1
|
Mezencev R, Gibbons C. Interactions between chromium species and DNA in vitro and their potential role in the toxicity of hexavalent chromium. Metallomics 2023; 15:mfad045. [PMID: 37491700 DOI: 10.1093/mtomcs/mfad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Epidemiological and animal studies have supported the carcinogenicity of hexavalent chromium [Cr(VI)]; however, molecular changes responsible for the induction of cancer by Cr(VI) are not entirely understood. Numerous mechanistic studies suggested the role of oxidative stress and genotoxicity in Cr(VI)-mediated carcinogenesis; however, specific types of DNA damage have not yet been conclusively attributed to specific chromium species or other reactive byproducts generated in biological systems exposed to Cr(VI). Due to the remarkably complex chemistry and biological effects of chromium species generated through the intracellular reduction of Cr(VI), their relevance for Cr(VI)-mediated carcinogenesis has not yet been fully elucidated and continues to be a subject of ongoing discussions in the field. In this report, we describe a complex world of chromium species and their reactivity with DNA and other biologically relevant molecules in vitro to inform a more complete understanding of Cr(VI)-mediated toxicity. In addition, we discuss previous results in the context of in vitro models and analytical methods to reconcile some conflicting findings on the biological role of chromium species.
Collapse
Affiliation(s)
- R Mezencev
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, DC, USA
| | - C Gibbons
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, DC, USA
| |
Collapse
|
2
|
Krawic C, Zhitkovich A. Chemical mechanisms of DNA damage by carcinogenic chromium(VI). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:25-46. [PMID: 36858775 PMCID: PMC10069994 DOI: 10.1016/bs.apha.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hexavalent chromium is a firmly established human carcinogen with documented exposures in many professional groups. Environmental exposure to Cr(VI) is also a significant public health concern. Cr(VI) exists in aqueous solutions as chromate anion that is unreactive with DNA and requires reductive activation inside the cells to produce genotoxic and mutagenic effects. Reduction of Cr(VI) in cells is nonenzymatic and in vivo principally driven by ascorbate with a secondary contribution from nonprotein thiols glutathione and cysteine. In addition to its much faster rate of reduction, ascorbate-driven metabolism avoids the formation of Cr(V) which is the first intermediate in Cr(VI) reduction by thiols. The end-product of Cr(VI) reduction is Cr(III) which forms several types of Cr-DNA adducts that are collectively responsible for all mutagenic and genotoxic effects in Cr(VI) reactions with ascorbate and thiols. Some Cr(V) forms can react with H2O2 to produce DNA-oxidizing peroxo species although this genotoxic pathway is suppressed in cells with physiological levels of ascorbate. Chemical reactions of Cr(VI) with ascorbate or thiols lack directly DNA-oxidizing metabolites. The formation of oxidative DNA breaks in early studies of these reactions was caused by iron contamination. Production of Cr(III)-DNA adducts in cells showed linear dose-dependence irrespective of the predominant reduction pathway and their processing by mismatch repair generated more toxic secondary genetic lesions in euchromatin. Overall, Cr(III)-DNA adduction is the dominant pathway for the formation of genotoxic and mutagenic DNA damage by carcinogenic Cr(VI).
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, United States.
| |
Collapse
|
3
|
Sivakumar KK, Stanley JA, Behlen JC, Wuri L, Dutta S, Wu J, Arosh JA, Banu SK. Inhibition of Sirtuin-1 hyperacetylates p53 and abrogates Sirtuin-1-p53 interaction in Cr(VI)-induced apoptosis in the ovary. Reprod Toxicol 2022; 109:121-134. [PMID: 35307491 PMCID: PMC9884489 DOI: 10.1016/j.reprotox.2022.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/31/2023]
Abstract
Environmental contamination with hexavalent chromium, Cr(VI), has been increasing in the United States as well as in developing countries. Exposure to Cr(VI) predisposes the human population to various diseases, including cancer, infertility, and developmental problems in children. Previous findings from our laboratory reported that prenatal exposure to Cr(VI) caused premature ovarian failure through p53-mediated mechanisms. Sirtuin 1 (SIRT1) is an NAD+ -dependent histone deacetylase class III. SIRT1 deacetylates several histones and non-histone proteins such as p53 and NFkB. The current study determines a role for the SIRT1-p53 network in apoptosis induced by Cr(VI) in the ovary and establishes physical interaction between SIRT1 and p53. Adult pregnant dams were given regular drinking water or Cr(VI) (10 ppm potassium dichromate in drinking water, ad libitum), and treated with SIRT1 inhibitor, EX-527 (50 mg/kg body weight, i.p.,), during 9.5 - 14.5 days post-coitum. On postnatal day-1, ovaries from F1 offspring were collected for various analyses. Results indicated that Cr(VI) increased germ cell and somatic cell apoptosis, upregulated acetyl-p53, activated the apoptotic pathway, and inhibited cell survival pathways. Cr(VI) decreased acetyl-p53-SIRT1 co-localization in the ovary. In an immortalized rat granulosa cell line SIGC, Cr(VI) inhibited the physical interaction between SIRT1 and acetyl-p53 by altering the p53:SIRT1 ratio. EX-527 exacerbated Cr(VI)-induced mechanisms. The current study shows a novel mechanism for Cr(VI)-induced apoptosis in the ovary, mediated through the p53-SIRT1 network, suggesting that targeting the p53 pathway may be an ideal approach to rescue ovaries from Cr(VI)-induced apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sakhila K. Banu
- Address correspondence to: Sakhila K. Banu, PhD., Associate Professor, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA, Phone: 979-458-3613, Fax: 979-847-8981,
| |
Collapse
|
4
|
Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
More than 14 billion pencils are manufactured and used globally every year. On average, a pencil is discarded after 60% of its original length has been depleted. In the present work we propose a simple and affordable way of converting this non-neglectable amount of waste into added value carbon product. In particular, we demonstrate the microwave synthesis of carbon from the wood pencil with and without chemical activation. This could be a process stage before the final recycling of the expensive graphite core. In the latter case, irradiation of the wood pencil in a domestic microwave oven heats up the pencil’s graphite core, thus inducing carbonization of its wood casing. The carbonized product consists of amorphous carbon nanosheets having relatively low surface area. However, if the wood pencil is soaked in 50% KOH aqueous solution prior to microwave irradiation, a significantly higher surface area of carbon is obtained, consisting of irregular-shaped porous particles. Consequently, the obtained carbon can easily decolorize a methylene blue aqueous solution, can be used to make pocket warmers or gunpowder, and lastly, serves as an excellent adsorbent towards Cr(VI) removal from water, showing a maximum adsorption capacity of 70–75 mg/g within 24 h at 23 °C, pH = 3.
