1
|
Nasiri L, Vaez-Mahdavi MR, Hassanpour H, Ghazanfari T, Kaboudanian Ardestani S, Askari N, Ghaffarpour S, Zamani MS. Transcription of biological aging markers (ANRIL, P16 INK4a, TBX2, and TERRA) and their correlations with severity of sulfur mustard exposure in veterans. Drug Chem Toxicol 2024:1-9. [PMID: 39227349 DOI: 10.1080/01480545.2024.2395571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/09/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Sulfur mustard (SM) exposure has delayed harmful effects, including premature biological aging. This study aimed to evaluate the expression of aging markers (i.e., ANRIL, P16INK4a, TBX2, and TERRA) and assess their correlation with the severity of SM exposure in the long term. The study was conducted on two volunteer groups. 1) SM-exposed group, exposed to SM once in 1987 during the war; divided into three subgroups based on the injury severity, asymptomatic (without any clinical signs), mild, and severe; 2) Non-exposed group. In the SM-exposed group, ANRIL transcript was decreased, especially in subgroups of mild and severe. TBX2 transcript was also decreased in the total SM-exposed group. This decrease was more significant in the mild and severe subgroups than in asymptomatic ones. P16INK4a transcript was increased in the SM-exposed group, especially in the asymptomatic subgroup. The increase in TERRA transcript was also significant in all subgroups. There was a positive correlation between the TERRA transcript and the severity of injury, while this correlation was negative for the ANRIL. It is concluded that the delayed toxicity of SM may be associated with dysregulation of aging markers leading to premature cellular aging. These markers' alterations differed according to the severity of SM injury.
Collapse
Affiliation(s)
- Leila Nasiri
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Mohammad-Reza Vaez-Mahdavi
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Physiology, Medical Faculty, Shahed University, Tehran, Iran
| | - Hossein Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Sussan Kaboudanian Ardestani
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahid Bahonar University, Kerman, Iran
| | - Sara Ghaffarpour
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
2
|
Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F. The underlying mechanism of nuclear and mitochondrial DNA damages in triggering cancer incidences: Insights into proteomic and genomic sciences. J Biotechnol 2024; 383:1-12. [PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
Collapse
Affiliation(s)
- Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria.
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna 05000, Algeria
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
| | | | - Farooq Anwar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Honorary Research Fellow: Metharath University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand
| |
Collapse
|
3
|
Cheng X, Liu C, Yang Y, Liang L, Chen B, Yu H, Xia J, Liu S, Li Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol Lett 2021; 344:46-57. [PMID: 33705862 DOI: 10.1016/j.toxlet.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Longhui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Yihe Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China.
| |
Collapse
|
4
|
Ullmann R, Becker BV, Rothmiller S, Schmidt A, Thiermann H, Kaatsch HL, Schrock G, Müller J, Jakobi J, Obermair R, Port M, Scherthan H. Genomic Adaption and Mutational Patterns in a HaCaT Subline Resistant to Alkylating Agents and Ionizing Radiation. Int J Mol Sci 2021; 22:ijms22031146. [PMID: 33498964 PMCID: PMC7865644 DOI: 10.3390/ijms22031146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.
Collapse
Affiliation(s)
- Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
- Correspondence:
| | - Benjamin Valentin Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Rübenacherstrasse 170, D-56072 Koblenz, Germany;
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Gerrit Schrock
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Jessica Müller
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Julia Jakobi
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Richard Obermair
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| |
Collapse
|
5
|
Wagner S, Lang S, Popp T, Schmidt A, Thiermann H, Steinritz D, Kehe K. Evaluation of selective and non-selective cyclooxygenase inhibitors on sulfur mustard-induced pro-inflammatory cytokine formation in normal human epidermal keratinocytes. Toxicol Lett 2019; 312:109-117. [DOI: 10.1016/j.toxlet.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 02/02/2023]
|
6
|
Next-generation sequencing approaches for the study of genome and epigenome toxicity induced by sulfur mustard. Arch Toxicol 2018; 92:3443-3457. [PMID: 30155719 DOI: 10.1007/s00204-018-2294-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Sulfur mustard (SM) is an extensive nucleophilic and alkylating agent that targets different tissues. The genotoxic property of SM is the most threatening effect, because it is associated with detrimental inflammations and susceptibility to several kinds of cancer. Moreover, SM causes a wide variety of adverse effects on DNA which result in accumulation of DNA adducts, multiple mutations, aneuploidies, and epigenetic aberrations in the genome. However, these adverse effects are still not known well, possibly because no valid biomarkers have been developed for detecting them. The advent of next-generation sequencing (NGS) has provided opportunities for the characterization of these alterations with a higher level of molecular detail and cost-effectivity. The present review introduces NGS approaches for the detection of SM-induced DNA adducts, mutations, chromosomal structural variation, and epigenetic aberrations, and also comparing and contrasting them with regard to which might be most advantageous.
