1
|
Moriwaki C, Takahashi S, Thi Vu N, Miyake Y, Kataoka T. 1'-Acetoxychavicol Acetate Selectively Downregulates Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) Expression. Molecules 2025; 30:1243. [PMID: 40142019 PMCID: PMC11945442 DOI: 10.3390/molecules30061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
1'-Acetoxychavicol acetate (ACA) is a natural compound derived from rhizomes of the Zingiberaceae family that suppresses the nuclear factor κB (NF-κB) signaling pathway; however, the underlying mechanisms remain unclear. Therefore, the present study investigated the molecular mechanisms by which ACA inhibits the NF-κB signaling pathway in human lung adenocarcinoma A549 cells. The results obtained showed ACA decreased tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression in A549 cells. It also inhibited TNF-α-induced ICAM-1 mRNA expression and ICAM-1 promoter-driven and NF-κB-responsive luciferase reporter activities. Furthermore, the TNF-α-induced degradation of the inhibitor of NF-κB α protein in the NF-κB signaling pathway was suppressed by ACA. Although ACA did not affect TNF receptor 1, TNF receptor-associated death domain, or receptor-interacting protein kinase 1 protein expression, it selectively downregulated TNF receptor-associated factor 2 (TRAF2) protein expression. The proteasome inhibitor MG-132, but not inhibitors of caspases or lysosomal degradation, attenuated ACA-induced reductions in TRAF2 expression. ACA also downregulated TRAF2 protein expression in human fibrosarcoma HT-1080 cells. This is the first study to demonstrate that ACA selectively downregulates TRAF2 protein expression.
Collapse
Affiliation(s)
- Chihiro Moriwaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Takahashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nhat Thi Vu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
2
|
Ramanunny AK, Wadhwa S, Gulati M, Vishwas S, Khursheed R, Paudel KR, Gupta S, Porwal O, Alshahrani SM, Jha NK, Chellappan DK, Prasher P, Gupta G, Adams J, Dua K, Tewari D, Singh SK. Journey of Alpinia galanga from kitchen spice to nutraceutical to folk medicine to nanomedicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115144. [PMID: 35227783 DOI: 10.1016/j.jep.2022.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
ETHANOPHARMACOLOGICAL IMPORTANCE Alpinia galanga (L.) Willd (AG), belonging to Zingiberaceae family is used as a spice and condiment in various culinary preparations of Indonesia, Thailand and Malaysia. It has been also used as a key ingredient in various traditional systems of medicine for the treatment of throat infection, asthma, urinary ailments, inflammation and rheumatism amongst other conditions. AG is widely used as a functional food and included in various preparations to obtain its nutraceutical and pharmacological benefits of its phytoconstituents such as phenyl propanoids, flavonoids and terpenoids. Over the past decades, several researchers have carried out systematic investigation on various parts of AG. Numerous studies on AG rhizomes have shown positive pharmacological effects such as anti-inflammatory, anticancer, antipsoriasis, antiallergic, neuroprotective and thermogenesis. Till date, no comprehensive review summarizing the exploitation of AG into nanomedicine has been published. AIM OF THE REVIEW This comprehensive review aims to briefly discuss cultivation methods, propagation techniques, extraction processes for AG. The ethnopharmacological uses and pharmacological activities of AG extracts and its isolates are discussed in detail which may contribute well in further development of novel drug delivery system (NDDS) i.e. future nanomedicine. MATERIALS AND METHODS Information about AG was collected using search engine tools such as Google, Google Scholar, PubMed, Google Patent, Web of Science and bibliographic databases of previously published peer-reviewed review articles and research works were explored. The obtained data sets were sequentially arranged for better understanding of AG's potential. RESULTS More advanced genetic engineering techniques have been utilized in cultivation and propagation of AG for obtaining better yield. Extraction, isolation and characterization techniques have reported numerous phytoconstituents which are chemically phenolic compounds (phenyl propanoids, flavonoids, chalcones, lignans) and terpenes. Ethnopharmacological uses and pharmacological activity of AG are explored in numerous ailments, their mechanism of action and its further potential to explore into novel drug delivery system are also highlighted. CONCLUSIONS The review highlights the importance of plant tissue culture in increasing the production of AG plantlets and rhizomes. It was understood from the review that AG and its phytoconstituents possess numerous pharmacological activities and have been explored for the treatment of cancer, microbial infection, gastrointestinal disorders, neuroprotective effects, obesity and skin disorders. However, the use of AG as alternative medicine is limited owing to poor solubility of its bioactive components and their instability. To overcome these challenges, novel drug delivery systems (NDDS) have been utilized and found good success in overcoming its aforementioned challenges. Furthermore, efforts are required towards development of scalable, non-toxic and stable NDDS of AG and/or its bioactives.