Collapse
|
5
|
Lara P, Vega-Alvarado L, Sahonero-Canavesi DX, Koenen M, Villanueva L, Riveros-Mckay F, Morett E, Juárez K. Transcriptome Analysis Reveals Cr(VI) Adaptation Mechanisms in Klebsiella sp. Strain AqSCr. Front Microbiol 2021; 12:656589. [PMID: 34122372 PMCID: PMC8195247 DOI: 10.3389/fmicb.2021.656589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella sp. strain AqSCr, isolated from Cr(VI)-polluted groundwater, reduces Cr(VI) both aerobically and anaerobically and resists up 34 mM Cr(VI); this resistance is independent of the ChrA efflux transporter. In this study, we report the whole genome sequence and the transcriptional profile by RNA-Seq of strain AqSCr under Cr(VI)-adapted conditions and found 255 upregulated and 240 downregulated genes compared to controls without Cr(VI) supplementation. Genes differentially transcribed were mostly associated with oxidative stress response, DNA repair and replication, sulfur starvation response, envelope-osmotic stress response, fatty acid (FA) metabolism, ribosomal subunits, and energy metabolism. Among them, genes not previously associated with chromium resistance, for example, cybB, encoding a putative superoxide oxidase (SOO), gltA2, encoding an alternative citrate synthase, and des, encoding a FA desaturase, were upregulated. The sodA gene encoding a manganese superoxide dismutase was upregulated in the presence of Cr(VI), whereas sodB encoding an iron superoxide dismutase was downregulated. Cr(VI) resistance mechanisms in strain AqSCr seem to be orchestrated by the alternative sigma factors fecl, rpoE, and rpoS (all of them upregulated). Membrane lipid analysis of the Cr(IV)-adapted strain showed a lower proportion of unsaturated lipids with respect to the control, which we hypothesized could result from unsaturated lipid peroxidation followed by degradation, together with de novo synthesis mediated by the upregulated FA desaturase-encoding gene, des. This report helps to elucidate both Cr(VI) toxicity targets and global bacterial response to Cr(VI).
Collapse
Affiliation(s)
- Paloma Lara
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Riveros-Mckay
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Effect of Nickle Nanoparticles Solution on Staphylococcus aureus Contaminated Open Wounds Healing in Mice. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacteria have been noted as the main cause of late wound healing. The greatest common pathogen causing the wound contaminations is Staphylococcus aureus. The current study was carried out to isolate and diagnose the staphylococcus aureus which causes of open wound inflammation after surgery in mice process and to study the effect of nickle nanoparticles solution on bacterial isolated and evaluating the molecular and pathological techniques. The study included the collection of 60 cotton swabs from the Office of the Consultant of the Faculty of Veterinary Medicine – Tikrit University and from the external veterinary clinics (from November 2018 to March 2019) from the areas of contaminated wounds or inflamed after surgery. The results of the laboratory cultural of 60 cotton swabs used showed to isolated 50(83.3%) Staphylococcus aureus isolated. And all bacterial isolates were resistant to Doxycycline hydrochloride, Penicillin, CO-Trimoxazole, Ciprofloxacin, Cephalosporin and Penicillin. The study showed that the NFNPS used to inhibit the growth of bacterial isolated by using different concentrations the MBC killer concentration was 256μg / L and the lowest inhibitory concentration to Staphylococcus aureus was MIC 64 microgram / L). Molecular studies included the observation of the most important molecular changes at the level of DNA prior to and treatment with nanoparticles. Many variations were observed on the studied bacterial isolated Including the appearance and disappearance of DNA and its different numbers when treated with nanoparticles.As for the results of the histopathological, it was found that the injury of mice with Staphylococcus aureus antibiotic resistance emerged after about five days and the symptoms were heat, redness and swelling of the skin and the release of yellow and green purulent secretions from the place of injury. When treated mice infected with nanoparticles and antibiotics together the time of the healing was faster than the time of the healing of nanoparticles treated only.
Collapse
|
7
|
Husain N, Mahmood R. Taurine attenuates Cr(VI)-induced cellular and DNA damage: an in vitro study using human erythrocytes and lymphocytes. Amino Acids 2019; 52:35-53. [PMID: 31781908 DOI: 10.1007/s00726-019-02807-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023]
Abstract
Hexavalent chromium [(Cr(VI)] is widely used in several industries, but human exposure results in multiple organ toxicity. Enhanced generation of free radicals and reactive species is thought to play a key role in Cr(VI)-induced toxicity. We have examined the effect of taurine, a simple sulphur-containing amino acid and an antioxidant, on potassium dichromate [K2Cr2O7, a Cr(VI) compound]-induced cytotoxicity and genotoxicity in human blood cells. Erythrocytes were treated with K2Cr2O7, either alone or after incubation with different concentrations of taurine. Treatment of erythrocytes with K2Cr2O7 alone led to marked increase in generation of reactive oxygen and nitrogen species, lipid and protein oxidation. This was accompanied by decrease in total sulfhydryl and glutathione content and lowered antioxidant power of the cells. This suggests that Cr(VI) induces oxidative stress in the cells. Incubation of erythrocytes with taurine prior to addition of K2Cr2O7, resulted in a concentration-dependent decrease in the generation of reactive oxygen and nitrogen species, mitigation of oxidative stress and amelioration of antioxidant power of these cells. It also restored the activities of several metabolic, antioxidant and membrane-bound enzymes. Cr(VI)-induced damage to erythrocyte membrane and lymphocyte DNA was also significantly attenuated by prior administration of taurine. These results suggest that taurine can function as a chemoprotectant against Cr(VI)-induced oxidative injury and can be potentially used to mitigate the toxic effects of this transition metal ion.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Roles of Bacillus subtilis RecA, Nucleotide Excision Repair, and Translesion Synthesis Polymerases in Counteracting Cr(VI)-Promoted DNA Damage. J Bacteriol 2019; 201:JB.00073-19. [PMID: 30745368 DOI: 10.1128/jb.00073-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteria deploy global programs of gene expression, including components of the SOS response, to counteract the cytotoxic and genotoxic effects of environmental DNA-damaging factors. Here we report that genetic damage promoted by hexavalent chromium elicited the SOS response in Bacillus subtilis, as evidenced by the induction of transcriptional uvrA-lacZ, recA-lacZ, and P recA-gfp fusions. Accordingly, B. subtilis strains deficient in homologous recombination (RecA) and nucleotide excision repair (NER) (UvrA), components of the SOS response, were significantly more sensitive to Cr(VI) treatment than were cells of the wild-type strain. These results strongly suggest that Cr(VI) induces the formation in growing B. subtilis cells of cytotoxic and genotoxic bulky DNA lesions that are processed by RecA and/or the NER pathways. In agreement with this notion, Cr(VI) significantly increased the formation of DNA-protein cross-links (DPCs) and induced mutagenesis in recA- and uvrA-deficient B. subtilis strains, through a pathway that required YqjH/YqjW-mediated translesion synthesis. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves the formation of DPCs and that such deleterious effects are counteracted by both the NER and homologous recombination pathways, belonging to the RecA-dependent SOS system.IMPORTANCE It has been shown that, following permeation of cell barriers, Cr(VI) kills B. subtilis cells following a mechanism of reactive oxygen species-promoted DNA damage, which is counteracted by the guanine oxidized repair system. Here we report a distinct mechanism of Cr(VI)-promoted DNA damage that involves production of DPCs capable of eliciting the bacterial SOS response. We also report that the NER and homologous recombination (RecA) repair pathways, as well as low-fidelity DNA polymerases, counteract this metal-induced mechanism of killing in B. subtilis Hence, our results contribute to an understanding of how environmental pollutants activate global programs of gene expression that allow bacteria to contend with the cytotoxic and genotoxic effects of heavy metals.
