1
|
Rajput A, Manna T, Husain SM. Anthrol reductases: discovery, role in biosynthesis and applications in natural product syntheses. Nat Prod Rep 2023; 40:1672-1686. [PMID: 37475701 DOI: 10.1039/d3np00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Covering: up to 2023Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC involved in monodictyphenone biosynthesis of Aspergillus nidulans and provided access to (R)-dihydroanthracenone, a putative biosynthetic intermediate. This facilitated the identification of several MdpC-related enzymes involved in the biosynthesis of aflatoxins B1, cladofulvin, neosartorin, agnestins and bisanthraquinones. Because of their ability to catalyze the reduction of hydroanthraquinone (anthrols) using NADPH, they were named anthrol reductases. This review provides a comprehensive summary of all the anthrol reductases that have been identified and characterized in the last decade along with their role in the biosynthesis of natural products. In addition, the applications of these enzymes towards the chemoenzymatic synthesis of flavoskyrins, modified bisanthraquinones, 3-deoxy anthraquinones, chiral cycloketones and β-halohydrins have been discussed.
Collapse
Affiliation(s)
- Anshul Rajput
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
2
|
Guevara G, Olortegui Flores Y, Fernández de las Heras L, Perera J, Navarro Llorens JM. Metabolic engineering of Rhodococcus ruber Chol-4: A cell factory for testosterone production. PLoS One 2019; 14:e0220492. [PMID: 31348804 PMCID: PMC6660089 DOI: 10.1371/journal.pone.0220492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
Abstract
Rhodococcus ruber Chol-4 is a potent steroid degrader that has a great potential as a biotechnological tool. As proof of concept, this work presents testosterone production from 4-androstene-3,17-dione by tailoring innate catabolic enzymes of the steroid catabolism inside the strain. A R. ruber quadruple mutant was constructed in order to avoid the breakage of the steroid nucleus. At the same time, an inducible expression vector for this strain was developed. The 17-ketoreductase gene from the fungus Cochliobolus lunatus was cloned and overexpressed in this vector. The engineered strain was able to produce testosterone from 4-androstene-3,17-dione using glucose for cofactor regeneration with a molar conversion of 61%. It is important to note that 91% of the testosterone was secreted outside the cell after 3 days of cell biotransformation. The results support the idea that Rhodococcus ruber Chol-4 can be metabolically engineered and can be used for the production of steroid intermediates.
Collapse
Affiliation(s)
- Govinda Guevara
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Yamileth Olortegui Flores
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Fernández de las Heras
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Julián Perera
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology, Facultad de CC, Biológicas, C/Jose Antonio Novais, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Švegelj M, Lamba D, Lanišnik Rižner T. Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. J Steroid Biochem Mol Biol 2017; 171:80-93. [PMID: 28259640 DOI: 10.1016/j.jsbmb.2017.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
Phytoestrogens are plant-derived compounds that functionally and structurally mimic mammalian estrogens. Phytoestrogens have broad inhibitory activities toward several steroidogenic enzymes, such as the 17β-hydroxysteroid dehydrogenases (17β-HSDs), which modulate the biological potency of androgens and estrogens in mammals. However, to date, no crystallographic data are available to explain phytoestrogens binding to mammalian 17β-HSDs. NADP(H)-dependent 17β-HSD from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) has been the subject of extensive biochemical, kinetic and quantitative structure-activity relationship studies that have shown that the flavonols are the most potent inhibitors. In the present study, we investigated the structure-activity relationships of the ternary complexes between the holo form of 17β-HSDcl and the flavonols kaempferol and 3,7-dihydroxyflavone, in comparison with the isoflavones genistein and biochanin A. Crystallographic data are accompanied by kinetic analysis of the inhibition mechanisms for six flavonols (3-hydroxyflavone, 3,7-dihydroxyflavone, kaempferol, quercetin, fisetin, myricetin), one flavanone (naringenin), one flavone (luteolin), and two isoflavones (genistein, biochanin A). The kinetics analysis shows that the degree of hydroxylation of ring B significantly influences the overall inhibitory efficacy of the flavonols. A distinct binding mode defines the interactions between 17β-HSDcl and the flavones and isoflavones. Moreover, the complex with biochanin A reveals an unusual binding mode that appears to account for its greater inhibition of 17β-HSDcl with respect to genistein. Overall, these data provide a blueprint for identification of the distinct molecular determinants that underpin 17β-HSD inhibition by phytoestrogens.
