1
|
Kalidas N, Peddada N, Pandey K, Ashish. SAXS data based glycosylated models of human alpha-1-acid glycorprotein, a key player in health, disease and drug circulation. J Biomol Struct Dyn 2025:1-15. [PMID: 40056387 DOI: 10.1080/07391102.2025.2475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/02/2025] [Indexed: 03/10/2025]
Abstract
Plasma Alpha-1-glycoprotein (AGP) binds diverse drugs, its isoforms and their levels vary significantly in acute phases of health. Relative binding pattern of drugs to AGP and albumin has been used to model their release profiles, and structural insights on glycosylated form of AGP will improve predictions. Main challenge is the heavy and heterogeneous glycosylation of AGP molecules. Our small angle X-ray scattering (SAXS) data on plasma extracted AGP showed interparticulate effect from 283 to 313 K which disappeared irreversibly upon further heating to 343K. Using ALPHAFOLD2 server, the protein only portion could be modelled but as expected its theoretical SAXS profile did not match acquired experimental data. Using mass spectra-based information, we attached representative glycan motifs at known sites to compute four models of fully glycosylated AGP. Importantly, calculated SAXS profiles of these models agreed with our experimental data. These representative glycosylated models were further analyzed for molecular motions using Normal Mode Analysis and all-atom Molecular Dynamics simulations in reference to SAXS data. Overall, we show that SAXS data-based models of glycoprotein are better representation of this biopharmaceutical molecule and provide them for structure-based drug profile estimations.
Collapse
Affiliation(s)
- Nidhi Kalidas
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nagesh Peddada
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kalpana Pandey
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
2
|
Yang Y, Zhou X, Wang W, Dai H. Glycobiology of psoriasis: A review. J Autoimmun 2025; 151:103361. [PMID: 39808852 DOI: 10.1016/j.jaut.2025.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation. Abnormal glycosylation is associated with inflammation, tumors, autoimmunity, and several diseases. Glycan profiles and glycosylation-related enzymes are altered in patients with psoriasis. Specific glycan structures, such as glycosaminoglycans and gangliosides, inhibit the development of psoriasis through various pathways. Lectins are glycan-binding proteins that are widely involved in the pathogenesis of psoriasis. The differential serum, epidermal, and dermal expression of galectins in patients with psoriasis distinguishes psoriasis from other nonspecific psoriasis-like dermatitis. This article summarizes relevant literature on psoriasis-related glycans to help clarify the potential molecular mechanisms of psoriasis and identify novel biomarkers and targets for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yinuo Yang
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China
| | - Xin Zhou
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China
| | - Wenhui Wang
- Department of Dermatology, Peking University Third Hospital, No.49, Huayuan North Road, Haidian, Beijing, 100191, China.
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China.
| |
Collapse
|
3
|
Sołkiewicz K, Kokot I, Dymicka-Piekarska V, Dorf J, Kratz EM. Are Changes in Serum IgG Glycosylation Related to the Severe Course of SARS-CoV-2 Infection and Recovery Process? In Search of New Diagnostic and Prognostic Biomarkers. J Inflamm Res 2024; 17:1413-1427. [PMID: 38450051 PMCID: PMC10916521 DOI: 10.2147/jir.s439005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Immunoglobulin G (IgG) glycosylation affects its effector functions and is essential in many steps of the inflammatory cascade. Therefore, it may be an important parameter for assessing the body's immune response during the course of COVID-19 (Coronavirus disease 2019). Methods The N- and O-glycosylation of serum IgG in severe COVID-19 patients (n=87), convalescents (n=50), and healthy subjects (n=65) were examined using a modified lectin-ELISA method with specific biotinylated lectins. The obtained data were analyzed using STATISTICA 13.3PL software. Results We showed significantly higher expression of Lewisx oligosaccharide structures in severe COVID-19 patients than in the other two groups. Moreover, significantly lower expression of Lewisy sugar structures in IgG glycans was observed in the convalescents when compared with COVID-19 patients and healthy subjects. The lowest expression of highly branched N-glycans in cases of severe COVID-19 indicates that the development of the disease is associated with the presence of typical IgG biantennary N-glycans. The lack of significant differences in the expression of Tn antigen in IgG between studied groups and the significantly lower expression of T antigen in convalescents compared to the patients with severe COVID-19 and healthy subjects indicates a decrease in the content of the T antigen in IgG O-glycans in subjects recovered from COVID-19. Substantially higher reactivities of IgG O-glycans with Jacalin observed in COVID-19 patients and convalescents in comparison to the control group were most probably caused by increased expression of core 3 O-glycans in IgG. Conclusion Severe COVID-19 is accompanied by the expression in serum IgG of sialylated biantennary and highly branched N-glycans, decorated by fucose of Lewisx and Lewisy structures. The higher reactivity of IgG O-glycans with Jacalin in severe COVID-19 patients and convalescents indicates that the disease development and the recovery process are most probably accompanied by increased expression of the core 3 O-glycans.
Collapse
Affiliation(s)
- Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Tijardović M, Štambuk T, Juszczak A, Keser T, Gasperikova D, Novokmet M, Tjora E, Pape Medvidović E, Stanik J, Rasmus Njølstad P, Lauc G, Owen KR, Gornik O. Fucosylated AGP glycopeptides as biomarkers of HNF1A-Maturity onset diabetes of the young. Diabetes Res Clin Pract 2022; 185:109226. [PMID: 35122907 DOI: 10.1016/j.diabres.2022.109226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
AIMS We previously demonstrated that antennary fucosylated N-glycans on plasma proteins are regulated by HNF1A and can identify cases of Maturity-Onset Diabetes of the Young caused by HNF1A variants (HNF1A-MODY). Based on literature data, we further postulated that N-glycans with best diagnostic value mostly originate from alpha-1-acid glycoprotein (AGP). In this study we analyzed fucosylation of AGP in subjects with HNF1A-MODY and other types of diabetes aiming to evaluate its diagnostic potential. METHODS A recently developed LC-MS method for AGP N-glycopeptide analysis was utilized in two independent cohorts: a) 466 subjects with different diabetes subtypes to test the fucosylation differences, b) 98 selected individuals to test the discriminative potential for pathogenic HNF1A variants. RESULTS Our results showed significant reduction in AGP fucosylation associated to HNF1A-MODY when compared to other diabetes subtypes. Additionally, ROC curve analysis confirmed significant discriminatory potential of individual fucosylated AGP glycopeptides, where the best performing glycopeptide had an AUC of 0.94 (95% CI 0.90-0.99). CONCLUSIONS A glycopeptide based diagnostic tool would be beneficial for patient stratification by providing information about the functionality of HNF1A. It could assist the interpretation of DNA sequencing results and be a useful addition to the differential diagnostic process.
