ decline underlying adverse metabolic states, frailty and reduced health span. CD38 is upregulated in systemic sclerosis (SSc), a chronic disease characterized by fibrosis in multiple organs. We sought to test the hypothesis that inhibition of the CD38 ecto-enzymatic activity using a heavy-chain monoclonal antibody Ab68 will, via augmenting organismal NAD+, prevent fibrosis in a mouse model of SSc characterized by NAD+ depletion. Here we show that treatment of mice with a non-cytotoxic heavy-chain antibody that selectively inhibits CD38 ectoenzyme resulted in NAD+ boosting that was associated with significant protection from fibrosis in multiple organs. These findings suggest that targeted inhibition of CD38 ecto-enzymatic activity could be a potential pharmacological approach for SSc fibrosis treatment.
Collapse
Affiliation(s)
- Bo Shi
- Northwestern Scleroderma Program, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Asif Amin
- Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Wenxia Wang
- Northwestern Scleroderma Program, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Lukacs
- Department of Pathology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Kai
- Northwestern Scleroderma Program, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Paul Cheresh
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Thais R Peclat
- Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic, Jacksonville, FL, USA
| | - Claudia C Chini
- Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic, Jacksonville, FL, USA
| | - Eduardo N Chini
- Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic, Jacksonville, FL, USA
| | | | - John Varga
- Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, 48109, USA.
- Michigan Scleroderma Program, The University of Michigan, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
3
|
Bisht K, Fukao T, Chiron M, Richardson P, Atanackovic D, Chini E, Chng WJ, Van De Velde H, Malavasi F. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Cancer Med 2023; 12:20332-20352. [PMID: 37840445 PMCID: PMC10652336 DOI: 10.1002/cam4.6619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND CD38 has been established as an important therapeutic target for multiple myeloma (MM), for which two CD38 antibodies are currently approved-daratumumab and isatuximab. CD38 is an ectoenzyme that degrades NAD and its precursors and is involved in the production of adenosine and other metabolites. AIM Among the various mechanisms by which CD38 antibodies can induce MM cell death is immunomodulation, including multiple pathways for CD38-mediated T-cell activation. Patients who respond to anti-CD38 targeting treatment experience more marked changes in T-cell expansion, activity, and clonality than nonresponders. IMPLICATIONS Resistance mechanisms that undermine the immunomodulatory effects of CD38-targeting therapies can be tumor intrinsic, such as the downregulation of CD38 surface expression and expression of complement inhibitor proteins, and immune microenvironment-related, such as changes to the natural killer (NK) cell numbers and function in the bone marrow niche. There are numerous strategies to overcome this resistance, which include identifying and targeting other therapeutic targets involved in, for example, adenosine production, the activation of NK cells or monocytes through immunomodulatory drugs and their combination with elotuzumab, or with bispecific T-cell engagers.
Collapse
Affiliation(s)
| | - Taro Fukao
- Sanofi OncologyCambridgeMassachusettsUSA
| | | | - Paul Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Djordje Atanackovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Wee Joo Chng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | | | - Fabio Malavasi
- Department of Medical SciencesUniversity of TurinTorinoItaly
- Fondazione Ricerca MolinetteTorinoItaly
| |
Collapse
|
4
|
Transfer of the longevity-associated variant of BPIFB4 gene rejuvenates immune system and vasculature by a reduction of CD38 + macrophages and NAD + decline. Cell Death Dis 2022; 13:86. [PMID: 35087020 PMCID: PMC8792139 DOI: 10.1038/s41419-022-04535-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 01/10/2023]
Abstract
As we age, our body experiences chronic, systemic inflammation contributing to the morbidity and mortality of the elderly. The senescent immune system has been described to have a causal role in driving systemic aging and therefore may represent a key therapeutic target to prevent pathological consequences associated with aging and extend a healthy lifespan. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models halted the progression of cardiovascular diseases (CVDs) and frailty by counterbalancing chronic inflammation. In the present study, we aimed to delineate the action of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer (AAV-LAV-BPIFB4) on the deleterious age-related changes of the immune system and thereby the senescence-associated events occurring in C57BL/6J mice aged 26 months. Our in vivo data showed that 26-months-old mice had a higher frequency of CD45+SA-beta Gal+ immune cells in peripheral blood than young (4-months-old) C57BL/6J mice. Notably, AAV-LAV-BPIFB4 gene transfer in aged mice reduced the pool of peripheral immunosenescent cells that were shown to be enriched in the spleen. In addition, the proper tuning of the immune secretory phenotype (IL1βlow, IL6low, IL10high) associated with a significant reduction in SA-beta Gal-positive area of aorta from AAV-LAV treated mice. At the functional level, the reduction of senescence-associated inflammation ensured sustained NAD+ levels in the plasma of AAV-LAV-BPIFB4 old mice by preventing the NADase CD38 increase in F4/80+ tissue-resident macrophages and Ly6Chigh pro-inflammatory monocytes of the spleen and bone marrow. Finally, to validate the clinical implication of our findings, we showed that Long-living-individuals (LLIs, >95 years), which delay CVDs onset, especially if LAV-carriers, were characterized by high NAD+ levels. In conclusion, the new senotherapeutic action of LAV-BPIFB4 may offer a valuable therapeutic tool to control aging and reduce the burden of its pathophysiological disorders, such as CVDs.
Collapse
|
5
|
Du Y, Zhang H, Guo Y, Song K, Zeng L, Chen Y, Xie Z, Li R. CD38 deficiency up-regulated IL-1β and MCP-1 through TLR4/ERK/NF-κB pathway in sepsis pulmonary injury. Microbes Infect 2021; 23:104845. [PMID: 34098107 DOI: 10.1016/j.micinf.2021.104845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
As a disease with high mortality,many cytokines and signaling pathways are associated with sepsis.The pro-inflammatory cytokines and chemokines are participating in the pathogenesis of sepsis, especially in early stage. Moreover, the releases and expressions of cytokines are regulated by numerous signaling pathways, including TLR4/ERK pathway. But despite many studies have expounded the pathogenesis of sepsis and the regulation of cytokines in sepsis, how CD38 influence the expressions of related molecules in sepsis are still unknown. The aim of this study is illuminating the alteration of cytokines and signaling pathways in CD38-/- mice injected with Escherichia coli.Compared with WT mice, E. coli infection results in more severe pulmonary injuries and higher mRNA expressions of cytokines. Compared with E. coli infected WT mice,CD38 knockout leads to aggravated pulmonary injury, increasedphosphorylated ERK1/2, p38 and NF-κB p65, and enhancedlevels of IL-1β, iNOS and MCP-1.While compared with E. coli infected CD38-/- mice, TLR4 mutation results in alleviated pulmonary injury, down-regulated phosphorylated ERK1/2 and NF-κB p65, and decreased expressions of IL-1β and MCP-1.CD38 deficiency increased the expressions of IL-1β andMCP-1and aggravated pulmonary injury through TLR4/ERK/NF-κB pathway in sepsis.