Collapse
|
7
|
Giesche R, John H, Kehe K, Schmidt A, Popp T, Balzuweit F, Thiermann H, Gudermann T, Steinritz D. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA. Chem Biol Interact 2016; 262:12-18. [PMID: 27923644 DOI: 10.1016/j.cbi.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 01/27/2023]
Abstract
Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus crucial for DNA quantification with fluorescent dyes in the presence of alkylating compounds.
Collapse
Affiliation(s)
- Robert Giesche
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kai Kehe
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; Bundeswehr Medical Academy, 80937 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Frank Balzuweit
- Comprehensive Pneumology Center Munich (CPCM), German Center for Lung Research, 81377 Munich, Germany; Bundeswehr Medical Command, 56070 Koblenz, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; Comprehensive Pneumology Center Munich (CPCM), German Center for Lung Research, 81377 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
8
|
Nourani MR, Mahmoodzadeh Hosseini H, Azimzadeh Jamalkandi S, Imani Fooladi AA. Cellular and molecular mechanisms of acute exposure to sulfur mustard: a systematic review. J Recept Signal Transduct Res 2016; 37:200-216. [DOI: 10.1080/10799893.2016.1212374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammad Reza Nourani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Composto GM, Laskin JD, Laskin DL, Gerecke DR, Casillas RP, Heindel ND, Joseph LB, Heck DE. Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug. Exp Mol Pathol 2016; 100:522-31. [PMID: 27189522 DOI: 10.1016/j.yexmp.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4μmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures.
Collapse
Affiliation(s)
- Gabriella M Composto
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | | | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
10
|
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:27-45. [PMID: 27234561 PMCID: PMC4884606 DOI: 10.1016/j.mrrev.2016.03.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Nobakht BF, Aliannejad R, Rezaei-Tavirani M, Arefi Oskouie A, Naseri MT, Parastar H, Aliakbarzadeh G, Fathi F, Taheri S. NMR- and GC/MS-based metabolomics of sulfur mustard exposed individuals: a pilot study. Biomarkers 2016; 21:479-89. [DOI: 10.3109/1354750x.2016.1153725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Goswami DG, Kumar D, Tewari-Singh N, Orlicky DJ, Jain AK, Kant R, Rancourt RC, Dhar D, Inturi S, Agarwal C, White CW, Agarwal R. Topical nitrogen mustard exposure causes systemic toxic effects in mice. ACTA ACUST UNITED AC 2014; 67:161-70. [PMID: 25481215 DOI: 10.1016/j.etp.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond C Rancourt
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Inturi S, Tewari-Singh N, Gu M, Shrotriya S, Gomez J, Agarwal C, White CW, Agarwal R. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts. Free Radic Biol Med 2011; 51:2272-80. [PMID: 21920433 PMCID: PMC3662483 DOI: 10.1016/j.freeradbiomed.2011.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/21/2022]
Abstract
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Mallikarjuna Gu
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Sangeeta Shrotriya
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Carl W. White
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
- Corresponding author. Fax: +1 303 724 7266. (R. Agarwal)
| |
Collapse
|
14
|
Ghanei M, Poursaleh Z, Harandi AA, Emadi SE, Emadi SN. Acute and chronic effects of sulfur mustard on the skin: a comprehensive review. Cutan Ocul Toxicol 2010; 29:269-77. [DOI: 10.3109/15569527.2010.511367] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR, Sinko PJ, Laskin DL, Laskin JD. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 249:178-87. [PMID: 20840853 DOI: 10.1016/j.taap.2010.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022]
Abstract
Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE₂ synthases, leukotriene (LT) A₄ hydrolase and LTC₄ synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Everley PA, Dillman JF. Genomics and proteomics in chemical warfare agent research: recent studies and future applications. Toxicol Lett 2010; 198:297-303. [PMID: 20708669 DOI: 10.1016/j.toxlet.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022]
Abstract
Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.