Collapse
Affiliation(s)
- Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Agata Juszczak
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Daniela Gasperikova
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Erling Tjora
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Edita Pape Medvidović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb University School of Medicine, Zagreb, Croatia
| | - Juraj Stanik
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Pediatrics, Medical Faculty of Comenius University and National Institute for Children's Diseases, Bratislava, Slovakia
| | - Pål Rasmus Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
5
|
Adhikari E, Liu Q, Burton C, Mockabee-Macias A, Lester DK, Lau E. l-fucose, a sugary regulator of antitumor immunity and immunotherapies. Mol Carcinog 2022; 61:439-453. [PMID: 35107186 DOI: 10.1002/mc.23394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
6
|
Sołkiewicz K, Krotkiewski H, Jędryka M, Czekański A, Kratz EM. The Alterations of Serum IgG Fucosylation as a Potential Additional New Diagnostic Marker in Advanced Endometriosis. J Inflamm Res 2022; 15:251-266. [PMID: 35058701 PMCID: PMC8764169 DOI: 10.2147/jir.s341906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endometriosis is an inflammatory disease leading to the growth of endometrial-like tissue outside of the uterus, which affects approximately 10% of young women of reproductive potential. The diagnosis of this disease is difficult, often invasive and time-consuming, therefore non-invasive diagnostic methods are strongly desirable in endometriosis detection. The aim of our project was to investigate whether any associations exist between the expression of serum IgG fucosylation and advanced stages of endometriosis. We were also interested in whether native serum IgG (s-IgG) fucosylation analysis, without prior IgG isolation, could provide a panel of parameters helpful in non-invasive diagnostics of advanced endometriosis. METHODS IgG fucosylation was examined using a lectin-ELISA test with fucose-specific lectins: AAL and LCA, specific for core fucose α1,6-linked, as well as LTA and UEA which recognize α1,3- and α1,2-linked fucose, respectively. RESULTS ROC curve and cluster analysis showed s-IgG reactivities with the panel of fucose-specific lectins AAL, LCA and LTA. CONCLUSION s-IgG reactivity with the panel of fucose-specific lectins AAL, LCA and LTA can be taken into account as a useful diagnostic and clinical tool to differentiate women with advanced endometriosis. Moreover, it has been shown that the analysis of native IgG fucosylation directly in serum, without prior time-consuming, expensive IgG isolation, is sufficient to distinguish advanced stages of endometriosis from a control group of healthy women.
Collapse
Affiliation(s)
- Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| | - Hubert Krotkiewski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, 53-114, Poland
| | - Marcin Jędryka
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Wroclaw, 53-413, Poland
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Wroclaw, 53-413, Poland
| | - Andrzej Czekański
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Wroclaw, 53-413, Poland
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Wroclaw, 53-413, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, 50-556, Poland
| |
Collapse
|
7
|
Goto N, Shibutani S, Miura N, Watanabe R, Iwata H. Thapsigargin suppresses alpha 1-acid glycoprotein secretion independently of N-glycosylation and ER stress. Biochem Biophys Res Commun 2021; 552:30-36. [PMID: 33740662 DOI: 10.1016/j.bbrc.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Alpha-1 acid glycoprotein (AGP) is a major acute-phase protein that is involved in drug/ligand binding and regulation of immune response. In response to inflammation, AGP secretion from the liver increases, resulting in elevated concentration of plasma AGP. AGP exhibits multiple N-glycosylation sites, and thus, is highly glycosylated. Although AGP glycosylation is considered to affect its functions, the significance of AGP glycosylation for its secretion is unclear. In this study, we investigated the effects of AGP glycosylation using glycosylation-deficient mouse AGP mutants lacking one, four, or all five N-glycosylation sites. Furthermore, we examined the effects of endoplasmic reticulum (ER) stress-inducing reagents, including tunicamycin and thapsigargin, which induce ER stress in an N-glycosylation-dependent and -independent manner, respectively. Here, we found that glycosylation deficiency and ER stress induce a little or no effect on AGP secretion. Conversely, thapsigargin significantly suppressed AGP secretion in glycosylation-independent manner. These findings indicate that AGP secretion is regulated via thapsigargin-sensitive pathway that might be further controlled by the intracellular calcium concentrations.
Collapse
Affiliation(s)
- Nanami Goto
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Noboru Miura
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Rie Watanabe
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Hiroyuki Iwata
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
8
|
Boyle CA, Coatney RW, Wickham A, Mukherjee SK, Meunier LD. Alpha-1 Acid Glycoprotein as a Biomarker for Subclinical Illness and Altered Drug Binding in Rats. Comp Med 2021; 71:123-132. [PMID: 33789781 DOI: 10.30802/aalas-cm-20-000088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alpha-1 acid glycoprotein (AGP) is a significant drug binding acute phase protein that is present in rats. AGP levels are known to increase during tissue injury, cancer and infection. Accordingly, when determining effective drug ranges and toxicity limits, consideration of drug binding to AGP is essential. However, AGP levels have not been well established during subclinical infections. The goal of this study was to establish a subclinical infection model in rats using AGP as a biomarker. This information could enhance health surveillance, aid in outlier identification, and provide more informed characterization of drug candidates. An initial study (n = 57) was conducted to evaluate AGP in response to various concentrations of Staphylococcus aureus (S. aureus) in Sprague-Dawley rats with or without implants of catheter material. A model validation study (n = 16) was then conducted using propranolol. Rats received vehicle control or S. aureus and when indicated, received oral propranolol (10 mg/kg). Health assessment and blood collection for measurement of plasma AGP or propranolol were performed over time (days). A dose response study showed that plasma AGP was elevated on day 2 in rats inoculated with S. aureus at 106, 107 or, 108 CFU regardless of implant status. Furthermore, AGP levels remained elevated on day 4 in rats inoculated with 107 or 108 CFUs of S. aureus. In contrast, significant increases in AGP were not detected in rats treated with vehicle or 10³ CFU S. aureus. In the validation study, robust elevations in plasma AGP were detected on days 2 and 4 in S. aureus infected rats with or without propranolol. The AUC levels for propranolol on days 2 and 4 were 493 ± 44 h × ng/mL and 334 ± 54 h × ng/mL, respectively), whereas in noninfected rats that received only propranolol, levels were 38 ± 11 h × ng/mL and 76 ± 16. h × ng/mL, respectively. The high correlation between plasma propranolol and AGP demonstrated a direct impact of AGP on drug pharmacokinetics and pharmacodynamics. The results indicate that AGP is a reliable biomarker in this model of subclinical infection and should be considered for accurate data interpretation.