Collapse
Affiliation(s)
- Yuna Du
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Huiqing Zhang
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China; Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yujie Guo
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China; Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Kuangyu Song
- Department of Medical Microbiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lifeng Zeng
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Yiguo Chen
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Zhengyu Xie
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Rong Li
- Department of Clinical Laboratory and Laboratory of Infection & Immunity, Jiangxi Provincial People's Hospital&People's Hospital Affiliated to Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Targeting CD38 is lethal to Breg-like chronic lymphocytic leukemia cells and Tregs, but restores CD8+ T-cell responses. Blood Adv 2021; 4:2143-2157. [PMID: 32421811 DOI: 10.1182/bloodadvances.2019001091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]-like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL-patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.
Collapse
|
7
|
CD38 and Regulation of the Immune Response Cells in Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6630295. [PMID: 33727923 PMCID: PMC7936891 DOI: 10.1155/2021/6630295] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Cancer is a leading cause of death worldwide. Understanding the functional mechanisms associated with metabolic reprogramming, which is a typical feature of cancer cells, is key to effective therapy. CD38, primarily a NAD + glycohydrolase and ADPR cyclase, is a multifunctional transmembrane protein whose abnormal overexpression in a variety of tumor types is associated with cancer progression. It is linked to VEGFR2 mediated angiogenesis and immune suppression as it favors the recruitment of suppressive immune cells like Tregs and myeloid-derived suppressor cells, thus helping immune escape. CD38 is expressed in M1 macrophages and in neutrophil and T cell-mediated immune response and is associated with IFNγ-mediated suppressor activity of immune responses. Targeting CD38 with anti-CD38 monoclonal antibodies in hematological malignancies has shown excellent results. Bearing that in mind, targeting CD38 in other nonhematological cancer types, especially carcinomas, which are of epithelial origin with specific anti-CD38 antibodies alone or in combination with immunomodulatory drugs, is an interesting option that deserves profound consideration.
Collapse
|
8
|
CD38: T Cell Immuno-Metabolic Modulator. Cells 2020; 9:cells9071716. [PMID: 32709019 PMCID: PMC7408359 DOI: 10.3390/cells9071716] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Activation and subsequent differentiation of T cells following antigenic stimulation are triggered by highly coordinated signaling events that lead to instilling cells with a discrete metabolic and transcriptional feature. Compelling studies indicate that intracellular nicotinamide adenine dinucleotide (NAD+) levels have profound influence on diverse signaling and metabolic pathways of T cells, and hence dictate their functional fate. CD38, a major mammalian NAD+ glycohydrolase (NADase), expresses on T cells following activation and appears to be an essential modulator of intracellular NAD+ levels. The enzymatic activity of CD38 in the process of generating the second messenger cADPR utilizes intracellular NAD+, and thus limits its availability to different NAD+ consuming enzymes (PARP, ART, and sirtuins) inside the cells. The present review discusses how the CD38-NAD+ axis affects T cell activation and differentiation through interfering with their signaling and metabolic processes. We also describe the pivotal role of the CD38-NAD+ axis in influencing the chromatin remodeling and rewiring T cell response. Overall, this review emphasizes the crucial contribution of the CD38-NAD+ axis in altering T cell response in various pathophysiological conditions.
Collapse
|
9
|
Arriga R, Caratelli S, Lanzilli G, Ottaviani A, Cenciarelli C, Sconocchia T, Spagnoli GC, Iezzi G, Roselli M, Lauro D, Coppola A, Dotti G, Ferrone S, Sconocchia G. CD16-158-valine chimeric receptor T cells overcome the resistance of KRAS-mutated colorectal carcinoma cells to cetuximab. Int J Cancer 2020; 146:2531-2538. [PMID: 31396956 PMCID: PMC8711772 DOI: 10.1002/ijc.32618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023]
Abstract
KRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells. We compared four polymorphic Fcγ-CR constructs including CD16158F -CR, CD16158V -CR, CD32131H -CR, and CD32131R -CR transduced into T cells by retroviral vectors. Percentages of transduced T cells expressing CD32131H -CR (83.5 ± 9.5) and CD32131R -CR (77.7 ± 13.2) were significantly higher than those expressing with CD16158F -CR (30.3 ± 10.2) and CD16158V -CR (51.7 ± 13.7) (p < 0.003). CD32131R -CR T cells specifically bound soluble cetuximab and panitumumab. However, only CD16158V -CR T cells released high levels of interferon gamma (IFNγ = 1,145.5 pg/ml ±16.5 pg/ml, p < 0.001) and tumor necrosis factor alpha (TNFα = 614 pg/ml ± 21 pg/ml, p < 0.001) upon incubation with cetuximab-opsonized HCT116 cells. Moreover, only CD16158V -CR T cells combined with cetuximab killed HCT116 cells and A549 KRAS-mutated cells in vitro. CD16158V -CR T cells also effectively controlled subcutaneous growth of HCT116 cells in CB17-SCID mice in vivo. Thus, CD16158V -CR T cells combined with cetuximab represent useful reagents to develop innovative EGFR+KRAS-mutated CRC immunotherapies.
Collapse
Affiliation(s)
- Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | | | | | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology Medical University of Graz, Graz, Austria
| | | | - Giandomenica Iezzi
- Department of Surgery, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, Switzerland
| | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
10
|
Glaría E, Valledor AF. Roles of CD38 in the Immune Response to Infection. Cells 2020; 9:cells9010228. [PMID: 31963337 PMCID: PMC7017097 DOI: 10.3390/cells9010228] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a multifunctional protein widely expressed in cells from the immune system and as a soluble form in biological fluids. CD38 expression is up-regulated by an array of inflammatory mediators, and it is frequently used as a cell activation marker. Studies in animal models indicate that CD38 functional expression confers protection against infection by several bacterial and parasitic pathogens. In addition, infectious complications are associated with anti-CD38 immunotherapy. Although CD38 displays receptor and enzymatic activities that contribute to the establishment of an effective immune response, recent work raises the possibility that CD38 might also enhance the immunosuppressive potential of regulatory leukocytes. This review integrates the current knowledge on the diversity of functions mediated by CD38 in the host defense to infection.