Collapse
|
9
|
Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 2018; 14:e1007595. [PMID: 30148840 PMCID: PMC6128646 DOI: 10.1371/journal.pgen.1007595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/07/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reveal a chromate toxicogenomic profile that closely resembles the cancer chemotherapeutic drug camptothecin (CPT), which traps Topoisomerase 1 (Top1)-DNA covalent complex (Top1cc) at the 3’ end of single-stand breaks (SSBs), resulting in replication fork collapse. ATR/Rad3-dependent checkpoints that detect stalled and collapsed replication forks are crucial in Cr(VI)-treated cells, as is Mus81-dependent sister chromatid recombination (SCR) that repairs single-ended double-strand breaks (seDSBs) at broken replication forks. Surprisingly, chromate resistance does not require base excision repair (BER) or interstrand crosslink (ICL) repair, nor does co-elimination of XPA-dependent nucleotide excision repair (NER) and Rad18-mediated post-replication repair (PRR) confer chromate sensitivity in fission yeast. However, co-elimination of Tdp1 tyrosyl-DNA phosphodiesterase and Rad16-Swi10 (XPF-ERCC1) NER endonuclease synergistically enhances chromate toxicity in top1Δ cells. Pnk1 polynucleotide kinase phosphatase (PNKP), which restores 3’-hydroxyl ends to SSBs processed by Tdp1, is also critical for chromate resistance. Loss of Tdp1 ameliorates pnk1Δ chromate sensitivity while enhancing the requirement for Mus81. Thus, Tdp1 and PNKP, which prevent neurodegeneration in humans, repair an important class of Cr-induced SSBs that collapse replication forks. Hexavalent chromium is a carcinogen that is found at toxic waste sites and in some groundwater supplies. Cellular metabolism converts chromium into DNA-damaging chromate, but it is unclear which types of chromate-DNA lesions are most dangerous, and which cellular mechanisms most critically prevent chromium toxicity. This study uses whole-genome profiling to identify DNA repair pathways that are crucial for chromate resistance in fission yeast. The resulting ‘toxicogenomic’ profile of chromate closely matches camptothecin, a natural product representing a class of chemotherapeutic drugs that cause replication fork collapse by poisoning Topoisomerase 1 (Top1), which relaxes supercoiled DNA by creating and resealing single-strand breaks (SSBs). Genetic interaction analyses uncover important roles for Tdp1 tyrosyl-DNA phosphodiesterase and Pnk1 polynucleotide 5’-kinase 3’-phosphatase (PNKP), which repair camptothecin-induced SSBs and prevent neurological disease in humans. However, chromium toxicity does not involve Top1. As Tdp1 and Pnk1 repair SSBs with 3’-blocked termini, these data suggest that Top1-independent 3’-blocked SSBs contribute to the carcinogenic and mutagenic properties of chromium.
Collapse
|
10
|
Husain N, Mahmood R. 3,4-Dihydroxybenzaldehyde quenches ROS and RNS and protects human blood cells from Cr(VI)-induced cytotoxicity and genotoxicity. Toxicol In Vitro 2018; 50:293-304. [DOI: 10.1016/j.tiv.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023]
|
11
|
Magnetic Characterization of Chromium Intermediates in the Reduction of Chromium (VI) by Glutathione in Acidic Solutions. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Boeri M, Oliveri C, Camurati C, Viarengo A, Sforzini S. Effects of Cr(VI) on Ca 2+-ATPase activity in the earthworm Eisenia andrei. Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:21-28. [PMID: 29032143 DOI: 10.1016/j.cbpc.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022]
Abstract
The effect of Cr(VI) as a soil contaminant on the edaphic worm Eisenia andrei was studied by evaluating the activity of Ca2+-ATPase in the intestinal mucosa. In eukaryotes, Ca2+-ATPase is a key mediator of cell signaling although comparatively little is known about its activity in earthworms. Size and anatomical constraints (i.e. small and complex) led us to develop and optimize a cyto-biochemical method to measure Ca2+-ATPase activity in earthworms. The principal site of enzyme activity was found to be the post clitellar intestinal tract; immunohistochemistry then identified plasma membrane Ca2+-ATPase (PMCA ATPase) in the apical area of the intestinal epithelium. Earthworms exposed for 28days to OECD soil contaminated with 1, 2, and 15mg/Kg Cr(VI) demonstrated about 70% inhibition of Ca2+-ATPase activity at the low Cr (VI) concentration (the half of the Italian law limit for residential areas), rising to approximately 84% inhibition at the highest concentration. Reduced enzyme activity was accompanied by decreased enzyme content and reduced lysosomal membrane stability (LMS), which is a well established early warning biomarker of stress. These data demonstrate the potential utility of Ca2+-ATPase activity as a sensitive parameter with which to detect environmental stress in earthworms.
Collapse
Affiliation(s)
- Marta Boeri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Corrado Camurati
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| |
Collapse
|
13
|
Shobana N, Aruldhas MM, Tochhawng L, Loganathan A, Balaji S, Kumar MK, Banu LAS, Navin AK, Mayilvanan C, Ilangovan R, Balasubramanian K. Transient gestational exposure to drinking water containing excess hexavalent chromium modifies insulin signaling in liver and skeletal muscle of rat progeny. Chem Biol Interact 2017; 277:119-128. [DOI: 10.1016/j.cbi.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
|
14
|
Wang Y, Su H, Gu Y, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther 2017; 10:4065-4079. [PMID: 28860815 PMCID: PMC5565385 DOI: 10.2147/ott.s139262] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III) complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI) and/or Cr(III) compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI) and Cr(III) and chemoprevention with different antioxidants.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China.,Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
15
|
Sforzini S, Moore MN, Mou Z, Boeri M, Banni M, Viarengo A. Mode of action of Cr(VI) in immunocytes of earthworms: Implications for animal health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:298-308. [PMID: 28086183 DOI: 10.1016/j.ecoenv.2017.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Chromium (Cr) is one of the major and most detrimental pollutant, widely present in the environment as a result of several anthropogenic activities. In mammalian cells, Cr(VI) is known to enhance reactive oxygen species (ROS) production and to cause toxic and genotoxic effects. Less commonly investigated are the effects and mode of action of this contaminant in invertebrates, particularly in soil organisms. In this work, earthworms of the species Eisenia andrei were exposed for 1 and 3 days to various sublethal concentrations of Cr(VI) (2, 15, 30µgmL-1) using the paper contact toxicity test. In amoeboid leukocytes we investigated intracellular ROS and lipoperoxide production, oxidative DNA damage, and the effects on different cell functions. The analysis of the results shows that Cr(VI) triggered severe adverse reactions; the first events were an increase of intracellular ROS levels, generating in the cells oxidative stress conditions leading to membrane lipid peroxidation and oxidative DNA damage. Lysosomes showed relevant changes such as a strong membrane destabilization, which was accompanied by an increased catabolism of cytoplasmic proteins and accumulation of lipofuscin. With an increase in the dose and/or time of exposure, the physiological status of intracellular organelles (such as lysosomes, nucleus and mitochondria) showed further impairment and amoebocyte immune functions were adversely affected, as shown by the decrease of the phagocytic activity. By mapping the responses of the different parameters evaluated, diagnostic of (oxidative) stress events, against lysosomal membrane stability, a "health status" indicator (able to describe the stress syndrome from its early phase to pathology), we have shown that this biomarker is suitable as a prognostic test for health of earthworms. This is viewed as a crucial step toward the derivation of explanatory frameworks for prediction of pollutant impact on animal health.