Collapse
Affiliation(s)
- Catherine A Boyle
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania;,
| | - Robert W Coatney
- Translational Sciences, Galvani Bioelectronics, Collegeville, Pennsylvania
| | - Alexandra Wickham
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania
| | - Suman K Mukherjee
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania
| | - LaVonne D Meunier
- Global Laboratory Animal Medicine, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
9
|
Keser T, Tijardović M, Gornik I, Lukić E, Lauc G, Gornik O, Novokmet M. High-Throughput and Site-Specific N-Glycosylation Analysis of Human Alpha-1-Acid Glycoprotein Offers a Great Potential for New Biomarker Discovery. Mol Cell Proteomics 2021; 20:100044. [PMID: 33493676 PMCID: PMC7950198 DOI: 10.1074/mcp.ra120.002433] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Alpha-1-acid glycoprotein (AGP) is an acute phase glycoprotein in blood, which is primarily synthetized in the liver and whose biological role is not completely understood. It consists of 45% carbohydrates that are present in the form of five N-linked complex glycans. AGP N-glycosylation was shown to be changed in many different diseases, and some changes appear to be disease-specific; thus, it has a great diagnostic and prognostic potential. However, AGP glycosylation was mainly analyzed in small cohorts and without detailed site-specific glycan information. Here, we developed a cost-effective method for a high-throughput and site-specific N-glycosylation LC-MS analysis of AGP which can be applied on large cohorts, aid in search for novel disease biomarkers, and enable better understanding of AGP's role and function in health and disease. The method does not require isolation of AGP with antibodies and affinity chromatography, but AGP is enriched by acid precipitation from 5 μl of bloodplasma in a 96-well format. After trypsinization, AGP glycopeptides are purified using a hydrophilic interaction chromatography-based solid-phase extraction and analyzed by reversed-phase-liquid chromatography-electrospray ionization-MS. We used our method to show for the first time that AGP N-glycan profile is stable in healthy individuals (14 individuals in three time points), which is a requirement for evaluation of its diagnostic potential. Furthermore, we tested our method on a population including individuals with registered hyperglycemia in critical illness (59 cases and 49 controls), which represents a significantly increased risk of developing type 2 diabetes. Individuals at higher risk of diabetes presented increased N-glycan branching on AGP's second glycosylation site and lower sialylation of N-glycans on AGP's third and AGP1's fourth glycosylation site. Although this should be confirmed on a larger prospective cohort, it indicates that site-specific AGP N-glycan profile could help distinguish individuals who are at risk of type 2 diabetes.
Collapse
Affiliation(s)
- Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| | - Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ivan Gornik
- Department of Emergency Medicine, Clinical Hospital Zagreb, Zagreb, Croatia
| | - Edita Lukić
- Division of Anesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Ltd., Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mislav Novokmet
- Genos Ltd., Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
10
|
Ząbczyńska M, Link-Lenczowski P, Pocheć E. Glycosylation in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:205-218. [PMID: 34495537 DOI: 10.1007/978-3-030-70115-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases are accompanied by changes in protein glycosylation, in both the immune system and target tissues. The best-studied alteration in autoimmunity is agalactosylation of immunoglobulin G (IgG), characterized primarily in rheumatoid arthritis (RA), and then detected also in systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), and multiple sclerosis (MS). The rebuilding of IgG N-glycans in RA correlates with the relapses and remissions of the disease, is associated with physiological states such as pregnancy but also depends on applied anti-inflammatory therapy. In turn, a decreased core fucosylation of the whole pool of IgG N-glycans is a serum glycomarker in autoimmune thyroid diseases (AITD) encompassing Hashimoto's thyroiditis (HT) and Grave's disease (GD). However, fucosylation of anti-thyroglobulin IgG (an immunological marker of HT) was elevated in HT serum. Core fucosylation of IgG oligosaccharides was also lowered in MS and SLE. In AITD and IBD, chronic inflammation T lymphocytes showed the reduced expression of MGAT5 gene encoding β1,6-N-acetylglucosaminyltransferase V (GnT-V) responsible for β1,6-branching of N-glycans, which is important for T cell receptor activation. Structural changes of glycans have a profound effect on the pro-inflammatory activity of immune cells and serum immune proteins, including IgG in autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
11
|
Ciregia F, Baiwir D, Cobraiville G, Dewael T, Mazzucchelli G, Badot V, Di Romana S, Sidiras P, Sokolova T, Durez P, Malaise MG, de Seny D. Glycosylation deficiency of lipopolysaccharide-binding protein and corticosteroid-binding globulin associated with activity and response to treatment for rheumatoid arthritis. J Transl Med 2020; 18:8. [PMID: 31907043 PMCID: PMC6945416 DOI: 10.1186/s12967-019-02188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Serum protein glycosylation is an area of investigation in inflammatory arthritic disorders such as rheumatoid arthritis (RA). Indeed, some studies highlighted abnormalities of protein glycosylation in RA. Considering the numerous types of enzymes, monosaccharides and glycosidic linkages, glycosylation is one of the most complex post translational modifications. By this work, we started with a preliminary screening of glycoproteins in serum from RA patients and controls. METHODS In order to isolate glycoproteins from serum, lectin wheat germ agglutinin was used and quantitative differences between patients and controls were investigated by LC-MS/MS. Consequently, we focused our attention on two glycoproteins found in this explorative phase: corticosteroid-binding globulin (CBG) and lipopolysaccharide-binding protein (LBP). The subsequent validation with immunoassays was widened to a larger number of early RA (ERA) patients (n = 90) and well-matched healthy controls (n = 90). RESULTS We observed a significant reduction of CBG and LBP glycosylation in ERA patients compared with healthy controls. Further, after 12 months of treatment, glycosylated CBG and LBP levels increased both to values comparable to those of controls. In addition, these changes were correlated with clinical parameters. CONCLUSIONS This study enables to observe that glycosylation changes of CBG and LBP are related to RA disease activity and its response to treatment.