Collapse
|
11
|
Caratelli S, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Pastore D, Cenciarelli C, Venditti A, Del Principe MI, Lauro D, Landoni E, Du H, Savoldo B, Ferrone S, Dotti G, Sconocchia G. In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab. Int J Cancer 2020; 146:236-247. [PMID: 31479522 PMCID: PMC8711771 DOI: 10.1002/ijc.32663] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/03/2023]
Abstract
Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R -chimeric receptor (CR), and those engineered with the low-affinity CD16158F -CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R -CR T cells was 74 ± 10%, whereas the percentage of CD16158F -CR T cells was 46 ± 15%. Only CD32A131R -CR T cells bound panitumumab. CD32A131R -CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F -CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R -CR on T cells by cetuximab or panitumumab and CD16158F -CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R -CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR.
Collapse
Affiliation(s)
- Sara Caratelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Alessio Ottaviani
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Giulia Lanzilli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Giuseppe Sconocchia
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
12
|
The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells 2019; 9:cells9010052. [PMID: 31878283 PMCID: PMC7016859 DOI: 10.3390/cells9010052] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The regulation of the immune microenvironment within solid tumors has received increasing attention with the development and clinical success of immune checkpoint blockade therapies, such as those that target the PD-1/PD-L1 axis. The metabolic microenvironment within solid tumors has proven to be an important regulator of both the natural suppression of immune cell functionality and the de novo or acquired resistance to immunotherapy. Enzymatic proteins that generate immunosuppressive metabolites like adenosine are thus attractive targets to couple with immunotherapies to improve clinical efficacy. CD38 is one such enzyme. While the role of CD38 in hematological malignancies has been extensively studied, the impact of CD38 expression within solid tumors is largely unknown, though most current data indicate an immunosuppressive role for CD38. However, CD38 is far from a simple enzyme, and there are several remaining questions that require further study. To effectively treat solid tumors, we must learn as much about this multifaceted protein as possible—i.e., which infiltrating immune cell types express CD38 for functional activities, the most effective CD38 inhibitor(s) to employ, and the influence of other similarly functioning enzymes that may also contribute towards an immunosuppressive microenvironment. Gathering knowledge such as this will allow for intelligent targeting of CD38, the reinvigoration of immune functionality and, ultimately, tumor elimination.
Collapse
|
13
|
Luo Z, Soläng C, Mejia‐Cordova M, Thorvaldson L, Blixt M, Sandler S, Singh K. Kinetics of immune cell responses in the multiple low-dose streptozotocin mouse model of type 1 diabetes. FASEB Bioadv 2019; 1:538-549. [PMID: 32123849 PMCID: PMC6996374 DOI: 10.1096/fba.2019-00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
In type 1 diabetes (T1D), the insulin-producing β cells are destructed by immune mechanisms. It has been hypothesized that the very first immune response in T1D onset comes from innate immune cells, which further activates the adaptive immune cells to attack the islets. Despite intensive research on characterization of islet-infiltrating immune cells, the kinetics of different immune cells in multiple low-dose streptozotocin (MLDSTZ)-induced T1D mouse model is still much unclear. Therefore, we investigated the proportions of innate immune cells such as neutrophils, dendritic cells (DCs), plasmacytoid dendritic cells (pDCs), macrophages, natural killer (NK) cells, and adaptive immune cells (T and B lymphocytes) in thymi, pancreatic-draining lymph nodes, and spleens of MLDSTZ mice on days 3, 7, 10, and 21 after the first injection of STZ by flow cytometry. The proportions of DCs and B cells were increased from day 3, while the proportions of B-1a lymphocytes and interferon-γ+ cells among NK cells were increased, but NK cells were decreased on day 10 in MLDSTZ-treated mice, illustrating that the initial immune response is induced by DCs and B cells. Later, the proportions of T helper 1 and cytotoxic T cells were increased from day 7, suggesting that the innate immune cells precede adaptive immune cell response in MLDSTZ mice. Altogether, our data demonstrate a possible sequence of events regarding the involvement of DCs, pDCs, NK cells, B-1a lymphocytes, B, and T cells at the early stage of T1D development.
Collapse
Affiliation(s)
- Zhengkang Luo
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Charlotte Soläng
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | | | - Lina Thorvaldson
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Martin Blixt
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Stellan Sandler
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Kailash Singh
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
14
|
Bonello F, D’Agostino M, Moscvin M, Cerrato C, Boccadoro M, Gay F. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin Biol Ther 2018; 18:1209-1221. [DOI: 10.1080/14712598.2018.1544240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Francesca Bonello
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mattia D’Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maria Moscvin
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Cerrato
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
15
|
Shu B, Fang Y, He W, Yang J, Dai C. Identification of macrophage-related candidate genes in lupus nephritis using bioinformatics analysis. Cell Signal 2018; 46:43-51. [PMID: 29458096 DOI: 10.1016/j.cellsig.2018.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
Lupus nephritis (LN) is a chronic autoimmune disorder. Here we try to identify the candidate genes in macrophages related to LN. We performed a systematic search in the Gene Expression Omnibus (GEO) database for microarray in human mononuclear cells and mouse macrophages of LN. The results of clustering and venn analysis of different GEO datasets showed that 8 genes were up-regulated and 2 genes down-regulated in samples from both human and mouse LN. The data from gene network and GO analysis revealed that CD38 and CCL2 were localized in the core of the network. Immunofluorescence staining showed that CD38 expression was markedly increased in macrophages from kidneys with LN. Our study identifies the gene expression profile for macrophages and demonstrated the induction of CCL2 and CD38 in macrophages from patients with LN. However, regarding the limited patient number included in this study, the results are preliminary and more studies are still needed to further decipher the macrophage-related candidate genes for the pathogenesis of LN.