Collapse
Affiliation(s)
- Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Michael N Moore
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Truro TR1 3HD, UK; Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
| | - Zhuofan Mou
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
| | - Marta Boeri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
16
|
Wang J, Wang J, Zhu L, Xie H, Shao B, Hou X. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1858-1869. [PMID: 25142351 DOI: 10.1007/s10646-014-1321-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
Chlorpyrifos is a broad-spectrum organophosphorus insecticide (O,O-diethyl -O-3,5,6-trichloro-2-pyridyl phosphorothioate) that is used in numerous agricultural and urban pest controls. The primary metabolite of chlorpyrifos is 3,5,6-trichloro pyridine-2-phenol (TCP). Because of its strong water solubility and mobility, this harmful metabolite exists in the environment in a large amount. Although TCP has potentially harmful effects on organisms in the environment, few studies have addressed TCP pollution. Therefore, this study was undertaken to investigate the effect of chlorpyrifos and TCP on the microsomal cytochrome P450 content in the liver, on the activity of NADPH-P450 reductase and antioxidative enzymes [catalase (CAT) and superoxide dismutase (SOD)], and on reactive oxygen species (ROS) generation and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to a control solution and three concentrations of chlorpyrifos (0.01, 0.1, 1 mg L(-1)) and TCP (0.01, 0.1, 0.5 mg L(-1)), respectively, sampled after 5, 10, 15, 20 and 25 days. The results indicated that the P450 content and the NADPH-P450 reductase and antioxidative enzyme (CAT and SOD) activities could be induced by chlorpyrifos and TCP. DNA damage of zebrafish was enhanced with increasing chlorpyrifos and TCP concentrations. Meanwhile, chlorpyrifos and TCP induced a significant increase of ROS generation in the zebrafish hepatopancreas. In conclusion, this study proved that chlorpyrifos (0.01-1 mg L(-1)) and TCP (0.01-0.5 mg L(-1)) are both highly toxic to zebrafish.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Agricultural Environment in the University of Shandong, College of Resources and Environment, Shandong Agriculture University, 61 Daizong Road, Taian, 271018, China
| | | | | | | | | | | |
Collapse
|
17
|
Role of Bacillus subtilis error prevention oxidized guanine system in counteracting hexavalent chromium-promoted oxidative DNA damage. Appl Environ Microbiol 2014; 80:5493-502. [PMID: 24973075 DOI: 10.1128/aem.01665-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system.
Collapse
|
18
|
Abreu PL, Ferreira LMR, Alpoim MC, Urbano AM. Impact of hexavalent chromium on mammalian cell bioenergetics: phenotypic changes, molecular basis and potential relevance to chromate-induced lung cancer. Biometals 2014; 27:409-43. [DOI: 10.1007/s10534-014-9726-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
19
|
Bartholomäus R, Irwin JA, Shi L, Smith SM, Levina A, Lay PA. Isolation, Characterization, and Nuclease Activity of Biologically Relevant Chromium(V) Complexes with Monosaccharides and Model Diols. Likely Intermediates in Chromium-Induced Cancers. Inorg Chem 2013; 52:4282-92. [DOI: 10.1021/ic3022408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruben Bartholomäus
- Fachbereich Chemie, Philipps-Universität Marburg,
Hans-Meerwein-Strasse, D-35032 Marburg, Germany
- School of Chemistry, The University of Sydney, New South
Wales 2006, Australia
| | - Jennifer A. Irwin
- School of Chemistry, The University of Sydney, New South
Wales 2006, Australia
| | - Liwei Shi
- School of Chemistry, The University of Sydney, New South
Wales 2006, Australia
| | - Siwaporn Meejoo Smith
- School of Chemistry, The University of Sydney, New South
Wales 2006, Australia
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Aviva Levina
- School of Chemistry, The University of Sydney, New South
Wales 2006, Australia
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, New South
Wales 2006, Australia
| |
Collapse
|
20
|
Gaddameedi RR, Burgula S, Sairam M, Singh SS. Role of insulin in Cr(VI)-mediated genotoxicity in Neurospora crassa. Lett Appl Microbiol 2011; 53:14-21. [PMID: 21488912 DOI: 10.1111/j.1472-765x.2011.03058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Chromium (III) is an insulinomimetic agent whose biological and/or environmental availability is frequently in the form of Cr(VI), which is known to be toxic. Wall-less mutant of Neurospora crassa (FGSC stock no. 4761) is known to possess insulin receptor in its cell membrane and hence is a good model for Cr toxicity studies. This study explores the toxicity of Cr(VI) and the possible consequences on simultaneous exposure to insulin in N. crassa. METHODS AND RESULTS Comet assay of N. crassa cells treated with 100 μmol l⁻¹ Cr(VI) showed up to 50% reduction in comet tail lengths when incubated simultaneously with 0.4 U insulin. Fluorescence measurement in Cr(VI)-treated cells using DCFH-DA showed six- to eightfold increase in free radical generation, which was reduced to fourfold by 0.4 U insulin. Annexin-V/PI Flow cytometry analysis indicated necrotic cell death up to 28.7 ± 3.6% and 68.6 ± 2.5% on Cr(VI) exposure at concentrations 100 and 500 μmol l⁻¹ which was reduced by 68.3 ± 3.2% and 48.9 ± 3.6%, respectively, upon addition of insulin. CONCLUSION Insulin-mediated protection from DNA damage by Cr(VI) is because of scavenging of free radicals liberated during exposure to Cr(VI). SIGNIFICANCE AND IMPACT OF THE STUDY Overall, Cr(VI) toxicity depends upon available insulin, indicating that Cr(VI) toxicity may be a serious issue in insulin-deficient individuals with diabetes.