Collapse
Affiliation(s)
- Alberto Cassetta
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy.
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Ivet Krastanova
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S. C. p. A., S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mojca Brunskole Švegelj
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Doriano Lamba
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Fürtges L, Conradt D, Schätzle MA, Singh SK, Kraševec N, Rižner TL, Müller M, Husain SM. Phylogenetic Studies, Gene Cluster Analysis, and Enzymatic Reaction Support Anthrahydroquinone Reduction as the Physiological Function of Fungal 17β-Hydroxysteroid Dehydrogenase. Chembiochem 2016; 18:77-80. [DOI: 10.1002/cbic.201600489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Leon Fürtges
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - David Conradt
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael A. Schätzle
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
- Roche Pharma AG; Emil-Barell-Strasse 1 79639 Grenzach-Wyhlen Germany
| | - Shailesh Kumar Singh
- Centre of Biomedical Research; SGPGIMS Campus; Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Nada Kraševec
- National Institute of Chemistry; Hajdrihova 19 1000 Ljubljana Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry; Faculty of Medicine; University of Ljubljana; Vrazov trg 2 1000 Ljubljana Slovenia
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Syed Masood Husain
- Centre of Biomedical Research; SGPGIMS Campus; Raebareli Road, Lucknow 226014 Uttar Pradesh India
| |
Collapse
|
5
|
Fernández-Cabezón L, Galán B, García JL. Engineering Mycobacterium smegmatis for testosterone production. Microb Biotechnol 2016; 10:151-161. [PMID: 27860310 PMCID: PMC5270716 DOI: 10.1111/1751-7915.12433] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
A new biotechnological process for the production of testosterone (TS) has been developed to turn the model strain Mycobacterium smegmatis suitable for TS production to compete with the current chemical synthesis procedures. We have cloned and overexpressed two genes encoding microbial 17β‐hydroxysteroid: NADP 17‐oxidoreductase, from the bacterium Comamonas testosteroni and from the fungus Cochliobolus lunatus. The host strains were M. smegmatis wild type and a genetic engineered androst‐4‐ene‐3,17‐dione (AD) producing mutant. The performances of the four recombinant bacterial strains have been tested both in growing and resting‐cell conditions using natural sterols and AD as substrates respectively. These strains were able to produce TS from sterols or AD with high yields. This work represents a proof of concept of the possibilities that offers this model bacterium for the production of pharmaceutical steroids using metabolic engineering approaches.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
6
|
Kristan K, Rižner TL. Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 2012; 129:79-91. [PMID: 21946531 DOI: 10.1016/j.jsbmb.2011.08.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/27/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022]
Abstract
Fungal species are a very important source of many different enzymes, and the ability of fungi to transform steroids has been used for several decades in the production of compounds with a sterane skeleton. Here, we review the characterised and/or purified enzymes for steroid transformations, dividing them into two groups: (i) enzymes of the ergosterol biosynthetic pathway, including data for, e.g. ERG11 (14α-demethylase), ERG6 (C-24 methyltransferase), ERG5 (C-22 desaturase) and ERG4 (C-24 reductase); and (ii) the other steroid-transforming enzymes, including different hydroxylases (7α-, 11α-, 11β-, 14α-hydroxylase), oxidoreductases (5α-reductase, 3β-hydroxysteroid dehydrogenase/isomerase, 17β-hydroxysteroid dehydrogenase, C-1/C-2 dehydrogenase) and C-17-C-20 lyase. The substrate specificities of these enzymes, their cellular localisation, their association with protein super-families, and their potential applications are discussed. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