Collapse
Affiliation(s)
- Bingyan Shu
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yi Fang
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Shu B, Feng Y, Gui Y, Lu Q, Wei W, Xue X, Sun X, He W, Yang J, Dai C. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cell Signal 2017; 42:249-258. [PMID: 29080804 DOI: 10.1016/j.cellsig.2017.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
The CD38, possessing ADP-ribosyl cyclase (ADPR-cyclase) and cyclic ADP-ribose hydrolase (cADPR-hydrolase), is able to regulate a variety of cellular activities. However, the role and mechanisms for CD38 in macrophage activation and sepsis-induced acute kidney injury (AKI) remain to be determined. Here we report that in cultured macrophages, Lipopolysaccharide (LPS) could upregulate CD38 expression in time and dose dependent manner. Knocking down or blockade of CD38 in macrophages could inhibit LPS-induced macrophage M1 polarization accompanied by diminished NF-κB signaling activation. In mouse model with LPS-induced acute kidney injury, blocking CD38 with quercetin could significantly relieve kidney dysfunction, kidney pathological changes as well as inflammatory cell accumulation. Similar to those in the cultured cells, quercetin could inhibit macrophage M1 polarization and NF-κB signaling activation in macrophages from kidneys and spleens in mice after LPS injection. Together, these results demonstrate that CD38 mediates LPS-induced macrophage activation and AKI, which may be treated as a therapeutic target for sepsis-induced AKI in patients.
Collapse
Affiliation(s)
- Bingyan Shu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Ye Feng
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Wei Wei
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Xian Xue
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Xiaoli Sun
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Weichun He
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, PR China.
| |
Collapse
|
17
|
Horenstein AL, Chillemi A, Quarona V, Zito A, Mariani V, Faini AC, Morandi F, Schiavoni I, Ausiello CM, Malavasi F. Antibody mimicry, receptors and clinical applications. Hum Antibodies 2017; 25:75-85. [PMID: 28035914 DOI: 10.3233/hab-160305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review focuses on the concept of antibodies acting as receptor agonists and antagonists, and on the potential relevance of this notion in applied medicine. Antibodies are composed of three functional units: two antigen-binding fragments (Fabs) that confer antigen specificity and one constant fragment (Fc) linking antibodies to immune effector functions. The proof-of-concept that large amounts of highly specific and homogeneous antibodies could be produced was provided in 1975 by César Milstein and Georges Köhler. These monoclonal antibody (mAb) reagents started a revolution in medical research, diagnostics, and clinical applications. Alongside diagnostic applications, mAbs were successfully used in vivo: (i) to bind (neutralize/antagonize) antigens expressed on the surface of tumor cells; (ii) to activate immune effector mechanisms; (iii) to crosslink plasma membrane receptors and hence activate therapeutic signaling pathways; and lastly, (iv) the technique was expanded to produce bispecific mAbs, which can bind two different antigens while retaining the ability to activate immune effector functions. The abilities of mAbs to bind, transduce signals, and exert immunostimulatory agonistic capacities are the central issues of this review. The starting point is that some mAbs operate as molecular agonists, substituting for the natural ligand of the receptor. Our analysis is restricted to mAbs that act as receptor agonist/antagonists by either mimicking ligand binding, or through allosteric modulation mediated by binding sites that are topographically distinct from the orthosteric binding site. Functional considerations based on the agonistic stimulation of human CD38 by specific mAbs as surrogate ligands are described as examples of the features of such molecules.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
| | - Antonella Chillemi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
| | - Valeria Quarona
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
| | - Andrea Zito
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
| | - Valentina Mariani
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
| | - Angelo C Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
| | - Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova 16148, Italy
| | - Ilaria Schiavoni
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Roma 00161, Italy
| | - Clara Maria Ausiello
- Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Roma 00161, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
- CeRMS, University of Torino, Torino 10126, Italy
- Transplantation Immunology, Città della Salute e della Scienza, Torino 10126, Italy
| |
Collapse
|
18
|
Wang J, Zhu W, Chen Y, Lin Z, Ma S. CD38 gene-modified dendritic cells inhibit murine asthma development by increasing IL-12 production and promoting Th1 cell differentiation. Mol Med Rep 2016; 14:4374-4382. [PMID: 27666020 DOI: 10.3892/mmr.2016.5756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 08/31/2016] [Indexed: 11/06/2022] Open
Abstract
Predominant T helper (Th)2 and impaired Th1 cell polarization has a crucial role in the development of asthma. Cluster of differentiation (CD)38 is associated with the increased release of interleukin (IL)‑12 from dendritic cells (DCs) and DC‑induced Th1 cell polarization. However, whether CD38 expression affects DC function in asthma development remains unknown. In the current study, adenoviruses were constructed containing the murine CD38 gene. Overexpression of CD38 protein level in DCs induced from bone‑marrow derived DCs (BMDCs) by recombinant mouse granulocyte macrophage colony‑stimulating factor and IL‑4 was achieved through 24 h adenovirus infection. The results demonstrated that BMDCs with CD38 overexpression exhibited no phenotypic change; however, following stimulation with lipopolysaccharide (LPS), maturation and IL‑12 secretion were increased. In addition, CD38‑overexpressing BMDCs stimulated with LPS exhibited more effective Th1 cell differentiation. Mice that were administered CD38‑overexpressing BMDCs exhibited milder symptoms of asthma. Furthermore, decreased IL‑4, IL‑5 and IL‑13 levels were detected in bronchoalveolar lavage fluid (BALF), reduced immunoglobulin E levels were measured in the sera, and increased interferon‑γ was detected in BALF from the recipients of CD38‑overexpressing BMDCs. Increased phosphorylated‑p38 expression was also detected in LPS-stimulated CD38-overexpressing BMDCs, whereas pretreatment with a p38‑specific inhibitor was able to abolish the effects of LPS stimulation and CD38 overexpression on IL‑12 release and Th1 cell differentiation in BMDCs. These results suggested that CD38 may be involved in the DC function of alleviating asthma via restoration of the Th1/Th2 balance, thus providing a novel strategy for asthma therapy.