Collapse
Affiliation(s)
- Federica Ciregia
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium.
| | - Dominique Baiwir
- GIGA Proteomic Facility, University of Liège, 4000, Liège, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - Thibaut Dewael
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, System Biology and Chemical Biology, GIGA-Research, University of Liège, 4000, Liège, Belgium
| | - Valérie Badot
- Department of Rheumatology, CHU Brugmann, 1200, Brussels, Belgium
| | - Silvana Di Romana
- Department of Rheumatology, CHU Saint-Pierre, 1200, Brussels, Belgium
| | - Paschalis Sidiras
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1200, Brussels, Belgium
| | - Tatiana Sokolova
- Department of Rheumatology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Patrick Durez
- Department of Rheumatology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-I3, University of Liège, CHU de Liège, 4000, Liège, Belgium
| |
Collapse
|
12
|
Makszin L, Kustán P, Szirmay B, Páger C, Mező E, Kalács KI, Pászthy V, Györgyi E, Kilár F, Ludány A, Kőszegi T. Microchip gel electrophoretic analysis of perchloric acid-soluble serum proteins in systemic inflammatory disorders. Electrophoresis 2018; 40:447-454. [PMID: 30407655 PMCID: PMC6587799 DOI: 10.1002/elps.201800378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022]
Abstract
Perchloric acid (PCA) precipitation is a well-known method for the separation of heavily glycosylated proteins and for reducing the masking effect of major serum proteins. The aim of this study is to characterize PCA-soluble serum proteins in healthy individuals and in patients with systemic inflammatory diseases, such as Crohn's disease and sepsis. A PCA precipitation protocol was prepared and adapted to the analytical methods. After PCA treatment of the serum, the soluble proteins in the supernatant were analyzed by SDS-PAGE and by microchip gel electrophoresis (MGE). Characteristic changes of the electrophoretic patterns of the PCA-soluble fractions were observed. Four characteristic bands (at ∼11, ∼65, ∼85, and ∼120 kDa) with varying intensity were detected by MGE. The proportion of the ∼65, ∼85, and ∼120 kDa bands were significantly higher in systemic inflammatory conditions than in healthy individuals (p < 0.001), and characteristic patterns were observed in patients with acute inflammation. The marked differences in the acid-soluble protein patterns, which were observed in patients with ongoing systemic inflammation, might be a good indicator of inflammation. The MGE analysis is a fast screening and quantification method for the detection of characteristic changes among acid-soluble serum proteins.
Collapse
Affiliation(s)
- Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Kustán
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Szirmay
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Csilla Páger
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Emerencia Mező
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztina I Kalács
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Vera Pászthy
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Erzsébet Györgyi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ferenc Kilár
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Ludány
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol 2018. [DOI: 10.1016/j.chembiol.2018.02.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Bai L, Li Q, Li L, Lin Y, Zhao S, Wang W, Wang R, Li Y, Yuan J, Wang C, Wang Z, Fan J, Liu E. Plasma High-Mannose and Complex/Hybrid N-Glycans Are Associated with Hypercholesterolemia in Humans and Rabbits. PLoS One 2016; 11:e0146982. [PMID: 26999365 PMCID: PMC4801423 DOI: 10.1371/journal.pone.0146982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
N-glycans play important roles in various pathophysiological processes and can be used as clinical diagnosis markers. However, plasma N-glycans change and their pathophysiological significance in the setting of hypercholesterolemia, a major risk factor for atherosclerosis, is unknown. Here, we collected plasma from both hypercholesterolemic patients and cholesterol-fed hypercholesterolemic rabbits, and determined the changes in the whole-plasma N-glycan profile by electrospray ionization mass spectrometry. We found that both the hypercholesterolemic patients and rabbits showed a dramatic change in their plasma glycan profile. Compared with healthy subjects, the hypercholesterolemic patients exhibited higher plasma levels of a cluster of high-mannose and complex/hybrid N-glycans (mainly including undecorated or sialylated glycans), whereas only a few fucosylated or fucosylated and sialylated N-glycans were increased. Additionally, cholesterol-fed hypercholesterolemic rabbits also displayed increased plasma levels of high-mannose in addition to high complex/hybrid N-glycan levels. The whole-plasma glycan profiles revealed that the plasma N-glycan levels were correlated with the plasma cholesterol levels, implying that N-glycans may be a target for treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Liang Bai
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Qianwei Li
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Lingmei Li
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Yan Lin
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Weirong Wang
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Rong Wang
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Yongqin Li
- Department of Cardiology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, China
| | - Jiangbei Yuan
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Chengjian Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409–3898, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
15
|
Impaired ATP6V0A2 expression contributes to Golgi dispersion and glycosylation changes in senescent cells. Sci Rep 2015; 5:17342. [PMID: 26611489 PMCID: PMC4661525 DOI: 10.1038/srep17342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023] Open
Abstract
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.
Collapse
|
16
|
Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2015; 33:309-43. [PMID: 26555091 PMCID: PMC4891372 DOI: 10.1007/s10719-015-9626-2] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.