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Kojima-Yuasa A, Matsui-Yuasa I. Pharmacological Effects of 1'-Acetoxychavicol Acetate, a Major Constituent in the Rhizomes of Alpinia galanga and Alpinia conchigera. J Med Food 2020; 23:465-475. [PMID: 32069429 DOI: 10.1089/jmf.2019.4490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
1'-Acetoxychavicol acetate (ACA) is found in the rhizomes or seeds of Alpinia galanga and Alpinia conchigera, which are used as traditional spices in cooking and traditional medicines in Southeast Asia. ACA possesses numerous medicinal properties. Those include anticancer, antiobesity, antiallergy, antimicrobial, antidiabetic, gastroprotective, and anti-inflammatory activities. ACA is also observed to exhibit antidementia activity. Recent studies have demonstrated that combining ACA with other substances results in synergistic anticancer effects. The structural factors that regulate the activity of ACA include (1) the acetyl group at position 1', (2) the acetyl group at position 4, and (3) the unsaturated double bond between positions 2' and 3'. ACA induces the activation of AMP-activated protein kinase (AMPK), which regulates the signal transduction pathways, and has an important role in the prevention of diseases, including cancer, obesity, hyperlipidemia, diabetes, and neurodegenerative disorders. Such findings suggest that AMPK has a central role in different pharmacological functions of ACA, and ACA is useful for the prevention of life-threatening diseases. However, more studies should be performed to evaluate the clinical effects of ACA and to better understand its potential.
Collapse
Affiliation(s)
- Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| |
Collapse
|
4
|
Wang J, Zhang L, Chen G, Zhang J, Li Z, Lu W, Liu M, Pang X. Small molecule 1'-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway. Breast Cancer Res Treat 2014; 148:279-89. [PMID: 25301089 DOI: 10.1007/s10549-014-3165-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/04/2014] [Indexed: 01/12/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is implicated breast cancer metastasis and represents a potential target for developing new anti-tumor metastasis drugs. The purpose of this study is to investigate whether the natural agent 1'-acetoxychavicol acetate (ACA), derived from the rhizomes and seeds of Languas galanga, could suppress breast cancer metastasis by targeting STAT3 signaling pathway. ACA was examined for its effects on breast cancer migration/invasion and metastasis using Transwell assays in vitro and breast cancer skeletal metastasis mouse model in vivo (n = 10 mice per group). The inhibitory effect of ACA on cellular STAT3 signaling pathway was investigated by series of biochemistry analysis. The chavicol preferentially suppressed cancer cell migration and invasion, and this activity was superior to its cytotoxic effects. ACA suppressed both constitutive and interleukin-6-inducible STAT3 activation and diminished the accumulation of STAT3 in the nucleus and its DNA-binding activity. More importantly, ACA treatment led to significant up-regulation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), and the ACA-induced depression of cancer cell migration and STAT3 signaling could be apparently reversed by blockade of SHP-1. Matrix metalloproteinase (MMP)-2 and -9, gene products of STAT3 that regulate cell invasion, were specifically suppressed by ACA. In tumor metastasis model, ACA potently inhibited the human breast cancer cell-induced osteolysis, and had little apparent in vivo toxicity at the test concentrations. ACA is a novel drug candidate for the inhibition of tumor metastasis through interference with the SHP-1/STAT3/MMPs signaling pathway.
Collapse
Affiliation(s)
- Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Galangal Pungent Component, 1′-Acetoxychavicol Acetate, Activates TRPA1. Biosci Biotechnol Biochem 2014; 74:1694-6. [DOI: 10.1271/bbb.100133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Electrophiles in Foods: The Current Status of Isothiocyanates and Their Chemical Biology. Biosci Biotechnol Biochem 2014; 74:242-55. [DOI: 10.1271/bbb.90731] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, Zhang J, Qu W, Aggarwal BB, Liu M. 1'-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 2011; 32:904-12. [PMID: 21427164 DOI: 10.1093/carcin/bgr052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1'-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth.