Collapse
Affiliation(s)
- Jiaoli Wang
- Department of Respiratory Medicine, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, P.R. China
| | - Weiguo Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinghu Chen
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhendong Lin
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
19
|
Angelovich TA, Hearps AC, Maisa A, Martin GE, Lichtfuss GF, Cheng WJ, Palmer CS, Landay AL, Crowe SM, Jaworowski A. Viremic and Virologically Suppressed HIV Infection Increases Age-Related Changes to Monocyte Activation Equivalent to 12 and 4 Years of Aging, Respectively. J Acquir Immune Defic Syndr 2015; 69:11-7. [PMID: 25647525 DOI: 10.1097/qai.0000000000000559] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic inflammation and immune activation occur in both HIV infection and normal aging and are associated with inflammatory disease. However, the degree to which HIV influences age-related innate immune changes, and the biomarkers which best reflect them, remains unclear. METHODS AND RESULTS We measured established innate immune aging biomarkers in 309 individuals including 88 virologically suppressed (VS) and 52 viremic (viral load ≤ and >50 copies per milliliter, respectively) HIV-positive individuals. Levels of soluble (ie, CXCL10, soluble CD163, neopterin) and cellular (ie, proportions of inflammatory CD16 monocytes) biomarkers of monocyte activation were increased in HIV-positive individuals and were only partially ameliorated by viral suppression. Viremic and VS HIV-positive individuals show levels of age-related monocyte activation biomarkers that are similar to uninfected controls aged 12 and 4 years older, respectively. Viremic HIV infection was associated with an accelerated rate of change of some monocyte activation markers (eg, neopterin) with age, whereas in VS individuals, subsequent age-related changes occurred at a similar rate as in controls, albeit at a higher absolute level. We further identified CXCL10 as a robust soluble biomarker of monocyte activation, highlighting the potential utility of this chemokine as a prognostic marker. IMPLICATIONS These findings may partially explain the increased prevalence of inflammatory age-related diseases in HIV-positive individuals and potentially indicate the pathological mechanisms underlying these diseases, which persist despite viral suppression.
Collapse
Affiliation(s)
- Thomas A Angelovich
- *Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; †School of Applied Sciences, RMIT University, Melbourne, Australia; ‡Department of Infectious Diseases, Monash University, Melbourne, Australia; §School of Medical Sciences, University of New South Wales, Sydney, Australia; ‖Department of Microbiology and Immunology, Rush University Medical Center, Chicago, IL; ¶Infectious Diseases Unit, Alfred Hospital, Melbourne, Australia; and #Department of Immunology, Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Talaat RM, Abdel-Aziz AM, El-Maadawy EA, Abdel-Bary N. CD38 and Interleukin 6 Gene Polymorphism in Egyptians with Diffuse Large B-Cell Lymphoma (DLBCL). Immunol Invest 2015; 44:265-78. [DOI: 10.3109/08820139.2014.989328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Guedes AGP, Deshpande DA, Dileepan M, Walseth TF, Panettieri RA, Subramanian S, Kannan MS. CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models. Can J Physiol Pharmacol 2014; 93:145-53. [PMID: 25594684 DOI: 10.1139/cjpp-2014-0410] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Asthma is an inflammatory disease in which altered calcium regulation, contractility, and airway smooth muscle (ASM) proliferation contribute to airway hyper-responsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g., TNF-α) that requires the activation of MAP kinases and the transcription factors, NF-κB and AP-1, and is post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3' Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in Cd38 exhibit reduced airway responsiveness to inhaled methacholine relative to the response in wild-type mice. Intranasal challenge of Cd38-deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared with wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyper-responsiveness to inhaled methacholine in the Cd38-deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyper-responsiveness; a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and (or) activity are warranted.
Collapse
Affiliation(s)
- Alonso G P Guedes
- a Department of Surgical & Radiological Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Congleton J, Shen M, MacDonald R, Malavasi F, Yen A. Phosphorylation of c-Cbl and p85 PI3K driven by all-trans retinoic acid and CD38 depends on Lyn kinase activity. Cell Signal 2014; 26:1589-97. [PMID: 24686085 DOI: 10.1016/j.cellsig.2014.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/30/2022]
Abstract
The leukocyte antigen CD38 is expressed after all-trans retinoic acid (ATRA) treatment in HL-60 myelogenous leukemia cells and promotes induced myeloid differentiation when overexpressed. We found that Vav1 and SLP-76 associate with CD38 in two cell lines, and that these proteins complex with Lyn, a Src family kinase (SFK) upregulated by ATRA. SFK inhibitors PP2 and dasatinib, which enhance ATRA-induced differentiation, were used to evaluate the involvement of Lyn kinase activity in CD38-driven signaling. Cells treated with ATRA for 48h followed by one hour of PP2 incubation show SFK/Lyn kinase inhibition. We observed that Lyn inhibition blocked c-Cbl and p85/p55 PI3K phosphorylation driven by the anti-CD38 agonistic mAb IB4 in ATRA-treated HL-60 cells and untreated CD38+ transfectants. In contrast, cells cultured for 48h following concurrent ATRA and PP2 treatment did not show Lyn inhibition, suggesting ATRA regulates the effects on Lyn. 48h of co-treatment preserved CD38-stimulated c-Cbl and p85/p55 PI3K phosphorylation indicating Lyn kinase activity is necessary for these events. In contrast another SFK inhibitor (dasatinib) which blocks Lyn activity with ATRA co-treatment prevented ATRA-induced c-Cbl phosphorylation and crippled p85 PI3K phosphorylation, indicating Lyn kinase activity is important for ATRA-propelled events potentially regulated by CD38. We found that loss of Lyn activity coincided with a decrease in Vav1/Lyn/CD38 and SLP-76/Lyn/CD38 interaction, suggesting these molecules form a complex that regulates CD38 signaling. Lyn inhibition also reduced Lyn and CD38 binding to p85 PI3K, indicating CD38 facilitates a complex responsible for PI3K phosphorylation. Therefore, Lyn kinase activity is important for CD38-associated signaling that may drive ATRA-induced differentiation.
Collapse
Affiliation(s)
- Johanna Congleton
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Miaoqing Shen
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | - Robert MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino Medical School, Via Santena 19, 10126 Torino, Italy
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
CD38 ligation in peripheral blood mononuclear cells of myeloma patients induces release of protumorigenic IL-6 and impaired secretion of IFNγ cytokines and proliferation. Mediators Inflamm 2013; 2013:564687. [PMID: 24489445 PMCID: PMC3892939 DOI: 10.1155/2013/564687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
CD38, a surface receptor that controls signals in immunocompetent cells, is densely expressed by cells of multiple myeloma (MM). The immune system of MM patients appears as functionally impaired, with qualitative and quantitative defects in T cell immune responses. This work answers the issue whether CD38 plays a role in the impairment of T lymphocyte response. To this aim, we analyzed the signals implemented by monoclonal antibodies (mAb) ligation in peripheral blood mononuclear cells (PBMC) obtained from MM patients and compared to benign monoclonal gammopathy of undetermined significance (MGUS). PBMC from MM both failed to proliferate and secrete IFNγ induced by CD38 ligation while it retained the ability to respond to TCR/CD3. The impaired CD38-dependent proliferative response likely reflects an arrest in the progression of cell cycle, as indicated by the reduced expression of PCNA. CD38 signaling showed an enhanced ability to induce IL-6 secretion. PBMC from MM patients displays a deregulated response possibly due to defects of CD38 activation pathways and CD38 may be functionally involved in the progression of this pathology via the secretion of high levels of IL-6 that protects neoplastic cells from apoptosis.