Collapse
Affiliation(s)
- R R Gaddameedi
- Department of Biochemistry, Osmania University, Hyderabad, India
| | | | | | | |
Collapse
|
21
|
Oliveira SCB, Oliveira-Brett AM. In situ evaluation of chromium–DNA damage using a DNA-electrochemical biosensor. Anal Bioanal Chem 2010; 398:1633-41. [DOI: 10.1007/s00216-010-4051-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
|
22
|
Chatterjee N, Luo Z. Cr-(III)-organic compounds treatment causes genotoxicity and changes in DNA and protein level in Saccharomyces cerevisiae. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:593-603. [PMID: 20066492 DOI: 10.1007/s10646-009-0420-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
Natural Cr-(III)-organic species are being known as the part of natural biogeochemical cycle of chromium, but unfortunately, their mechanism of toxicity as well as genotoxic potentiality is still unknown. To evaluate the characteristic toxic effect exerted by natural Cr-(III)-organic species on the cellular macromolecules, changes in DNA and protein level was observed. Besides, Comet assay was applied to measure genotoxic potentiality of Cr-(III)-organic species in the target organism Saccharomyces cerevisiae exposed to Cr-(III)-citrate and Cr-(III)-histidine. It has been observed that both of the Cr-(III)-organic compounds are responsible for diminution in macromolecules concentration. Cr-(III)-citrate showed ladder pattern of DNA fragmentation in support of apoptosis. Two new protein bands appeared in protein profile of the Saccharomyces cerevisiae treated with Cr-(III)-organic compounds. Thus it supports the possibility of the synthesis of stress proteins. Comet assay proved positive correlation between Cr-(III)-organic compounds' concentration and DNA damage. The Cr-(III)-citrate causes DNA damage at the concentrations ranging from 50 to 150 mg L(-1), whereas the DNA damaging capacity of Cr-(III)-histidine was found insignificant, except at highest concentration (150 mg L(-1)). These results can throw light on the mechanism of the toxic effect as well as genotoxicity exerted by natural Cr-(III)-organic species.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- Key Laboratory of Biogeology and Environmental Geology, Ministry of Education (BGEG), School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei, 430074, China.
| | | |
Collapse
|
23
|
Tigano C, Tomasello B, Pulvirenti V, Ferrito V, Copat C, Carpinteri G, Mollica E, Sciacca S, Renis M. Assessment of environmental stress in Parablennius sanguinolentus (Pallas, 1814) of the Sicilian Ionian coast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1278-86. [PMID: 19217660 DOI: 10.1016/j.ecoenv.2008.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 06/23/2008] [Accepted: 09/01/2008] [Indexed: 05/22/2023]
Abstract
The blenny Parablennius sanguinolentus was selected as a useful bioindicator of environmental pollution. Chemical parameters in water and sediments from three different sampling sites along the Sicilian Ionian coast were determined and metal concentrations in fish muscle were measured. DNA fragmentation and oxidation in erythrocytes and hepatocytes was determined by the Comet assay and HSP70 expression levels were evaluated in the liver. The results show an increased level of chromium in sediments and high polycyclic aromatic hydrocarbon (PAH) concentrations in water at one site. The bioaccumulation of metals in muscle tissue shows high concentrations of lead in some samples. A high percentage of DNA damage in blood and liver cells, as well as high hepatic levels of HSP70, were found in all the sites. The results demonstrate the usefulness of an integrated chemical and biological approach for the determination of environmental stress.
Collapse
Affiliation(s)
- Concetta Tigano
- Department of Animal Biology M. La Greca, University of Catania, Via Androne 81, 95124 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang S, Meyskens FL. Apurinic/apyrimidinic endonuclease/redox effector factor-1(APE/Ref-1): a unique target for the prevention and treatment of human melanoma. Antioxid Redox Signal 2009; 11:639-50. [PMID: 18715151 PMCID: PMC2933576 DOI: 10.1089/ars.2008.2226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Management of melanoma is a growing and challenging public health issue requiring novel and multidisciplinary approaches to achieve more efficient prevention and therapeutic benefits. The aim of this article is to show the critical role of APE/Ref-1 on melanomagenesis and progression. APE/Ref-1 serves as a redox-sensitive node of convergence of various signals as well as a DNA-repair enzyme, and its activation protects melanocytes and melanoma cells from chronic oxidative stress and promotes cell survival via mediation of downstream pathways. APE/Ref-1 is a strong candidate as a potential drug-treatable target for the prevention and treatment of human melanoma. Lead compounds exhibiting inhibitory effects on APE/Ref-1 are also reviewed. We anticipate potential clinical benefit in the future through inhibition of APE/Ref-1 and/or Ref-1-mediated signaling.
Collapse
Affiliation(s)
- Sun Yang
- Chao Family Comprehensive Cancer Center, Department of Medicine, Orange, California, USA
| | | |
Collapse
|
25
|
Guttmann D, Poage G, Johnston T, Zhitkovich A. Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem Res Toxicol 2008; 21:2188-94. [PMID: 18808157 PMCID: PMC2665875 DOI: 10.1021/tx800265g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although reductive metabolism of Cr(VI) always results in the production of Cr(III) and extensive Cr-DNA binding, cellular studies have indicated that different reduction processes are not equivalent in the induction of mutagenic events. Here, we examined mutagenicity and formation of Cr-DNA damage by Cr(VI) activated in vitro by one of its important reducers, glutathione (GSH). Our main focus was on reactions containing 2 mM GSH, corresponding to its average concentration in CHO (1.8 mM) and V79 (2.6 mM) mutagenicity models. We found that Cr(VI) reduction by 2 mM GSH produced only weak mutagenic responses in pSP189 plasmids replicated in human fibroblasts. Reductive activation of Cr(VI) with 5 mM GSH resulted in approximately 4-times greater DNA adduct-normalized yield of mutations. Mutagenic DNA damage formed in GSH-chromate reactions was caused by nonoxidative mechanisms, as blocking of Cr-DNA adduction led to a complete loss of mutagenesis. All GSH-mediated reactions also lacked significant DNA single-strand breakage. We developed a sensitive HPLC procedure for the detection of GSH-Cr-DNA cross-links based on the dissociation of DNA-conjugated GSH by Cr(III) chelation and its derivatization with monobromobimane. Weak mutagenicity of 2 mM GSH reactions was associated with a low production of mutagenic GSH-Cr-DNA cross-links (5.0% of total Cr-DNA adducts). In agreement with their greater mutation-inducing ability, 5 mM GSH reactions generated 4-5 times higher levels of GSH-DNA cross-linking. Overall, our results indicate that chromate reduction by physiological concentrations of GSH is a weakly mutagenic process, which is consistent with low mutagenicity of Cr(VI) in ascorbate-deficient cells.