Collapse
Affiliation(s)
- Xiufeng Pang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bromberg N, Dreyfuss JL, Regatieri CV, Palladino MV, Durán N, Nader HB, Haun M, Justo GZ. Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem Biol Interact 2010; 186:43-52. [PMID: 20416285 DOI: 10.1016/j.cbi.2010.04.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/08/2010] [Accepted: 04/14/2010] [Indexed: 12/01/2022]
Abstract
The continuing threat to biodiversity lends urgency to the need of identification of sustainable source of natural products. This is not so much trouble if there is a microbial source of the compound. Herein, violacein, a natural indolic pigment extracted from Chromobacterium violaceum, was evaluated for its antitumoral potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Evaluation of violacein cytotoxicity using different endpoints indicated that EAT cells were twofold (IC(50)=5.0 microM) more sensitive to the compound than normal human peripheral blood lymphocytes. In vitro studies indicated that violacein cytotoxicity to EAT cells is mediated by a rapid (8-12h) production of reactive oxygen species (ROS) and a decrease in intracellular GSH levels, probably due to oxidative stress. Additionally, apoptosis was primarily induced, as demonstrated by an increase in Annexin-V positive cells, concurrently with increased levels of DNA fragmentation and increased caspase-2, caspase-9 and caspase-3 activities up to 4.5-, 6.0- and 5.5-fold, respectively, after 72 h of treatment. Moreover, doses of 0.1 and 1.0 microg kg(-1) violacein, administered intraperitoneally (i.p.) to EAT-bearing mice throughout the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. In view of these results, a 35-day toxicity study was conducted in vivo. Complete hematology, biochemistry (ALT, AST and creatinine levels) and histopathological analysis of liver and kidney indicated that daily doses of violacein up to 1000 microg kg(-1) for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity when administered i.p. to mice. Altogether, these results indicate that violacein causes oxidative stress and an imbalance in the antioxidant defense machinery of cells culminating in apoptotic cell death. Furthermore, this is the first report of its antitumor activity in vivo, which occurs in the absence of toxicity to major organs.
Collapse
Affiliation(s)
- Natália Bromberg
- Biological Chemistry Laboratory, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu S, Kojima-Yuasa A, Azuma H, Kennedy DO, Konishi Y, Matsui-Yuasa I. Comparison of glutathione reductase activity and the intracellular glutathione reducing effects of 13 derivatives of 1'-acetoxychavicol acetate in Ehrlich ascites tumor cells. Chem Biol Interact 2010; 185:235-40. [PMID: 20230805 DOI: 10.1016/j.cbi.2010.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/27/2010] [Accepted: 03/08/2010] [Indexed: 02/06/2023]
Abstract
In a previous study, we showed that (1'S)-acetoxychavicol acetate ((S)-ACA) caused a rapid decrease in glutathione (GSH) levels less than 15 min after exposure. (S)-ACA-induced cell death was reversed by the addition of N-acetylcysteine. In the current study, we investigated the inhibitory activities of 13 derivatives of (S)-ACA on tumor cell viability, intracellular GSH level and GR activity. Correlations were found among a decrease in cell viability, intracellular GSH levels and the activity of GR in Ehrlich ascites tumor cells treated with the various ACA analogues. A test of the 13 derivatives revealed that the structural factors regulating activity were as follows: (1) the para or 1'-position of acetoxyl group (or other acyl group) was essential, (2) the presence of a C2'-C3' double or triple bond was essential, and (3) the S configuration of the 1'-acetoxyl group was preferable.