7
|
Svegelj MB, Stojan J, Rižner TL. The role of Ala231 and Trp227 in the substrate specificities of fungal 17β-hydroxysteroid dehydrogenase and trihydroxynaphthalene reductase: Steroids versus smaller substrates. J Steroid Biochem Mol Biol 2012; 129:92-8. [PMID: 21439381 DOI: 10.1016/j.jsbmb.2011.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/04/2011] [Accepted: 03/12/2011] [Indexed: 11/17/2022]
Abstract
17β-Hydroxysteroid dehydrogenase and trihydroxynaphthalene reductase from the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus; 17β-HSDcl and 3HNR, respectively) are two homologous short-chain dehydrogenase/reductase proteins that are 58% identical and have 86% similar amino acids. The minor differences in their substrate-binding regions are believed to be crucial for their substrate specificities. 3HNR shows high affinity for substrates with two rings, like trihydroxynaphthalene and 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO), while 17β-HSDcl can accommodate ligands with four rings, like steroids. In the present study, we examined the role of Ala231 in 17β-HSDcl and Trp227 in 3HNR, as the potential key amino acids in the determination of substrate recognition based on size. We constructed Ala231Trp 17β-HSDcl and Trp227Ala 3HNR mutant proteins and used spectrophotometric analyses to compare their catalytic activities with those of the wild-type enzymes, for oxidation of 4-estrene-17β-ol-3-one and DDBO and for reduction of 4-estrene-3,17-dione and 9,10-phenanthrenequinone (PQ). The Ala231Trp side-chain substitution in 17β-HSDcl abolished and decreased (by 14.6-fold) the initial rates for steroid oxidation and reduction, respectively, while the initial rate for PQ reduction was increased 5.6-fold. The bulky Trp227Ala side-chain substitution in 3HNR enabled oxidation of 4-estrene-17β-ol-3-one, increased the initial rates for reduction of 4-estrene-3,17-dione and PQ by 4.5-fold and 1.5-fold, respectively, while the initial rate for DDBO oxidation was decreased 4.1-fold. Our TLC analysis and docking simulations also support these findings. Our study thus confirms the important roles of Ala231 in 17β-HSDcl and Trp227 in 3HNR, for the selection between larger and smaller substrates. Article from a special issue on steroids and microorganisms.
Collapse
|
8
|
Insights into subtle conformational differences in the substrate-binding loop of fungal 17β-hydroxysteroid dehydrogenase: a combined structural and kinetic approach. Biochem J 2011; 441:151-60. [DOI: 10.1042/bj20110567] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 17β-HSD (17β-hydroxysteroid dehydrogenase) from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is a NADP(H)-dependent enzyme that preferentially catalyses the interconversion of inactive 17-oxo-steroids and their active 17β-hydroxy counterparts. 17β-HSDcl belongs to the SDR (short-chain dehydrogenase/reductase) superfamily. It is currently the only fungal 17β-HSD member that has been described and represents one of the model enzymes of the cP1 classical subfamily of NADPH-dependent SDR enzymes. A thorough crystallographic analysis has been performed to better understand the structural aspects of this subfamily and provide insights into the evolution of the HSD enzymes. The crystal structures of the 17β-HSDcl apo, holo and coumestrol-inhibited ternary complex, and the active-site Y167F mutant reveal subtle conformational differences in the substrate-binding loop that probably modulate the catalytic activity of 17β-HSDcl. Coumestrol, a plant-derived non-steroidal compound with oestrogenic activity, inhibits 17β-HSDcl [IC50 2.8 μM; at 100 μM substrate (4-oestrene-3,17-dione)] by occupying the putative steroid-binding site. In addition to an extensive hydrogen-bonding network, coumestrol binding is stabilized further by π–π stacking interactions with Tyr212. A stopped-flow kinetic experiment clearly showed the coenzyme dissociation as the slowest step of the reaction and, in addition to the low steroid solubility, it prevents the accumulation of enzyme–coenzyme–steroid ternary complexes.