Collapse
Affiliation(s)
- Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Li J, Hsu HC, Ding Y, Li H, Wu Q, Yang P, Luo B, Rowse AL, Spalding DM, Bridges SL, Mountz JD. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 2014; 66:2368-79. [PMID: 24838610 DOI: 10.1002/art.38711] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Fucosylation catalyzed by fucosyltransferases (FUTs) is an important posttranslational modification involved in a variety of biologic processes. This study was undertaken to determine the roles of fucosylation in rheumatoid arthritis (RA) and to assess the efficacy of reestablishing immune homeostasis with the use of 2-deoxy-d-galactose (2-d-gal), a fucosylation inhibitor. METHODS Quantitative polymerase chain reaction was performed to determine the expression of FUT genes in synovial tissue from RA and osteoarthritis (OA) patients and in fluorescence-activated cell-sorted cells from RA synovial fluid. The in vivo inhibitory effect of 2-d-gal was evaluated in a murine collagen-induced arthritis (CIA) model. The in vitro effects of 2-d-gal on differentiation of inflammatory macrophages, production of cytokines, and antigen uptake, processing, and presentation functions were analyzed. RESULTS FUTs that are involved in terminal or subterminal fucosylation, but not those involved in core fucosylation or O-fucosylation, were up-regulated in RA compared to OA synovial tissue. The expression of terminal FUTs was highly positively correlated with the expression of TNF (encoding for tumor necrosis factor α). Terminal FUTs were predominantly expressed in M1 macrophages. In vivo, 2-d-gal treatment of mice precluded the development of CIA by reducing inflammatory macrophages and Th17 cells in the draining lymph nodes and decreasing the levels of TNFα, interleukin-6 (IL-6), and antibodies to type II collagen in the serum. In vitro, treatment with 2-d-gal skewed the differentiation of M1 macrophages to IL-10-producing M2 macrophages. Furthermore, 2-d-gal significantly inhibited the antigen-presenting function of M1 macrophages. CONCLUSION Terminal fucosylation is a novel hallmark of inflammatory macrophages. Inhibition of terminal FUTs reshapes the differentiation and functions of M1 macrophages, leading to resolution of inflammation in arthritis.
Collapse
Affiliation(s)
- Jun Li
- University of Alabama at, Birmingham
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Development of a novel system for mass spectrometric analysis of cancer-associated fucosylation in plasma α1-acid glycoprotein. BIOMED RESEARCH INTERNATIONAL 2013; 2013:834790. [PMID: 23509786 PMCID: PMC3586476 DOI: 10.1155/2013/834790] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
Human plasma α1-acid glycoprotein (AGP) from cancer patients and healthy volunteers was purified by sequential application of ion-exchange columns, and N-linked glycans enzymatically released from AGP were labeled and applied to a mass spectrometer. Additionally, a novel software system for use in combination with a mass spectrometer to determine N-linked glycans in AGP was developed. A database with 607 glycans including 453 different glycan structures that were theoretically predicted to be present in AGP was prepared for designing the software called AGPAS. This AGPAS was applied to determine relative abundance of each glycan in the AGP molecules based on mass spectra. It was found that the relative abundance of fucosylated glycans in tri- and tetra-antennary structures (FUCAGP) was significantly higher in cancer patients as compared with the healthy group (P < 0.001). Furthermore, extremely elevated levels of FUCAGP were found specifically in patients with a poor prognosis but not in patients with a good prognosis. In conclusion, the present software system allowed rapid determination of the primary structures of AGP glycans. The fucosylated glycans as novel tumor markers have clinical relevance in the diagnosis and assessment of cancer progression as well as patient prognosis.
Collapse
|
19
|
Roy S, Biswas S, Saroha A, Sahu D, Das HR. Enhanced expression and fucosylation of ficolin3 in plasma of RA patients. Clin Biochem 2012; 46:160-3. [PMID: 23107985 DOI: 10.1016/j.clinbiochem.2012.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 09/15/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The aim of this work was to detect low abundant proteins, which may be potential biomarkers of rheumatoid arthritis (RA) at the early stage. We compared plasma protein profiles of RA patients with healthy individuals in two dimensional gel electrophoresis after removal of abundant proteins (albumin and IgG) using depletion kit and Aleuria aurantia lectin (AAL) affinity chromatography. DESIGN AND METHODS Forty plasma samples each from healthy control individuals and RA patients were used in this study. RESULTS We found ficolin 3, haptoglobin alpha chain, IgM chain, alpha-1-antitrypsin and hemopexin precursor to be up regulated in the plasma of RA patients. These proteins were identified by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) from several reproducible 2D gels. Ficolin 3, which was not at all visible in albumin and IgG depleted gels, but detected in AAL bound fractions, was further verified by immunobloting and enzyme immunoassay. Elevated fucosylation in ficolin 3 was detected using high performance anion exchange chromatography-pulse amperometric detection (HPAEC-PAD), lectin blotting and enzyme linked lectin binding assay. CONCLUSIONS Altered fucosylation and elevated level of Ficolin 3 might be exploited to be a potential marker for diagnosis of RA.
Collapse
Affiliation(s)
- Saugata Roy
- Genomics and Molecular Medicine Division, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
20
|
Saroha A, Kumar S, Chatterjee BP, Das HR. Jacalin bound plasma O-glycoproteome and reduced sialylation of alpha 2-HS glycoprotein (A2HSG) in rheumatoid arthritis patients. PLoS One 2012; 7:e46374. [PMID: 23056292 PMCID: PMC3463590 DOI: 10.1371/journal.pone.0046374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/03/2012] [Indexed: 01/26/2023] Open
Abstract
Glycosylation studies of plasma proteins can reveal information about the onset and progression of diseases, where in the glycan biosynthetic pathways are disturbed as in rheumatoid arthritis (RA). The present study was focused on analysis of O-linked glycoproteins of plasma in RA patients. Two dimensional gel electrophoresis of jacalin bound plasma of RA patients revealed a number of differentially expressed protein spots as compared to healthy controls. Eighteen protein spots were found to have statistically significant (p<0.05) difference in their expression level from four sets of gels and were identified by MALDI-TOF MS. Most of the identified proteins were predicted to be O-glycosylated proteins by Net-O-Gly 3.1 algorithm. Among these the alpha 2HS glycoprotein (A2HSG) was found to be down regulated whereas inter alpha trypsin inhibitor H4 (ITIH4) was up regulated and this was validated by Western blotting. The glycosylation studies showed the reduced N-linked sialylation of A2HSG in RA patients. Altered glycoprotein expression and functional as well as structural studies of glycans might help in the diagnosis of RA and understanding the disease pathogenesis.