Collapse
Affiliation(s)
- Patrick A Everley
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | | |
Collapse
|
17
|
Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 245:352-60. [PMID: 20382172 DOI: 10.1016/j.taap.2010.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 microM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A(4) (LTA(4)) hydrolase and leukotriene C(4) (LTC(4)) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA(4) hydrolase and LTC(4) synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.
Collapse
|
18
|
Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring Pt II chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem Pharmacol 2010; 79:552-64. [PMID: 19782655 DOI: 10.1016/j.bcp.2009.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/28/2009] [Accepted: 09/18/2009] [Indexed: 12/20/2022]
Abstract
Earlier studies have described promising antitumor activity of a large-ring chelate complex [PtCl(2)(cis-1,4-DACH)] (DACH=diaminocyclohexane). Encouraging antitumor activity of this analogue of cisplatin prompted us to perform studies focused on the mechanistic basis of pharmacological effects of this complex. Four early steps in the mechanism of biological activity of cisplatin have been delineated: cell entry, reactions with sulfur-containing compounds, platinum-DNA binding along with processing platinated DNA by proteins (enzymes) and DNA repair. Here, we describe comparative experiments (involving also cisplatin) revealing: (i) improved cytotoxicity (3.4-5.4-fold) of [PtCl(2)(cis-1,4-DACH)] in human tumor ovarian cell lines; (ii) enhanced cellular uptake (approximately 1.5-fold) of [PtCl(2)(cis-1,4-DACH)]; (iii) somewhat enhanced rate of reactions of [PtCl(2)(cis-1,4-DACH)] with glutathione (approximately 1.5-fold), but a similar rate of reactions with metallothionenin-2; (iv) enhanced rate of DNA binding of [PtCl(2)(cis-1,4-DACH)] in cell-free media (approximately 2-fold); (v) similar sequence preference of DNA binding of [PtCl(2)(cis-1,4-DACH)] in cell-free media; (vi) identical DNA interstrand cross-linking efficiency (6%); (vii) similar bending (32 degrees) and enhanced local unwinding (approximately 1.5-fold) induced in DNA by the major 1,2-GG-intrastrand cross-link; (viii) markedly enhanced inhibiting effects of DNA adducts of [PtCl(2)(cis-1,4-DACH)] on processivity of DNA polymerase; and (ix) a slightly lower efficiency of DNA repair systems to remove the adducts of [PtCl(2)(cis-1,4-DACH)] from DNA.
Collapse
|
19
|
Jafari M, Nateghi M, Rabbani A. Interaction of sulfur mustard with rat liver salt fractionated chromatin. Int J Biol Macromol 2010; 46:104-8. [DOI: 10.1016/j.ijbiomac.2009.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/27/2009] [Accepted: 10/03/2009] [Indexed: 11/29/2022]
|
20
|
Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology 2009; 263:12-9. [DOI: 10.1016/j.tox.2009.01.019] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 02/07/2023]
|
21
|
Kehe K, Thiermann H, Balszuweit F, Eyer F, Steinritz D, Zilker T. Acute effects of sulfur mustard injury—Munich experiences. Toxicology 2009; 263:3-8. [DOI: 10.1016/j.tox.2009.04.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
22
|
LaRiviere FJ, Newman AG, Watts ML, Bradley SQ, Juskewitch JE, Greenwood PG, Millard JT. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA. Mutat Res 2009; 664:48-54. [PMID: 19428380 PMCID: PMC2727856 DOI: 10.1016/j.mrfmmm.2009.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/04/2008] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.
Collapse
Affiliation(s)
| | - Adam G. Newman
- Department of Chemistry, Colby College, Waterville ME 04901
| | - Megan L. Watts
- Department of Chemistry, Colby College, Waterville ME 04901
| | | | | | | | | |
Collapse
|
23
|
A quantum chemical study of reactions of DNA bases with sulphur mustard: a chemical warfare agent. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0514-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes. Toxicol Appl Pharmacol 2008; 230:97-108. [DOI: 10.1016/j.taap.2008.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/28/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
|
25
|
Bikker FJ, Mars-Groenendijk RH, Noort D, Fidder A, van der Schans GP. Detection of sulfur mustard adducts in human callus by phage antibodies. Chem Biol Drug Des 2007; 69:314-20. [PMID: 17539823 DOI: 10.1111/j.1747-0285.2007.00504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As part of a research program to develop novel methods for diagnosis of sulfur mustard exposure in the human skin the suitability of phage display was explored. Phage display is a relative new method that enables researchers to quickly evaluate a huge range of potentially useful antibodies, thereby bypassing the more costly and time-consuming hybridoma technique. The Tomlinson I and J phage libraries were used to select phage antibodies exhibiting affinity for sulfur mustard adducts on keratins, isolated from human callus. Two kinds of phage antibodies were obtained: antibodies recognizing keratin and antibodies recognizing keratin which was exposed to sulfur mustard. These phage antibodies retained activity after repeated culturing and culturing in larger volumes. For the first time antibody phage display was successfully applied for immunodiagnostics of a chemical warfare agent.