Collapse
|
9
|
Identification and functional characterization of a putative 17β-hydroxysteroid dehydrogenase 12 in abalone (Haliotis diversicolor supertexta). Mol Cell Biochem 2011; 354:123-33. [DOI: 10.1007/s11010-011-0811-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/24/2011] [Indexed: 12/24/2022]
|
10
|
Two homologous fungal carbonyl reductases with different substrate specificities. Chem Biol Interact 2009; 178:295-302. [DOI: 10.1016/j.cbi.2008.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022]
|
11
|
Kollerov VV, Shutov AA, Fokina VV, Sukhodol'skaya GV, Donova MV. Biotransformation of 3-keto-androstanes by Gongronella butleri VKM F-1033. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2008.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Growth media effects on morphology and 17β-HSD activity in the fungusCurvularia lunata. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Kristan K, Stojan J, Adamski J, Lanisnik Rizner T. Rational design of novel mutants of fungal 17β-hydroxysteroid dehydrogenase. J Biotechnol 2007; 129:123-30. [PMID: 17196285 DOI: 10.1016/j.jbiotec.2006.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 07/26/2006] [Accepted: 08/03/2006] [Indexed: 11/29/2022]
Abstract
Reduction of 17-ketosteroids is a biocatalytic process of economic significance for the production of steroid drugs. This reaction can be catalyzed by different microbial 17beta-hydroxysteroid dehydrogenases (17beta-HSD), like the 17beta-HSD activity of Saccharomyces cerevisiae, Pichia faranosa and Mycobacterium sp., and by purified 3beta,17beta-HSD from Pseudomonas testosteroni. In addition to the bacterial 3beta,17beta-HSD the 17beta-HSD of the filamentous fungus Cochliobolus lunatus is the only microbial 17beta-HSD that has been expressed as a recombinant protein and fully characterized. On the basis of its modeled 3D structure, we selected several positions for the replacement of amino acids by site-directed mutagenesis to change substrate specificity, alter coenzyme requirements, and improve overall catalytic activity. Replacement of Val161 and Tyr212 in the substrate-binding region by Gly and Ala, respectively, increased the initial rates for the conversion of androstenedione to testosterone. Replacement of Tyr49 within the coenzyme binding site by Asp changed the coenzyme specificity of the enzyme. This latter mutant can convert the steroids not only in the presence of NADP(+) and NADPH, but also in the presence of NADH and NAD(+). The replacement of His164, located in the non-flexible part of the 'lid' covering the active center resulted in a conformation of the enzyme that possessed a higher catalytic activity.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
14
|
Kristan K, Adamski J, Rizner TL, Stojan J. His164 regulates accessibility to the active site in fungal 17β-hydroxysteroid dehydrogenase. Biochimie 2007; 89:63-71. [PMID: 17034927 DOI: 10.1016/j.biochi.2006.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/ reductase superfamily. To study the catalytic properties of this enzyme, we prepared several specific mutations of 17beta-HSDcl (Tyr167Phe, His164Trp/Gly, Tyr212Ala). Wild-type 17beta-HSDcl and the 17beta-HSDcl mutants were evaluated by chromatographic, kinetic and thermodynamic means. The Tyr167Phe mutation resulted in a complete loss of enzyme activity, while substitution of His164 with Trp and Gly both resulted in higher specificity number (V/K) for the steroid substrates, which are mainly a consequence of easier accessibility of steroid substrates to the active-site hollow under optimized conditions. The Tyr212Ala mutant showed increased activity in the oxidative direction, which appears to be a consequence of increased NADPH dissociation. The kinetic characterizations and thermodynamic analyses also suggest that His164 and Tyr212 in 17beta-HSDcl have a role in the opening and closing of the active site of this enzyme and in the discrimination between oxidized and reduced coenzyme.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
15
|
Ulrih NP, Lanisnik Rizner T. Conformational stability of 17 beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus. FEBS J 2006; 273:3927-37. [PMID: 16934034 DOI: 10.1111/j.1742-4658.2006.05396.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional activities of proteins are closely related to their molecular structure and understanding their structure-function relationships remains one of the intriguing problems of molecular biology. We investigated structural changes in 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) induced by pH, temperature, salt, urea, guanidine hydrochloride, and coenzyme NADPH binding. At 25 degrees C and within the relatively narrow pH range of 7.0-9.0, 17beta-HSDcl exists in its native conformation as a dimer. This native conformation is thermally stable up to 40 degrees C in this pH range. At 25 degrees C and pH 2.0 in the presence of 150-300 mM NaCl, 17beta-HSDcl forms soluble aggregates enriched in alpha-helical and beta-sheet structures. At higher temperatures and NaCl concentrations, these soluble aggregates start to precipitate. The denaturants urea and guanidine hydrochloride unfold 17beta-HSDcl at concentrations of 1.2 and 0.4 M, respectively. Binding of the coenzyme NADPH to 17beta-HSDcl causes local structural changes that do not significantly affect the thermal stability of this protein.