Collapse
Affiliation(s)
- Ashish Saroha
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
- Department of Natural Science, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Saravanan Kumar
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Bishnu P. Chatterjee
- Department of Natural Science, West Bengal University of Technology, Kolkata, West Bengal, India
| | - Hasi R. Das
- Genomics and Molecular Medicine Division, CSIR- Institute of Genomics and Integrative Biology, Delhi, India
- * E-mail:
| |
Collapse
|
21
|
In vivo clearance of alpha-1 acid glycoprotein is influenced by the extent of its N-linked glycosylation and by its interaction with the vessel wall. J Biomed Biotechnol 2012; 2012:292730. [PMID: 22545002 PMCID: PMC3321579 DOI: 10.1155/2012/292730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/19/2012] [Indexed: 11/23/2022] Open
Abstract
Alpha-1 acid glycoprotein (AGP) is a highly glycosylated plasma protein that exerts vasoprotective effects. We hypothesized that AGP's N-linked glycans govern its rate of clearance from the circulation, and followed the disappearance of different forms of radiolabeled human AGP from the plasma of rabbits and mice. Enzymatic deglycosylation of human plasma-derived AGP (pdAGP) by Peptide: N-Glycosidase F yielded a mixture of differentially deglycosylated forms (PNGase-AGP), while the introduction of five Asn to Gln mutations in recombinant Pichia pastoris-derived AGP (rAGP-N(5)Q) eliminated N-linked glycosylation. PNGase-AGP was cleared from the rabbit circulation 9-fold, and rAGP-N(5)Q, 46-fold more rapidly than pdAGP, primarily via a renal route. Pichia pastoris-derived wild-type rAGP differed from pdAGP in expressing mannose-terminated glycans, and, like neuraminidase-treated pdAGP, was more rapidly removed from the rabbit circulation than rAGP-N(5)Q. Systemic hyaluronidase treatment of mice transiently decreased pdAGP clearance. AGP administration to mice reduced vascular binding of hyaluronic acid binding protein in the liver microcirculation and increased its plasma levels. Our results support a critical role of N-linked glycosylation of AGP in regulating its in vivo clearance and an influence of a hyaluronidase-sensitive component of the vessel wall on its transendothelial passage.
Collapse
|
22
|
Mariño K, Saldova R, Adamczyk B, Rudd PM. Changes in Serum N-Glycosylation Profiles: Functional Significance and Potential for Diagnostics. CARBOHYDRATE CHEMISTRY 2011:57-93. [DOI: 10.1039/9781849732765-00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Saroha A, Biswas S, Chatterjee BP, Das HR. Altered glycosylation and expression of plasma alpha-1-acid glycoprotein and haptoglobin in rheumatoid arthritis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1839-43. [DOI: 10.1016/j.jchromb.2011.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/30/2022]
|
24
|
Olausson J, Åström E, Jonsson BH, Tibell LAE, Påhlsson P. Production and characterization of a monomeric form and a single-site form of Aleuria aurantia lectin. Glycobiology 2010; 21:34-44. [DOI: 10.1093/glycob/cwq129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Gunnarsson P, Fornander L, Påhlsson P, Grenegård M. Sialic acid residues play a pivotal role in α1-acid glycoprotein (AGP)-induced generation of reactive oxygen species in chemotactic peptide pre-activated neutrophil granulocytes. Inflamm Res 2009; 59:89-95. [DOI: 10.1007/s00011-009-0071-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/23/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022] Open
|
26
|
Levander L, Gunnarsson P, Grenegård M, Rydén I, Påhlsson P. Effects of α1-acid Glycoprotein Fucosylation on its Ca2+Mobilizing Capacity in Neutrophils. Scand J Immunol 2009; 69:412-20. [DOI: 10.1111/j.1365-3083.2009.02240.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Detection of a high affinity binding site in recombinant Aleuria aurantia lectin. Glycoconj J 2008; 25:753-62. [PMID: 18493851 DOI: 10.1007/s10719-008-9135-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Lectins are carbohydrate binding proteins that are involved in many recognition events at molecular and cellular levels. Lectin-oligosaccharide interactions are generally considered to be of weak affinity, however some mushroom lectins have unusually high binding affinity towards oligosaccharides with K (d) values in the micromolar range. This would make mushroom lectins ideal candidates to study protein-carbohydrate interactions. In the present study we investigated the properties of a recombinant form of the mushroom lectin Aleuria aurantia (AAL). AAL is a fucose-binding lectin composed of two identical 312-amino acid subunits. Each subunit contains five binding sites for fucose. We found that one of the binding sites in rAAL had unusually high affinities towards fucose and fucose-containing oligosaccharides with K (d) values in the nanomolar range. This site could bind to oligosaccharides with fucose linked alpha1-2, alpha1-3 or alpha1-4, but in contrast to the other binding sites in AAL it could not bind oligosaccharides with alpha1-6 linked fucose. This binding site is not detected in native AAL (nAAL) one possible explanation may be that this site is blocked with free fucose in nAAL. Recombinant AAL was produced in E. coli as a His-tagged protein, and purified in a one-step procedure. The resulting protein was analyzed by electrophoresis, enzyme-linked lectin assay and circular dichroism spectroscopy, and compared to nAAL. Binding properties were measured using tryptophan fluorescence and surface plasmon resonance. Removal of the His-tag did not alter the binding properties of recombinant AAL in the enzyme-linked lectin assay. Our study forms a basis for understanding the AAL-oligosaccharide interaction and for using molecular techniques to design lectins with novel specificities and high binding affinities towards oligosaccharides.