Collapse
|
24
|
Hudig D, Hunter KW, Diamond WJ, Redelman D. Properties of human blood monocytes. II. Monocytes from healthy adults are highly heterogeneous within and among individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 86:121-34. [PMID: 24327358 DOI: 10.1002/cyto.b.21141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/17/2013] [Accepted: 10/18/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human blood monocytes are known to include subsets defined by the expression of CD14 and CD16 but otherwise are often assumed to be relatively homogeneous. However, we had observed additional heterogeneity that led us to a more extensive examination of monocytes. METHODS Blood samples from 200 healthy adults without known immunological abnormalities were examined by analysis with a hematology analyzer and by flow cytometry (FCM) to determine leukocyte differential counts, to identify subsets and to measure expression of monocyte-associated molecules. RESULTS The estimated cell counts of monocytes, neutrophils, total lymphocytes, and T cells all varied to a similar extent, that is, ±30-35%. The fractions of monocyte subsets defined by CD14 and CD16 or by CD163 expression also varied among individuals. FCM examinations showed that all the monocyte-associated molecules that were examined varied in expression in this increasing order-CD244, CD4, CD38, CD91, CD11b, toll-like receptor 2 (TLR2), TIA-1, CD14 (on CD14(Br+) cells), CD86, CD80, HLA-DQ, CD33, and HLA-DR. CONCLUSIONS Human blood monocytes are heterogeneous among healthy adults with respect to cell counts, subsets, and the levels of expression of monocyte-associated molecules. An increase in the "non-classical" (CD14(Lo/Neg) /CD16(+) ) monocyte subset or in the expression of CD11b or TLR2 have known diagnostic/prognostic implications. CD244 and CD4 have well-defined functions on lymphocytes but perform unknown activities on monocytes although their expression appears more narrowly controlled. Together, these data suggest that monocytes should be more extensively examined in both clinical and basic contexts.
Collapse
Affiliation(s)
- Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557
| | | | | | | |
Collapse
|
25
|
Clutton G, Yang H, Hancock G, Sande N, Holloway C, Angus B, von Delft A, Barnes E, Borrow P, Pellegrino P, Williams I, McMichael A, Dorrell L. Emergence of a distinct HIV-specific IL-10-producing CD8+T-cell subset with immunomodulatory functions during chronic HIV-1 infection. Eur J Immunol 2013; 43:2875-85. [DOI: 10.1002/eji.201343646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/17/2013] [Accepted: 07/26/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Genevieve Clutton
- Oxford NIHR Biomedical Research Centre; Nuffield Department of Medicine, University of Oxford; Oxford UK
| | - Hongbing Yang
- Oxford NIHR Biomedical Research Centre; Nuffield Department of Medicine, University of Oxford; Oxford UK
| | - Gemma Hancock
- Oxford NIHR Biomedical Research Centre; Nuffield Department of Medicine, University of Oxford; Oxford UK
| | - Nellia Sande
- Genitourinary Medicine; Oxford University Hospitals NHS Trust; Oxford UK
| | - Cameron Holloway
- University of Oxford Centre for Clinical Magnetic Resonance Research; John Radcliffe Hospital; Oxford UK
| | - Brian Angus
- Nuffield Department of Clinical Medicine; University of Oxford; Oxford UK
| | - Annette von Delft
- The Peter Medawar Building for Pathogen Research; University of Oxford; Oxford UK
| | - Eleanor Barnes
- The Peter Medawar Building for Pathogen Research; University of Oxford; Oxford UK
| | - Persephone Borrow
- Weatherall Institute of Molecular Medicine; John Radcliffe Hospital; Oxford UK
| | - Pierre Pellegrino
- Centre for Sexual Health & HIV Research; Mortimer Market Centre; London UK
| | - Ian Williams
- Centre for Sexual Health & HIV Research; Mortimer Market Centre; London UK
| | - Andrew McMichael
- Oxford NIHR Biomedical Research Centre; Nuffield Department of Medicine, University of Oxford; Oxford UK
| | - Lucy Dorrell
- Oxford NIHR Biomedical Research Centre; Nuffield Department of Medicine, University of Oxford; Oxford UK
- Genitourinary Medicine; Oxford University Hospitals NHS Trust; Oxford UK
| |
Collapse
|
26
|
Albeniz I, Demir-Coşkun O, Türker-Şener L, Baş A, Asoğlu O, Nurten R. CD38 expression as response of hematopoietic system to cancer. Oncol Lett 2011; 2:659-664. [PMID: 22848245 DOI: 10.3892/ol.2011.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/06/2011] [Indexed: 11/06/2022] Open
Abstract
Erythrocyte and lymphocyte NAD(+) glycohydrolase levels were previously found to be elevated in cancer patients. These results were confirmed in an animal model. The administration of live Ehrlich ascites tumor cells to BALB/c mice led to increases in erythrocyte and lymphocyte NAD(+) glycohydrolase, along with tumor development. Serum samples, ascites fluid from mice with developed tumors, serum samples from cancer patients and Ehrlich cell supernatants had a similar stimulatory effect when administered to mice or when incubated with peripheric lymphocytes in culture. These increases were accompanied by the appearance of an anti-CD38 reactive band of 45 kDa in SDS-PAGE/Western blot analyses of erythrocyte ghost and lymphocyte membrane proteins. The results, supported by flow cytometry data, support previous clinical findings that an enhancement in CD38 expression occurs in the hematopoietic system during proliferative processes. Moreover, they suggest that CD38 expression is triggered at least in part by a certain cytokine(s) secreted by cancer cells. Finally, the results emphasize the prospective use of CD38 expression as a marker of tumor development and progression.