Collapse
Affiliation(s)
- David Guttmann
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence, RI 02912
| | - Graham Poage
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence, RI 02912
| | - Tatiana Johnston
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence, RI 02912
| | - Anatoly Zhitkovich
- Brown University, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence, RI 02912
| |
Collapse
|
26
|
Frańska M, Gierczyk K. Interactions of nucleosides with CrO(4) (2-) and Cr(3+) as studied by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1799-1806. [PMID: 18470878 DOI: 10.1002/rcm.3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interactions of CrO(4) (2-) and Cr(3+) with nucleosides studied by electrospray ionization mass spectrometry (ESI-MS) are reported. In water, the nucleosides which do not contain the NH(2) group form the unstable [M+HCrO(4)](-) anion. In the presence of a reducing agent, namely methanol, chromate anion forms stable complexes with nucleosides, [M+CH(3)CrO(4)](-) anions. The fragmentation of [M+CH(3)CrO(4)](-) anions involve elimination of the methanol molecule. Chromium cation-nucleoside complexes were not observed in water. In methanol solutions, adenosine and cytidine form [(M-H)+CrOCH(3)](+) and [(M-H)(2)+Cr](+) ions. Most probably, deprotonated imine tautomers form complexes in which a metal cation is simultaneously coordinated by two nitrogen atoms. Complexes containing chloride anions and a few methanol molecules were observed for other nucleosides. Guanosine and inosine form doubly charged ions of the type [M(2)+CrOCH(3)](2+) that probably contain a bond between the oxygen atom and the chromium cation, (HN(1)--C(6)==O)(2) (....)Cr(3+)).
Collapse
Affiliation(s)
- Magdalena Frańska
- Poznań University of Technology, Institute of Chemistry, Piotrowo 3, 60-965 Poznań, Poland.
| | | |
Collapse
|
27
|
Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2008; 21:28-44. [PMID: 17970581 PMCID: PMC2602826 DOI: 10.1021/tx700198a] [Citation(s) in RCA: 579] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic exposure to nickel(II), chromium(VI), or inorganic arsenic (iAs) has long been known to increase cancer incidence among affected individuals. Recent epidemiological studies have found that carcinogenic risks associated with chromate and iAs exposures were substantially higher than previously thought, which led to major revisions of the federal standards regulating ambient and drinking water levels. Genotoxic effects of Cr(VI) and iAs are strongly influenced by their intracellular metabolism, which creates several reactive intermediates and byproducts. Toxic metals are capable of potent and surprisingly selective activation of stress-signaling pathways, which are known to contribute to the development of human cancers. Depending on the metal, ascorbate (vitamin C) has been found to act either as a strong enhancer or suppressor of toxic responses in human cells. In addition to genetic damage via both oxidative and nonoxidative (DNA adducts) mechanisms, metals can also cause significant changes in DNA methylation and histone modifications, leading to epigenetic silencing or reactivation of gene expression. In vitro genotoxicity experiments and recent animal carcinogenicity studies provided strong support for the idea that metals can act as cocarcinogens in combination with nonmetal carcinogens. Cocarcinogenic and comutagenic effects of metals are likely to stem from their ability to interfere with DNA repair processes. Overall, metal carcinogenesis appears to require the formation of specific metal complexes, chromosomal damage, and activation of signal transduction pathways promoting survival and expansion of genetically/epigenetically altered cells.
Collapse
Affiliation(s)
- Konstantin Salnikow
- Konstantin Salnikow, National Cancer Institute, Bldg. 538, Room 205 E, Frederick, MD 21702, Phone: 301-846-5623, Fax: 301-846-5946, E-mail:
| | - Anatoly Zhitkovich
- Anatoly Zhitkovich, Brown University, Center for Genomics and Proteomics, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence RI 02912, Phone: 401-863-2912, Fax: 401-863-9008, E-mail:
| |
Collapse
|
28
|
Fornsaglio JL, O'Brien TJ, Patierno SR. Differential impact of ionic and coordinate covalent chromium (Cr)-DNA binding on DNA replication. Mol Cell Biochem 2007; 279:149-55. [PMID: 16283524 DOI: 10.1007/s11010-005-8287-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactive species produced by the reduction of Cr(VI), particularly Cr(III), can form both ionic and coordinate covalent complexes with DNA. These Cr(III)-DNA interactions consist of Cr-DNA monoadducts, Cr-DNA ternary adducts, and Cr-DNA interstrand cross-links (Cr-ICLs), the latter of which are DNA polymerase arresting lesions (PALs). We sought to determine the impact of Cr-DNA interactions on the formation of replication blocking lesions in S. cerevisiae using a PCR-based method. We found that target sequence (TS) amplification using DNA isolated from Cr(VI)-treated yeast actually increased as a function of Cr(VI) concentration. Moreover, the enhanced TS amplification was reproduced in vitro using Cr(III)-treated DNA. In contrast, PCR amplification of TS from DNA isolated from yeast exposed to equitoxic doses of the inorganic DNA cross-linking agent cisplatin (CDDP), was decreased in a concentration-dependent manner. This paradox suggested that a specific Cr-DNA interaction, such as an ionic Cr-DNA complex, was responsible for the enhanced TS amplification, thereby masking the replication-blocking effect of certain ternary Cr-DNA adducts (i.e. interstrand cross-links). To test this possibility, we removed ionically associated Cr from the DNA using salt extraction prior to PCR analysis. This procedure obviated the increased amplification and revealed a dose-dependent decrease in TS amplification and an increase in Cr-PALs. These data from DNA analyzed ex vivo after treatment of intact cells indicate that ionic interactions of Cr with DNA result in increased DNA amplification whereas coordinate-covalent Cr-DNA complexes lead to formation of Cr-PALs. Thus, these results suggest that treatment of living cells with Cr(VI) leads to two modes of Cr-binding, which may have conflicting effects on DNA replication.
Collapse
Affiliation(s)
- Jamie L Fornsaglio
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
29
|
O'Brien TJ, Brooks BR, Patierno SR. Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells. Mol Cell Biochem 2007; 279:85-95. [PMID: 16283517 DOI: 10.1007/s11010-005-8225-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Some hexavalent chromium (Cr(VI))-containing compounds are human lung carcinogens. While ample information is available on the genetic lesions produced by Cr, surprisingly little is known regarding the cellular mechanisms involved in the removal of Cr-DNA adducts. Nucleotide excision repair (NER) is a highly versatile pathway that is responsive to a variety of DNA helix-distorting lesions. Binary Cr-DNA monoadducts do not produce a significant degree of helical distortion. However, these lesions are unstable due to the propensity of Cr(III) to form DNA adducts (DNA interstrand crosslinks, DNA-protein/amino acid ternary adducts) which may serve as substrates for NER. Therefore, the focus of this study was to determine the role of NER in the processing of Cr-DNA damage using normal (CHO-AA8) and NER-deficient [UV-5 (XP-D); UV-41 (ERCC4/XP-F)] hamster cells. We found that both UV-5 and UV-41 cells exhibited an increased sensitivity towards Cr(VI)-induced clonogenic lethality relative to AA8 cells and were completely deficient in the removal of Cr-DNA adducts. In contrast, repair-complemented UV-5 (expressing hamster XPD) and UV-41 (expressing human ERCC4) cells exhibited similar clonogenic survival and removed Cr-DNA adducts to a similar extent as AA8 cells. In order to extend these findings to the molecular level, we examined the ability of Cr(III)-damaged DNA to induce DNA repair synthesis in cell extracts. Repair synthesis was observed in reactions using extracts derived from AA8, or repair-complemented, but not NER-deficient cells. Cr(III)-induced repair resynthesis was sensitive to inhibition by the DNA polymerase delta/epsilon inhibitor, aphidicolin, but not 2',3'-dideoxythymidine triphosphate (ddTTP), a polymerase beta inhibitor. These results collectively suggest that NER functions in the protection of cells from Cr(VI) lethality and is essential for the removal of Cr(III)-DNA adducts. Consequently, NER may represent an important mechanism for preventing Cr(VI)-induced mutagenesis and neoplastic transformation.