Collapse
|
28
|
Imre T, Kremmer T, Héberger K, Molnár-Szöllosi E, Ludányi K, Pócsfalvi G, Malorni A, Drahos L, Vékey K. Mass spectrometric and linear discriminant analysis of N-glycans of human serum alpha-1-acid glycoprotein in cancer patients and healthy individuals. J Proteomics 2008; 71:186-97. [PMID: 18617146 DOI: 10.1016/j.jprot.2008.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
N-glycan oligosaccharides of human serum alpha(1)-acid glycoprotein (AGP) samples isolated from 43 individuals (healthy individuals and patients with lymphoma and with ovarian tumor) were analyzed by MALDI-TOF mass spectrometry and a multivariate statistical method (linear discriminant analysis, LDA). 34 different glycan structures have been identified. From the glycosylation pattern determined by mass spectrometry fucosylation and branching indices have been calculated. These parameters show only small differences between the patient groups studied, but these differences are not sufficiently large to use as a potential biomarker. LDA analysis, on the other hand shows a very good separation between the three groups (with a classification of 88%). Cross-validation indicates that the method has predictive power: Identifying cancerous vs. healthy individuals shows 96% selectivity and 93% specificity; identification of lymphoma vs. the mixed group of healthy and ovarian tumor cases is also promising (72% selectivity and 84% specificity). The pilot study presented here demonstrates that mass spectrometry combined with linear discriminant analysis (LDA) may provide valuable data for identifying and studying the pathophysiology of malignant diseases.
Collapse
Affiliation(s)
- Tímea Imre
- Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Pusztaszeri u.59-67, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Przybysz M, Maszczak D, Borysewicz K, Szechiński J, Katnik-Prastowska I. Relative sialylation and fucosylation of synovial and plasma fibronectins in relation to the progression and activity of rheumatoid arthritis. Glycoconj J 2007; 24:543-50. [PMID: 17610063 DOI: 10.1007/s10719-007-9049-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/11/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
The expressions of terminal sugars in synovial and plasma fibronectins were studied in relation to rheumatoid arthritis (RA) progression defined according to the early, established and late radiological changes in the patients' hands. The relative amounts of sialic acid and fucose were analyzed by lectin-ELISA using appropriate sialic acid-linked alpha2-3 (Maackia amurensis) and alpha2-6 (Sambucus nigra) lectins as well as fucose-linked alpha1-6 (Aleuria aurantia), alpha1-2 (Ulex europaeus), and alpha1-3 (Tetragonolobus purpureus). In the early RA group, the synovial fibronectin reactivities were the lowest with the all lectins used. In the established and late groups, relative sialylation and fucosylation significantly increased. However, sialylation negligibly decreased, whereas fucosylation remained at nearly the same level in the late group. Moreover, the expression of alpha1-6-linked fucose was found to be related to disease activity. In contrast, plasma fibronectin reactivity with lectins showed different dynamic alterations. In the early RA group, the reactivity of fibronectin with the lectins used was similar to that of healthy individuals, whereas it increased significantly in the established RA group compared with the early and normal plasma groups. In the late RA group it decreased to a level similar to that of the normal group. The lower expressions of terminal sugars in synovial fibronectin were mainly associated with the early degenerative processes of RA. In conclusion, such alterations may be applicable as a stage-specific marker for diagnosis and therapy of RA patients. The higher expression of terminal sugars in fibronectin could be associated with repair and adaptation processes in longstanding disease.
Collapse
Affiliation(s)
- Magdalena Przybysz
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44a, 50-345, Wrocław, Poland
| | | | | | | | | |
Collapse
|
30
|
Olewicz-Gawlik A, Korczowska-Łacka I, Łacki JK, Klama K, Hrycaj P. Fucosylation of serum α1-acid glycoprotein in rheumatoid arthritis patients treated with infliximab. Clin Rheumatol 2007; 26:1679-84. [PMID: 17310270 DOI: 10.1007/s10067-007-0572-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 01/01/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
To analyze fucosylation of alpha(1)-acid glycoprotein (AGP) and to identify relations between AGP fucosylation and clinical and biochemical indices of disease activity in patients with rheumatoid arthritis (RA) treated with monoclonal antitumor necrosis factor (TNF) antibody infliximab, we examined 22 patients with RA who underwent a 54-week treatment with infliximab according to ATTRACT protocol. Blood samples were collected at baseline and before every infusion of infliximab. AGP fucosylation was measured using lectin-binding enzyme-linked immunosorbent assay utilizing fucose-specific lectin Aleuria aurantia (AAL). Moreover, the clinical status/activity, erythrocyte sedimentation rate, serum C-reactive protein (CRP), antitrypsin, alpha(1)-antichymotrypsin, AGP reactivity with concanavalin A, serum C3 and C4 complement components, and serum concentrations of TNF and soluble TNF type 1 and type 2 receptors were determined. In most patients, the fucosylation of AGP decreased rapidly after first infusion of infliximab and remained low during the 54-week therapy (p < 0.001). The decrease in AGP affinity to AAL closely followed changes in clinical and laboratory activity of RA and correlated with pretreatment concentrations of CRP (r = 0.4986, p < 0.05) and TNF (r = 0.5181, p < 0.05). The fucosylation of AGP can be a part of a negative feedback loop regulating migration of inflammatory cells and collagenase-3 activity in RA. The decrease in AGP fucosylation accompanied by improvement in clinical and biochemical parameters of RA could possibly reflect reduced migration of inflammatory cells to inflamed joints and AGP-mediated inhibition of collagenase-3 as a response to infliximab treatment.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Rheumatology and Clinical Immunology, Poznan University of Medical Sciences, Przybyszewskiego 39, 60-356, Poznan, Poland.
| | | | | | | | | |
Collapse
|
31
|
Higai K, Miyazaki N, Azuma Y, Matsumoto K. Interleukin-1β induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression of ST3Gal IV and FUT VI gene. FEBS Lett 2006; 580:6069-75. [PMID: 17054948 DOI: 10.1016/j.febslet.2006.09.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 09/15/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
We previously demonstrated that human hepatocellular carcinoma-derived HuH-7 cells stimulated with interleukin-1beta (IL-1beta) produce alpha(1)-acid glycoprotein (AGP) with increased amounts of sialyl Lewis X (sLeX) antigen, although the mechanism remained obscure. Here, we report our investigation of the mechanism. sLeX expression on HuH-7 cells was induced 2.5 times more after 48 h stimulation with 100 U/mL IL-1 beta compared with control, as indicated by anti-sLeX antibody binding. Furthermore, expression of 2,3-sialylated N-acetyllactosamine increased gradually up to 48 h after IL-1 beta stimulation; this preceded the increase in sLeX expression. Increases in alpha 2,3-sialyltransferase activity also preceded increases in alpha1,3-fucosyltransferase activity. Furthermore, mRNA levels of ST3Gal IV, FUT IV and VI in HuH-7 cells stimulated with IL- 1beta were increased at 2-4 h, while increases in FUT VI mRNA level occurred gradually after 24 h. IL-1 beta-induced sLeX expression on HuH-7 cells was suppressed by transfection of gene-specific small interference RNAs against FUT VI and ST3Gal IV but not against FUT IV and ST3Gal III. These data results that IL-1 beta induces expression of sLeX on HuH-7 cells by enhanced expression of FUT VI and ST3Gal IV gene.