Collapse
Affiliation(s)
- Işil Albeniz
- Department of Biophysics, Istanbul University, Istanbul Faculty of Medicine, 34093 Çapa-Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
27
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Liu Q, Graeff R, Kriksunov IA, Lam CMC, Lee HC, Hao Q. Conformational Closure of the Catalytic Site of Human CD38 Induced by Calcium. Biochemistry 2008; 47:13966-13973. [DOI: 10.1021/bi801642q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Richard Graeff
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Irina A. Kriksunov
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Connie M. C. Lam
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Hon Cheung Lee
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Quan Hao
- MacCHESS, Cornell High Energy Synchrotron Source, and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Physiology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Albeniz I, Demir O, Türker-Sener L, Yalçintepe L, Nurten R, Bermek E. Erythrocyte CD38 as a prognostic marker in cancer. ACTA ACUST UNITED AC 2008; 12:409-14. [PMID: 17852458 DOI: 10.1080/10245330701383841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Surface antigen CD38 which is a multifunctional protein with enzymatic and receptorial properties is involved in many processes of cell proliferation and activation. It is widely expressed within the hematopoetic system, and its expression is stimulated by proinflammatory cytokines. CD38-associated enzymatic activities in erythrocytes from cancer patients were investigated in this context. METHODS Erythrocyte NAD glycohydrolase and ADP-ribosyl cyclase activities in normal individuals and cancer patients were compared and correlation of these activities to CEA values and anemia were determined. Changes in CD38-expression were followed by SDS-PAGE and Western blot analysis of erythrocyte membrane proteins. RESULTS Erythrocyte NAD glycohydrolase and ADP-ribosyl cyclase activities were significantly increased in cancer, in parallel to enhancement of CD38 expression and in correlation with CEA values and anemia. CONCLUSIONS An increased expression of CD38 which may be due to action of proinflammatory cytokines produced in tumor-host reactions appears to account for the elevations in erythrocyte CD38-associated enzyme activities in cancer patients. The changes in these enzyme activities may provide a prognostic outlook in view of their apparently close correlation to tumor progressions.
Collapse
Affiliation(s)
- Isil Albeniz
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Capa-Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
30
|
Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88:841-86. [PMID: 18626062 DOI: 10.1152/physrev.00035.2007] [Citation(s) in RCA: 655] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The membrane proteins CD38 and CD157 belong to an evolutionarily conserved family of enzymes that play crucial roles in human physiology. Expressed in distinct patterns in most tissues, CD38 (and CD157) cleaves NAD(+) and NADP(+), generating cyclic ADP ribose (cADPR), NAADP, and ADPR. These reaction products are essential for the regulation of intracellular Ca(2+), the most ancient and universal cell signaling system. The entire family of enzymes controls complex processes, including egg fertilization, cell activation and proliferation, muscle contraction, hormone secretion, and immune responses. Over the course of evolution, the molecules have developed the ability to interact laterally and frontally with other surface proteins and have acquired receptor-like features. As detailed in this review, the loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications in mice. CD38 is a powerful disease marker for human leukemias and myelomas, is directly involved in the pathogenesis and outcome of human immunodeficiency virus infection and chronic lymphocytic leukemia, and controls insulin release and the development of diabetes. Here, the data concerning diseases are examined in view of potential clinical applications in diagnosis, prognosis, and therapy. The concluding remarks try to frame all of the currently available information within a unified working model that takes into account both the enzymatic and receptorial functions of the molecules.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/chemistry
- ADP-ribosyl Cyclase/genetics
- ADP-ribosyl Cyclase/immunology
- ADP-ribosyl Cyclase/metabolism
- ADP-ribosyl Cyclase 1/chemistry
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/immunology
- ADP-ribosyl Cyclase 1/metabolism
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Disease Models, Animal
- Evolution, Molecular
- GPI-Linked Proteins
- Humans
- Immunity, Innate
- Immunoconjugates/therapeutic use
- Immunotherapy/methods
- Ligands
- Models, Animal
- Models, Molecular
- Phylogeny
- Protein Conformation
- Signal Transduction/immunology
- Tissue Distribution
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Genetics, Biology, and Biochemistry and Centro di Ricerca in Medicina Sperimentale, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guedes AGP, Jude JA, Paulin J, Kita H, Lund FE, Kannan MS. Role of CD38 in TNF-alpha-induced airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2007; 294:L290-9. [PMID: 18055841 DOI: 10.1152/ajplung.00367.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD38 is involved in normal airway function, IL-13-induced airway hyperresponsiveness (AHR), and is also regulated by tumor necrosis factor (TNF)-alpha in airway smooth muscle (ASM) cells. This study aimed to determine whether TNF-alpha-induced CD38 upregulation in ASM cells contributes to AHR, a hallmark of asthma. We hypothesized that AHR would be attenuated in TNF-alpha-exposed CD38-deficient (CD38KO) mice compared with wild-type (WT) controls. Mice (n = 6-8/group) were intranasally challenged with vehicle control or TNF-alpha (50 ng) once and every other day during 1 or 4 wk. Lung inflammation and AHR, measured by changes in lung resistance after inhaled methacholine, were assessed 24 h following the last challenge. Tracheal rings were incubated with TNF-alpha (50 ng/ml) to assess contractile changes in the ASM. While a single TNF-alpha challenge caused no airway inflammation, both multiple-challenge protocols induced equally significant inflammation in CD38KO and WT mice. A single intranasal TNF-alpha challenge induced AHR in the WT but not in the CD38KO mice, whereas both mice developed AHR after 1 wk of challenges. The AHR was suppressed by extending the challenges for 4 wk in both mice, although to a larger magnitude in the WT than in the CD38KO mice. TNF-alpha increased ASM contractile properties in tracheal rings from WT but not from CD38KO mice. In conclusion, CD38 contributes to TNF-alpha-induced AHR after a brief airway exposure to the cytokine, likely by mediating changes in ASM contractile responses, and is associated with greater AHR remission following chronic airway exposure to TNF-alpha. The mechanisms involved in this remission remain to be determined.
Collapse
Affiliation(s)
- Alonso G P Guedes
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
32
|
March S, Graupera M, Rosa Sarrias M, Lozano F, Pizcueta P, Bosch J, Engel P. Identification and functional characterization of the hepatic stellate cell CD38 cell surface molecule. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:176-87. [PMID: 17200192 PMCID: PMC1762705 DOI: 10.2353/ajpath.2007.051212] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a critical event in hepatic fibrosis, because these cells are the main producers of extracellular matrix proteins in the liver and contribute to the modulation of inflammatory responses via the secretion of several cytokines and the expression of adhesion molecules. The goal of the present study was to characterize cell surface proteins that regulate HSC activation. To this end, a panel of monoclonal antibodies (mAbs) was generated. mAb 14.27 recognized a protein of 45 kd that was highly expressed on HSCs. Affinity purification of this protein followed by sequencing revealed that protein to be CD38. We subsequently demonstrated that CD38 was constitutively expressed by HSCs and that its expression increased after in vitro and in vivo activation. mAb 14.27 induced an increase in cytosolic Ca2+ levels in HSCs, showing that it functions as an agonistic antibody. Moreover, the effects mediated by the CD38 mAb included induction of the proinflammatory cytokine interleukin-6 and up-regulation of the adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neural cell adhesion molecule. Collectively, our data suggest that CD38 can act as a regulator of HSC activation and effector functions.