Collapse
Affiliation(s)
- Travis J O'Brien
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | |
Collapse
|
30
|
Wang XF, Xing ML, Shen Y, Zhu X, Xu LH. Oral administration of Cr(VI) induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology 2006; 228:16-23. [PMID: 16979809 DOI: 10.1016/j.tox.2006.08.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 11/25/2022]
Abstract
Potassium dichromate (Cr(VI)) was given orally to Swiss mice for 1 and 5 days with the dose of 25, 50 and 100 mg/kg body weight per day, respectively. Oxidative stress including the level of reactive oxygen species (ROS), the extent of lipid peroxidation and the activity of antioxidant enzymes in liver and kidney was determined. DNA damage in peripheral blood lymphocytes was determined by single-cell gel electrophoresis (comet assay). Apoptotic cell death in liver was detected using transmission electron microscopy and TUNEL assay. The results indicated that administration of Cr(VI) had caused a significant increase of ROS level in liver both after 1 and 5 days of exposure, accompanied with a dose-dependent decrease in superoxide dismutase (SOD) and catalase (CAT) activities. The malondialdehyde (MDA) content in liver was not changed as compared to the control animals. In contrast to the liver, no significant changes were observed in kidney on ROS, SOD, CAT and MDA as compared to the control animals. Dose- and time-dependent effects were observed on DNA damage after 1 and 5 days treatment. Significant difference was observed on the number of TUNEL positive liver cells between the control and Cr(VI) treatment groups. The apoptotic cells were also identified by characteristic ultrastructural features. The results obtained from the present study showed that Cr(VI) given orally to mice could induce dose- and time-dependent effects on DNA damage, hepatic oxidative stress and hepatocytes apoptosis. No significant oxidative stress observed in kidney in the study may suggest that the way of Cr(VI) exposure is an important factor affecting its toxicity.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Department of Biochemistry & Molecular Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
31
|
Messer J, Reynolds M, Stoddard L, Zhitkovich A. Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic Biol Med 2006; 40:1981-92. [PMID: 16716899 DOI: 10.1016/j.freeradbiomed.2006.01.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 01/02/2006] [Accepted: 01/24/2006] [Indexed: 11/22/2022]
Abstract
Carcinogenic chromates induce DNA single-strand breaks (SSB) that are detectable by conventional alkali-based assays. However, the extent of direct breakage has been uncertain because excision repair and hydrolysis of Cr-DNA adducts at alkaline pH also generate SSB. We examined mechanisms of SSB production during chromate reduction by glutathione (GSH) and assessed the significance of these lesions in cells using genetic approaches. Cr(VI) reduction was biphasic and the formation of SSB occurred exclusively during the slow reaction phase. Catalase or iron chelators completely blocked DNA breakage, as did the use of GSH purified by a modified Chelex procedure. Thus, the direct intermediates of GSH-chromate reactions were unable to cause SSB unless activated by H2O2. SSB repair-deficient XRCC1(-/-) and proficient XRCC1+ EM9 cells had identical survival at doses causing up to 60% clonogenic death and accumulation of 1 mM Cr(VI). However, XRCC1(-/-) cells displayed higher lethality in the more toxic range and the depletion of GSH made them hypersensitive even to moderate doses. Elevation of cellular catalase or GSH levels eliminated survival differences between XRCC1(-/-) and XRCC1+ cells. In summary, formation of toxic SSB in cells occurs at relatively high chromate doses, requires H2O2, and is suppressed by high GSH concentrations.
Collapse
Affiliation(s)
- Joseph Messer
- Center for Genomics and Proteomics, Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Room 507, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
32
|
Park JH, Troxel AB, Harvey RG, Penning TM. Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 2006; 19:719-28. [PMID: 16696575 PMCID: PMC2366214 DOI: 10.1021/tx0600245] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive and redox-active polycyclic aromatic hydrocarbon (PAH) o-quinones produced by Aldo-Keto Reductases (AKRs) have the potential to cause depurinating adducts leading to the formation of abasic sites and oxidative base lesions. The aldehyde reactive probe (ARP) was used to detect these lesions in calf thymus DNA treated with three PAH o-quinones (BP-7,8-dione, 7,12-DMBA-3,4-dione, and BA-3,4-dione) in the absence and presence of redox-cycling conditions. In the absence of redox-cycling, a modest amount of abasic sites were detected indicating the formation of a low level of covalent o-quinone depurinating adducts (>3.2 x 10(6) dNs). In the presence of NADPH and CuCl2, the three PAH o-quinones increased the formation of abasic sites due to ROS-derived lesions destabilizing the N-glycosidic bond. The predominant source of AP sites, however, was revealed by coupling the assay with human 8-oxoguanine glycosylase (hOGG1) treatment, showing that 8-oxo-dGuo was the major lesion caused by PAH o-quinones. The levels of 8-oxo-dGuo formation were independently validated by HPLC-ECD analysis. Apyrimidinic sites were also revealed by coupling the assay with Escherichia coli (Endo III) treatment showing that oxidized pyrimidines were formed, but to a lesser extent. Different mechanisms were responsible for the formation of the oxidative lesions depending on whether Cu(II) or Fe(III) was used in the redox-cycling conditions. In the presence of Cu(II)-mediated PAH o-quinone redox-cycling, catalase completely suppressed the formation of the lesions, but mannitol and sodium benzoate were without effect. By contrast, sodium azide, which acts as a *OH and 1O2 scavenger, inhibited the formation of all oxidative lesions, suggesting that the ROS responsible was 1O2. However, in the presence of Fe(III)-mediated PAH o-quinone redox-cycling, the *OH radical scavengers and sodium azide consistently attenuated their formation, indicating that the ROS responsible was *OH.