Collapse
Affiliation(s)
- Koji Higai
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | | | | | | |
Collapse
|
32
|
Abstract
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
33
|
Nagy K, Vékey K, Imre T, Ludányi K, Barrow MP, Derrick PJ. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Human α-1-Acid Glycoprotein. Anal Chem 2004; 76:4998-5005. [PMID: 15373434 DOI: 10.1021/ac040019a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ultrahigh resolution and sensitivity of electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry have for the first time been exploited for the characterization of highly sialylated glycoproteins, using human alpha-1-acid glycoprotein as the model compound. An alternative approach to the widely used high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization (MALDI) assays is described. This new method does not require any enzymatic or chemical digestion (removal of sialyl groups or deglycosylation), chemical derivatization (introduction of chromophore groups), or preliminary chromatographic separation (HPLC or electrophoresis). Following ESI and accumulation of ions in a hexapole ion guide, ions are injected into the ICR cell. A selected mass window from the overall ion population is isolated and axialized prior to detection. After acquisition and Fourier transform of the transient signal the resulted spectrum is evaluated in order to determine the charge state of the detected ions and the isotope pattern of the measured protein glycoform. The presence of ions from the same glycoform with different charge states was confirmed. The advantages and limitations of the technique are discussed. Future prospects and possible applications are indicated.
Collapse
Affiliation(s)
- Kornél Nagy
- Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1025 Pusztaszeri út 59-67, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
34
|
Hashimoto S, Asao T, Takahashi J, Yagihashi Y, Nishimura T, Saniabadi AR, Poland DCW, van Dijk W, Kuwano H, Kochibe N, Yazawa S. ?1-Acid glycoprotein fucosylation as a marker of carcinoma progression and prognosis. Cancer 2004; 101:2825-36. [PMID: 15536618 DOI: 10.1002/cncr.20713] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Serum alpha1-acid glycoprotein (AGP), an acute-phase protein secreted by the liver, carries alpha(1,3)-fucosylated structures on its 5 highly branched, N-linked sugar chains. METHODS Serum AGP levels in patients with various types of malignancies (n=214 patients) were measured using an enzyme-linked immunosorbent assay with anti-AGP antibody. To investigate glycoforms that differed in their degree of branching and extent of fucosylation, serum AGP samples were analyzed by crossed affinoimmunoelectrophoresis (CAIE) with concanavalin A, and Aleuria aurantia lectin (AAL), and anti-AGP antibody. RESULTS A significant difference (P <0.001) in serum AGP levels was observed in preoperative patients compared with levels in the healthy control group, but the levels in individual patients did not reflect their clinical status. Conversely, it was found not only that the patterns of AGP glycoforms differed widely in the patient group compared with the healthy control group, but they also changed depending on each patient's clinical status. Furthermore, AGP glycoforms seemed to be appropriate markers of disease progression and prognosis according to follow-up studies of 45 patients during prolonged preoperative and postoperative periods. CONCLUSIONS Patients with advanced malignancies who had AGP glycoforms that contained highly fucosylated triantennary and tetraantennary sugar chains for long periods after surgery were likely to have a poor prognosis. However, patients who had AGP glycoforms without such changes were expected to have a good prognosis.
Collapse
Affiliation(s)
- Shinji Hashimoto
- Department of General Surgical Science (Surgery 1), Gunma University, Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rydén I, Påhlsson P, Lindgren S. Diagnostic accuracy of alpha(1)-acid glycoprotein fucosylation for liver cirrhosis in patients undergoing hepatic biopsy. Clin Chem 2002; 48:2195-2201. [PMID: 12446476 DOI: 10.1093/clinchem/48.12.2195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Increased fucosylation of serum glycoproteins has previously been reported in patients with liver disease. We analyzed alpha(1)-acid glycoprotein (AGP) fucosylation in serum samples from patients investigated for suspected liver disease to evaluate its value as a biochemical marker for liver cirrhosis. METHODS We used a novel lectin immunoassay adapted to the AutoDELFIA system to analyze AGP fucosylation in 261 consecutive patients admitted for liver biopsy at Malmö University Hospital in Southern Sweden. The results were compared with histopathologic findings. In addition, AGP fucosylation was compared with other biochemical markers described as useful in the diagnosis of liver cirrhosis. The biochemical markers were compared by ROC curve analysis. RESULTS AGP fucosylation was significantly (P <0.05) higher in patients with liver cirrhosis (n = 65) than in healthy controls (n = 72), patients with normal histology (n = 29), patients with steatosis only (n = 38), patients with viral or chronic hepatitis without cirrhosis (n = 71), and patients with other liver diseases without histologic signs of cirrhosis (n = 58). By calculating the AGP fucosylation index (AGP-FI = AGP fucosylation/AGP serum concentration), we obtained a high diagnostic accuracy. The areas under the ROC curves for AGP-FI were 0.83 and 0.74 for men and women, respectively, compared with 0.82 for hyaluronic acid and 0.77 for the aspartate aminotransferase/alanine aminotransferase ratio in both men and women. CONCLUSIONS AGP fucosylation appears to be useful in identifying patients with liver cirrhosis among patients investigated for liver disease. The lectin immunoassay showed satisfactory reproducibility and is suitable for routine use in a clinical laboratory.
Collapse
Affiliation(s)
- Ingvar Rydén
- Department of Clinical Chemistry, Kalmar County Hospital, SE 39185 Kalmar, Sweden.
| | | | | |
Collapse
|