Collapse
Affiliation(s)
- Natasa Poklar Ulrih
- Department of Food Science and Technology, University of Ljubljana, Slovenia.
| | | |
Collapse
|
16
|
Kristan K, Deluca D, Adamski J, Stojan J, Rižner TL. Dimerization and enzymatic activity of fungal 17beta-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily. BMC BIOCHEMISTRY 2005; 6:28. [PMID: 16359545 PMCID: PMC1326212 DOI: 10.1186/1471-2091-6-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 12/16/2005] [Indexed: 12/02/2022]
Abstract
BACKGROUND 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. SDR proteins usually function as dimers or tetramers and 17beta-HSDcl is also a homodimer under native conditions. RESULTS We have investigated here which secondary structure elements are involved in the dimerization of 17beta-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the alphaE-helices interact with the Asp121, Glu117 and Asp187 residues from the alphaE and alphaF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17beta-HSDcl monomeric, while the mutant 17beta-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. CONCLUSION We have shown by site-directed mutagenesis and structure/function analysis that 17beta-HSDcl dimerization involves the alphaE and alphaF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Dominga Deluca
- GSF-National Research Centre for Environment and Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstädter Landstraβe 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- GSF-National Research Centre for Environment and Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstädter Landstraβe 1, 85764 Neuherberg, Germany
| | - Jure Stojan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Kristan K, Krajnc K, Konc J, Gobec S, Stojan J, Rizner TL. Phytoestrogens as inhibitors of fungal 17beta-hydroxysteroid dehydrogenase. Steroids 2005; 70:694-703. [PMID: 15936789 DOI: 10.1016/j.steroids.2005.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/25/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100 microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100 microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1 microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone all had IC(50) values between 1 and 5 microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
18
|
Kristan K, Krajnc K, Konc J, Gobec S, Stojan J, Lanisnik Rizner T. Phytoestrogens as inhibitors of fungal 17beta-hydroxysteroid dehydrogenase. Steroids 2005; 70:626-35. [PMID: 15927220 DOI: 10.1016/j.steroids.2005.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/17/2005] [Accepted: 02/28/2005] [Indexed: 11/30/2022]
Abstract
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone, all had IC(50) values between 1 and 5microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
19
|
Mindnich R, Möller G, Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2004; 218:7-20. [PMID: 15130507 DOI: 10.1016/j.mce.2003.12.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/09/2003] [Accepted: 12/15/2003] [Indexed: 11/17/2022]
Abstract
The biological activity of steroid hormones is regulated at the pre-receptor level by several enzymes including 17 beta-hydroxysteroid dehydrogenases (17 beta -HSD). The latter are present in many microorganisms, invertebrates and vertebrates. Dysfunctions in human 17 beta-hydroxysteroid dehydrogenases result in disorders of biology of reproduction and neuronal diseases, the enzymes are also involved in the pathogenesis of various cancers. 17 beta-hydroxysteroid dehydrogenases reveal a remarkable multifunctionality being able to modulate concentrations not only of steroids but as well of fatty and bile acids. Current knowledge on genetics, biochemistry and medical implications is presented in this review.
Collapse
Affiliation(s)
- R Mindnich
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
20
|
Kristan K, Rizner TL, Stojan J, Gerber JK, Kremmer E, Adamski J. Significance of individual amino acid residues for coenzyme and substrate specificity of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus. Chem Biol Interact 2003; 143-144:493-501. [PMID: 12604235 DOI: 10.1016/s0009-2797(02)00205-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is a NADPH dependent member of the short-chain dehydrogenase reductase (SDR) superfamily. Recently, we prepared a homology-built structural model of 17beta-HSDcl using the known three-dimensional structure of homologous 1,3,8-trihydroxynaphthalene reductase from the fungus Magnaporthe grisea. This model structure directed our studies of structure-function relationship of the fungal 17beta-HSD, as one of the model enzymes of the SDR superfamily. In this work, we investigated the significance of individual amino acid residues for coenzyme and substrate specificity. We performed site directed mutagenesis of R28, a basic residue conserved in most NADPH dependent SDR structures; T200, found only in Streptomyces hydrogenans 3alpha,20beta-HSD and Drosophila alcohol dehydrogenases; and H230, a residue corresponding to the substrate specificity important H221 in human 17beta-HSD type 1. All recombinant proteins were expressed in Escherichia coli and purified to homogeneity. Kinetic evaluation of individual mutations was performed by analysis of progress curves of interconversions between 4-estrene-3,17-dione and 4-estrene-17beta-ol-3-one, in the presence of NADPH and NADP(+); according to the Theorell-Chance reaction mechanism. The results demonstrate the role of the selected amino acid residues; R28 seems to interact with the NADPH 2'-phosphate group; T200 may be involved in binding and dissociation of NADPH/NADP(+); while H230 and the neighboring A231 appears not to be responsible for substrate specificity of 17beta-HSDcl.
Collapse
Affiliation(s)
- Katja Kristan
- Medical Faculty, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|