Collapse
Affiliation(s)
- Jong-Heum Park
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| | - Andrea B. Troxel
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| | - Ronald G. Harvey
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Trevor M. Penning
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| |
Collapse
|
33
|
Majumder S, Ghoshal K, Summers D, Bai S, Datta J, Jacob ST. Chromium(VI) down-regulates heavy metal-induced metallothionein gene transcription by modifying transactivation potential of the key transcription factor, metal-responsive transcription factor 1. J Biol Chem 2003; 278:26216-26. [PMID: 12716893 PMCID: PMC2365495 DOI: 10.1074/jbc.m302887200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The robust induction of metallothionein-I and II (MT-I and MT-II) genes by several heavy metals such as zinc and cadmium requires the specific transcription factor metal-responsive transcription factor 1 (MTF1). Chromium (VI), a major environmental carcinogen, not only failed to activate these genes but also inhibited their induction by Zn2+ or Cd2+. The heavy metal-induced expression of another MTF1 target gene, zinc transporter 1 (ZnT-1), was also down-regulated by Cr6+. By contrast, the expression of two MTF1-independent Cd2+-inducible genes, heme oxygenase 1 (HO-1) and HSP-70, was not sensitive to Cr6+. Cr6+ did not also affect the expression of housekeeping genes such as GAPDH or beta-actin. Stable cell lines overexpressing variable levels of MTF1, the key transactivator of the MT genes, demonstrated differential resistance toward the inhibitory effect of Cr6+, indicating MTF1 as a target of chromium toxicity. The basal and inducible binding of MTF1 to metal response elements was not affected by treatment of cells with Cr6+. Transient transfection studies showed that the ability of MTF1 to transactivate the MT-I promoter was significantly compromised by Cr6+. The fusion protein consisting of a Gal-4 DNA binding domain and one or more of the three transactivation domains of MTF1, namely the acidic domain, proline-rich domain, and serine-threonine rich domain, activated the GAL-4-driven luciferase gene to different degrees, but all were sensitive to Cr6+. MTF1 null cells were prone to apoptosis after exposure to Zn2+ or Cd2+ that was augmented in presence Cr6+, whereas the onset of apoptosis was significantly delayed in cells overexpressing MTF1.
Collapse
Affiliation(s)
- Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, The Ohio State University, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
34
|
O'Brien TJ, Fornsaglio JL, Ceryak S, Patierno SR. Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae. DNA Repair (Amst) 2002; 1:617-27. [PMID: 12509285 DOI: 10.1016/s1568-7864(02)00078-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A broad spectrum of genetic damage results from exposure to hexavalent chromium. These lesions can result in DNA and RNA polymerase arrest, chromosomal aberrations, point mutations and deletions. Because of the complexity of Cr genotoxicity, the repair of Cr(VI)-induced DNA damage is poorly understood. Therefore, our aim was to investigate the sensitivities of DNA repair-deficient Saccharomyces cerevisiae strains to Cr(VI)-induced growth inhibition and lethality. Wild-type, translesion synthesis (rev3) and excision repair (apn1, ntg1, ntg2, rad1) mutants exhibited similar survival following Cr(VI) treatment (0-50mM) and underwent at least one population doubling within 2-4h post-treatment. The simultaneous loss of several excision repair genes (apn1 rad1 ntg1 ntg2) led to slower growth after Cr(VI) exposure (10mM) manifested as an initial delay in S phase progression. Higher concentrations of Cr(VI) (25mM) resulted in a prolonged transit through S phase in every strain tested. A G(2)/M arrest was evident within 1-2h after Cr(VI) treatment (10mM) in all strains and cells subsequently divided after this transient delay. In contrast to all other strains, only recombination-deficient (rad52, rad52 rev3) yeast were markedly hypersensitive towards Cr(VI) lethality. RAD52 mutant strains (rad52, rad52 rev3) also exhibited a significant delay (>6h) in the resumption of replication after Cr(VI) exposure which was related to the immediate and apparently terminal arrest of these yeast in G(2)/M after Cr(VI) treatment. These results, taken together with the recombinogenic effects of Cr(VI) in yeast containing a functional RAD52 gene, suggest that RAD52-mediated recombination is critical for the normal processing of lethal Cr-induced genetic lesions and exit from G(2) arrest. Furthermore, only the combined inactivation of multiple excision repair genes affects cell growth after Cr(VI) treatment.
Collapse
Affiliation(s)
- Travis J O'Brien
- Molecular and Cellular Oncology Program, Department of Pharmacology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
35
|
Pattison DI, Davies MJ, Levina A, Dixon NE, Lay PA. Chromium(VI) Reduction by Catechol(amine)s Results in DNA Cleavage in Vitro: Relevance to Chromium Genotoxicity. Chem Res Toxicol 2001; 14:500-10. [PMID: 11368547 DOI: 10.1021/tx000229s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catechols are found extensively in nature both as essential biomolecules and as the byproducts of normal oxidative damage of amino acids and proteins. They are also present in cigarette smoke and other atmospheric pollutants. Here, the interactions of reactive species generated in Cr(VI)/catechol(amine) mixtures with plasmid DNA have been investigated to model a potential route to Cr(VI)-induced genotoxicity. Reduction of Cr(VI) by 3,4-dihydroxyphenylalanine (DOPA) (1), dopamine (2), or adrenaline (3) produces species that cause extensive DNA damage, but the products of similar reactions with catechol (4) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4 in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N-acetyl-Tyr with tyrosinase, respectively) were correlated with the DNA cleaving abilities of the products of these reactions. The reaction of Cr(VI) with enzymatically generated 1 produced significant amounts of H(2)O(2) and caused significant DNA damage, but the N-acetyl-DOPA did not. The extent of in vitro DNA damage is reduced considerably by treatment of the Cr(VI)/catechol(amine) mixtures with catalase, which shows that the DNA damage is H(2)O(2)-dependent and that the major reactive intermediates are likely to be Cr(V)-peroxo and mixed Cr(V)-catechol-peroxo complexes, rather than Cr(V)-catechol intermediates.
Collapse
Affiliation(s)
- D I Pattison
- Centre for Heavy Metals Research, School of Chemistry, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
36
|
Abstract
Chromium can be found in the environment in two main valence states: hexavalent (Cr(VI)) and trivalent (Cr(III)). Cr(VI) salts are well known human carcinogens, but the results from in vitro studies are often conflicting. Cr(VI) primarily enters the cells and undergoes metabolic reduction; however, the ultimate product of this reduction, Cr(III) predominates within the cell. In the present work, we compared the effects of tri- and hexavalent chromium on the DNA damage and repair in human lymphocytes using the alkaline single cell gel electrophoresis (comet assay). Potassium dichromate induced DNA damage in the lymphocytes, measured as the increase in comet tail moment. The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Cr(III) caused greater DNA migration than Cr(VI). The lymphocytes did not show measurable DNA repair. Vitamin C at 50 microM reduced the extent of DNA migration. This was either due to a decrease in DNA strand breaks and/or alkali labile sites induced by Cr(VI) or to the formation of DNA crosslinks by Cr(VI) in the presence of vitamin C. Vitamin C, however, did not modify the effects of Cr(III). Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by Cr(VI) but not the one induced by Cr(III). Lymphocytes exposed to Cr(VI) and treated with endonuclease III, which recognizes oxidized pyrimidines, displayed greater extent of DNA damage than those not treated with the enzyme. Such an effect was not observed when Cr(III) was tested. The results obtained suggest that reactive oxygen species and hydrogen peroxide may be involved in the formation of DNA lesions by hexavalent chromium. The comet assay did not indicate the involvement of oxidative mechanisms in the DNA-damaging activity of trivalent chromium and we speculate that its binding to cellular ligands may play a role in its genotoxicity.
Collapse
Affiliation(s)
- J Blasiak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | | |
Collapse
|