Collapse
Affiliation(s)
- Sandra March
- Immunology Unit, Department of Cellular Biology and Pathology, Medical School, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Ausiello CM, Cerquetti M, Fedele G, Spensieri F, Palazzo R, Nasso M, Frezza S, Mastrantonio P. Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect 2006; 8:2640-6. [DOI: 10.1016/j.micinf.2006.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 07/14/2006] [Accepted: 07/18/2006] [Indexed: 12/23/2022]
|
34
|
Frasca L, Fedele G, Deaglio S, Capuano C, Palazzo R, Vaisitti T, Malavasi F, Ausiello CM. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood 2005; 107:2392-9. [PMID: 16293598 DOI: 10.1182/blood-2005-07-2913] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD38, an ectoenzyme and a signaling receptor, is a novel marker of human mature monocyte-derived dendritic cells (MDDCs). The working hypothesis is that CD38 is not only a marker but also contributes to functions specifically gained by MDDCs with maturation. This was tested by assessing the role(s) of CD38 after signaling with agonistic anti-CD38 monoclonal antibodies or by blocking the interactions taking place between CD38 and CD31, its counterreceptor. The results indicate the following: (1) CD38 engagement in MDDCs ensures efficient chemotaxis and transendothelial migration driven by CC chemokine ligand 21 (CCL21); (2) CD38 is laterally associated with the CCL21-specific CC chemokine receptor 7 and with CD83 and CD11b; (3) CD38 localizes in membrane lipid domains; (4) CD38 signaling contributes to support longevity of lipopolysaccharide (LPS)-matured MDDCs after growth factor withdrawal; and (5) IFN-gamma is produced by cocultured T lymphocytes, thus affecting T-helper 1 (Th1) polarization. These data suggest that the localization of CD38 in lipid rafts and its multiple interactions with signaling receptors rule innate and adaptive immune responses by tuning DC migration, survival, and Th1-polarization ability. These findings may lay out the basis to assess the functional role(s) of human CD38 in infections, autoimmune diseases, and neoplastic disorders.
Collapse
Affiliation(s)
- Loredana Frasca
- Department of Infectious, Parasitic, and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fedele G, Frasca L, Palazzo R, Ferrero E, Malavasi F, Ausiello CM. CD38 is expressed on human mature monocyte-derived dendritic cells and is functionally involved in CD83 expression and IL-12 induction. Eur J Immunol 2004; 34:1342-50. [PMID: 15114667 DOI: 10.1002/eji.200324728] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic cell (DC) maturation is characterized by the gain or loss of immunological functions and by expression of distinctive surface receptors. CD38 is an ectoenzyme that catalyzes the synthesis of cyclic ADP ribose (a potent second messenger for Ca(2+) release), as well as a receptor that initiates transmembrane signaling upon engagement with its counter-receptor CD31 or with agonistic monoclonal antibodies. Since CD38 is expressed by resting monocytes, we aimed to monitor CD38 expression during the differentiation of human monocyte-derived DC (MDDC) and to investigate the possibility that CD38 plays a functional role during DC maturation. CD38 is down-modulated during differentiation into immature MDDC and expressed again upon maturation. The extent of CD38 expression is dependent on the stimulus adopted (LPS > IFN-gamma > CD40 cross-linking). Although weak, IFN-gamma consistently induces DC maturation. De novo-synthesized CD38 is enzymatically active, and its expression in mature (m) MDDC is dependent on NF-kappa B activity. However, CD38 is not merely a maturation marker but also mediates signaling in mMDDC, where it maintains its functions as a receptor. Activation via agonistic anti-CD38 mAb induces up-regulation of CD83 expression and IL-12 secretion, whereas disruption of CD38/CD31 interaction inhibits CD83 expression, IL-12 secretion and MDDC-induced allogeneic T cell proliferation.
Collapse
Affiliation(s)
- Giorgio Fedele
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Deaglio S, Capobianco A, Bergui L, Dürig J, Morabito F, Dührsen U, Malavasi F. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003; 102:2146-55. [PMID: 12763926 DOI: 10.1182/blood-2003-03-0989] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prognosis for patients with B-cell chronic lymphocytic leukemia (B-CLL) is generally less favorable for those expressing CD38. Our working hypothesis is that CD38 is not merely a marker in B-CLL, but that it plays a receptor role with pathogenetic potential ruling the proliferation of the malignant clone. CD38 levels were generally low in the patients examined and monoclonal antibody (mAb) ligation was inefficient in signaling. Other cellular models indicated that molecular density and surface organization are critical for CD38 functionality. Interleukin 2 (IL-2) induced a marked up-modulation and surface rearrangement of CD38 in all the patients studied. On reaching a specific expression threshold, CD38 becomes an efficient receptor in purified B-CLL cells. Indeed, mAb ligation is followed by Ca2+ fluxes and by a markedly increased proliferation. The unsuitability of CD38 to perform as a receptor is obviated through close interaction with the B-cell-receptor (BCR) complex and CD19. On mAb binding, CD38 translocates to the membrane lipid microdomains, as shown by a colocalization with the GM1 ganglioside and with CD81, a raft-resident protein. Finally, CD38 signaling in IL-2-treated B-CLL cells prolonged survival and induced the appearance of plasmablasts, providing a pathogenetic hypothesis for the occurrence of Richter syndrome.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/metabolism
- ADP-ribosyl Cyclase 1
- Aged
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Antigens, CD19/metabolism
- Apoptosis/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- Cell Division/immunology
- Cell Survival/immunology
- Cells, Cultured
- Cytokines/metabolism
- Female
- Humans
- Interleukin-2/pharmacology
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Membrane Glycoproteins
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Middle Aged
- Prognosis
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Silvia Deaglio
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, via Santena 19, 10126 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|