Collapse
Affiliation(s)
- Floris J Bikker
- TNO Defence, Security and Safety, PO Box 45, 2280 AA Rijswijk, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Bikker FJ, Mars-Groenendijk RH, Noort D, Fidder A, van der Schans GP. Detection of Sulfur Mustard Adducts in Human Callus by Phage Antibodies. Chem Biol Drug Des 2007. [DOI: 10.1111/j.1747-0825.2007.00504.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Sourdeval M, Lemaire C, Deniaud A, Taysse L, Daulon S, Breton P, Brenner C, Boisvieux-Ulrich E, Marano F. Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis 2006; 11:1545-59. [PMID: 16738803 DOI: 10.1007/s10495-006-8764-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions.
Collapse
Affiliation(s)
- Matthieu Sourdeval
- Labortoire de Cytophysiologie et Toxicologie Cellulaire, Université Paris 7-Denis Diderot, case 70-73, 2 place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sulphur mustard is one of the major chemical warfare agents developed and used during World War I. Large stockpiles are still present in several countries. It is relatively easy to produce and might be used as a terroristic weapon. Sulphur mustard is a vesicant agent and causes cutaneous blisters, respiratory tract damage, eye lesions and bone marrow depression. The clinical picture of poisoning is well known from the thousands of victims during World War I and the Iran-Iraq war. In the latter conflict, sulphur mustard was heavily used and until now about 30,000 victims still suffer from late effects of the agent like chronic obstructive lung disease, lung fibrosis, recurrent corneal ulcer disease, chronic conjunctivitis, abnormal pigmentation of the skin, and several forms of cancer. Despite enormous research efforts during the last 90 years, no specific sulphur mustard antidote has been found. The prospering knowledge and developments of modern medicine created nowadays new chances to minimize sulphur mustard-induced organ damage and late effects.
Collapse
Affiliation(s)
- Kai Kehe
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany.
| | | |
Collapse
|
29
|
Moufarij MA, Phillips DR, Cullinane C. Gemcitabine potentiates cisplatin cytotoxicity and inhibits repair of cisplatin-DNA damage in ovarian cancer cell lines. Mol Pharmacol 2003; 63:862-9. [PMID: 12644587 DOI: 10.1124/mol.63.4.862] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synergistic cytotoxicity between cisplatin and the nucleoside analog gemcitabine was observed in a panel of cisplatin-sensitive (2008, A2780) and -resistant (2008/C13*5.25, A2780/CP70) human ovarian cell lines. Previous studies have suggested a role for DNA repair in the mechanism of synergy between the two drugs. We therefore further investigated the hypothesis that the synergistic cytotoxicity between gemcitabine and cisplatin in these cell lines may be caused by gemcitabine-mediated inhibition of cisplatin intrastrand adduct (IA) and interstand cross-link (ICL) repair. The effect of gemcitabine on the accumulation and repair of cisplatin IA and ICL in each cell line was then measured directly using gene-specific quantitative polymerase chain reaction and denaturation/renaturation techniques, respectively. Pretreatment of 2008 cells with 1 microM gemcitabine for 2 h before exposure to cisplatin for 7 h enhanced the accumulation of cisplatin IA and ICL by 50 and 40%, respectively (P < 0.05), above that induced by cisplatin alone. To investigate the possibility that the increased accumulation of cisplatin lesions was caused by inhibition of removal of cisplatin damage, 2008 cells were incubated with 200 microM cisplatin for 5 h in the presence and absence of gemcitabine and then a further 8 h in the absence of cisplatin. Only 57% IA were removed in the combination treated cells compared with 74% in cisplatin control cells. Similarly, repair of cisplatin ICL was inhibited in the gemcitabine-treated cells compared with the cells treated with cisplatin only (60 versus 72%). These findings demonstrate a direct inhibitory effect of gemcitabine on the repair of cisplatin IA and ICL and suggest a mechanistic basis for the cytotoxic synergy between the two drugs.
Collapse
Affiliation(s)
- Mazin A Moufarij
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|