Collapse
Affiliation(s)
- Shenghui Xu
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Higashida M, Xu S, Kojima-Yuasa A, Kennedy DO, Murakami A, Ohigashi H, Matsui-Yuasa I. 1′-Acetoxychavicol acetate-induced cytotoxicity is accompanied by a rapid and drastic modulation of glutathione metabolism. Amino Acids 2008; 36:107-13. [DOI: 10.1007/s00726-008-0038-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/15/2008] [Indexed: 01/13/2023]
|
11
|
(1'S)-Acetoxychavicol acetate and its enantiomer inhibit tumor cells proliferation via different mechanisms. Chem Biol Interact 2008; 172:216-23. [PMID: 18281026 DOI: 10.1016/j.cbi.2008.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/25/2007] [Accepted: 01/02/2008] [Indexed: 11/20/2022]
Abstract
Elucidation of the mechanisms underlying potential anticancer drugs continues and unraveling these mechanisms would not only provide a conceptual framework for drug design but also promote use of natural products for chemotherapy. The biological effects of (1'S)-acetoxychavicol acetate ((S)-ACA) have been widely investigated. However, in most cases, a natural product or synthetic racemic compound was used in the study. In this study, we prepared (S)-ACA and its enantiomer (R)-ACA by a lipase-catalyzed esterification method and sought to determine the mechanisms of action of (S)-ACA and (R)-ACA in the growth inhibitory effect in Ehrlich ascites tumor cells (EATC). (S)-ACA caused an accumulation of tumor cells in the G1 phase of the cell cycle, which was accompanied by a decrease in phosphorylated retinoblastoma protein (Rb), an increase in Rb and a decrease in the phosphorylation of p27kip1. However, (R)-ACA caused an accumulation of tumor cells in the G2 phase of the cell cycle, an increase in hyperphosphorylated Rb and an increase in the phosphorylation of p27kip1. The results obtained in the present study demonstrate for the first time, to the best of our knowledge, that both (S)-ACA and (R)-ACA caused the inhibition of tumor cells growth but the inhibition was caused via different mechanisms.
Collapse
|
12
|
Campbell CT, Prince M, Landry GM, Kha V, Kleiner HE. Pro-apoptotic effects of 1'-acetoxychavicol acetate in human breast carcinoma cells. Toxicol Lett 2007; 173:151-60. [PMID: 17766064 DOI: 10.1016/j.toxlet.2007.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/18/2022]
Abstract
The tropical ginger compound, 1'-acetoxychavicol acetate (ACA) possesses cancer chemopreventive properties in several models but its effects on breast cancer have not been fully evaluated. In this study, the effects of ACA on human breast carcinoma-derived MCF-7 and MDA-MB-231 cell viability were assessed using trypan blue exclusion analysis. ACA significantly decreased cell viability in a time- and dose-dependent manner, with effective concentrations 10-50 microM. Apoptosis was confirmed by morphological examination of cells through light microscopy, 4,6-diamidino-2-phenylindole dihydrochloride staining, and annexin V/Alexa Fluor 488 staining visualized using flow cytometry. ACA also increased protein expression of the activated form of caspase-3 in MDA-MB-231 cells. Addition of antioxidants N-acetylcysteine, ascorbic acid, or trolox prevented the loss of viability caused by ACA using trypan blue uptake as a marker. These results suggest ACA may have potential anticancer effects against breast carcinoma cells by inducing apoptosis.
Collapse
Affiliation(s)
- Cheryl T Campbell
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
13
|
Unahara Y, Kojima-Yuasa A, Higashida M, Kennedy DO, Murakami A, Ohigashi H, Matsui-Yuasa I. Cellular thiol status-dependent inhibition of tumor cell growth via modulation of p27kip1 translocation and retinoblastoma protein phosphorylation by 1′-acetoxychavicol acetate. Amino Acids 2006; 33:469-76. [PMID: 17031475 DOI: 10.1007/s00726-006-0437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 09/01/2006] [Indexed: 12/23/2022]
Abstract
1'-Acetoxychavicol acetate (ACA) has been shown to inhibit tumor cell growth, but there is limited information on its effects on cell signaling and the cell cycle control pathway. In this study, we sought to determine how ACA alters cell cycle and its related control factors in its growth inhibitory effect in Ehrlich ascites tumor cells (EATC). ACA caused an accumulation of cells in the G1 phase and an inhibition of DNA synthesis, which were reversed by supplementation with N-acetylcysteine (NAC) or glutathione ethyl ester (GEE). Furthermore, ACA decreased hyperphosphorylated Rb levels and increased hypophosphorylated Rb levels. NAC and GEE also abolished the decease in Rb phosphorylation by ACA. As Rb phosphorylation is regulated by G1 cyclin dependent kinase and CDK inhibitor p27(kip1), which is an important regulator of the mammalian cell cycle, we estimated the amount of p27(kip1) levels by western blotting. Treatment with ACA had virtually no effect on the amount of p27(kip1) levels, but caused a decrease in phosphorylated p27(kip1) and an increase in unphosphorylated p27(kip1) as well as an increase in the nuclear localization of p27(kip1). These events were abolished in the presence of NAC or GEE. These results suggest that in EATC, cell growth inhibition elicited by ACA involves decreases in Rb and p27(kip1) phosphorylation and an increase in nuclear localization of p27(kip1), and these events are dependent on the cellular thiol status.
Collapse
Affiliation(s)
- Y Unahara
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Ichikawa H, Takada Y, Murakami A, Aggarwal BB. Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products. THE JOURNAL OF IMMUNOLOGY 2005; 174:7383-92. [PMID: 15905586 DOI: 10.4049/jimmunol.174.11.7383] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1'-Acetoxychavicol acetate (ACA), extracted from rhizomes of the commonly used ethno-medicinal plant Languas galanga, has been found to suppress chemical- and virus-induced tumor initiation and promotion through a poorly understood mechanism. Because several genes that regulate cellular proliferation, carcinogenesis, metastasis, and survival are regulated by activation of the transcription factor NF-kappaB, we postulated that ACA might mediate its activity through modulation of NF-kappaB activation. For this report, we investigated the effect of ACA on NF-kappaB and NF-kappaB-regulated gene expression activated by various carcinogens. We found that ACA suppressed NF-kappaB activation induced by a wide variety of inflammatory and carcinogenic agents, including TNF, IL-1beta, PMA, LPS, H(2)O(2), doxorubicin, and cigarette smoke condensate. Suppression was not cell type specific, because both inducible and constitutive NF-kappaB activations were blocked by ACA. ACA did not interfere with the binding of NF-kappaB to the DNA, but, rather, inhibited IkappaBalpha kinase activation, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, and subsequent p65 nuclear translocation. ACA also inhibited NF-kappaB-dependent reporter gene expression activated by TNF, TNFR1, TNFR-associated death domain protein, TNFR-associated factor-2, and IkappaBalpha kinase, but not that activated by p65. Consequently, ACA suppressed the expression of TNF-induced NF-kappaB-regulated proliferative (e.g., cyclin D1 and c-Myc), antiapoptotic (survivin, inhibitor of apoptosis protein-1 (IAP1), IAP2, X-chromosome-linked IAP, Bcl-2, Bcl-x(L), Bfl-1/A1, and FLIP), and metastatic (cyclooxygenase-2, ICAM-1, vascular endothelial growth factor, and matrix metalloprotease-9) gene products. ACA also enhanced the apoptosis induced by TNF and chemotherapeutic agents and suppressed invasion. Overall, our results indicate that ACA inhibits activation of NF-kappaB and NF-kappaB-regulated gene expression, which may explain the ability of ACA to enhance apoptosis and inhibit invasion.
Collapse
Affiliation(s)
- Haruyo Ichikawa
- Cytokine Research Section, Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | |
Collapse
|
15
|
Wu G, Yan S. Potential targets for anti-SARS drugs in the structural proteins from SARS related coronavirus. Peptides 2004; 25:901-8. [PMID: 15203235 PMCID: PMC7124239 DOI: 10.1016/j.peptides.2004.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 11/29/2022]
Abstract
This is a further study on the severe acute respiratory syndrome (SARS) using the probabilistic models. The purpose was to define the potential targets for anti-SARS drugs in the structural proteins from human SARS related coronavirus (SARS-CoV) while knowing little about the functional sites and possible mutations in these proteins. From a probabilistic viewpoint, we can theoretically select the amino acid pairs as potential candidates for anti-SARS drugs. These candidates have a greater chance of colliding with anti-SARS drugs, are more likely to link with the protein functions and are less vulnerable to mutations.
Collapse
Affiliation(s)
- Guang Wu
- DreamSciTech Consulting Co Ltd, 301 Building 12, Nanyou A-Zone, Jiannan Road, Shenzhen, Guangdong Province, CN-518054, China.
| | | |
Collapse
|