1
|
Huang J, Feng L, Huang J, Zhang G, Liao S. Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology. Front Immunol 2024; 15:1479181. [PMID: 39759524 PMCID: PMC11695303 DOI: 10.3389/fimmu.2024.1479181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research. It is noteworthy that the exploration of sialoglycans in tumor and pregnancy contexts was both initiated in the 1960s. Mechanisms in these two conditions exhibit similarities. Trophoblast infiltration during pregnancy gets controlled, while tumor invasion is uncontrolled. The maternal-fetal immunotolerance balances acceptance of the semiallogeneic fetus and resistance against "non-self" antigen attack simultaneously. Tumors mask themselves with sialoglycans as "don't eat me" signals to escape immune surveillance. The trophoblastic epithelium is covered with sialoglycans, which have been demonstrated to play an immune regulatory role throughout the entire pregnancy. Immune abnormalities are commonly recognized as an important reason for miscarriages. Therapeutic strategies that desialylation and targeting receptors of sialoglycans have been studied in tumors, while agents that target glyco-immune checkpoints have not been studied in pregnancy. Thus, investigating the roles of sialoglycans in pregnancy and their intersection with tumors may facilitate the development of novel therapies targeting glyco-immune checkpoints for the treatment of pregnancy-related diseases, such as miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jianmei Huang
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters. Int J Mol Sci 2022; 23:ijms231810598. [PMID: 36142505 PMCID: PMC9501354 DOI: 10.3390/ijms231810598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nearly 30% of infertility cases are caused by male factor. This study aimed at checking the associations between the sialylation degree of glycoprotein clusterin (CLU) and levels of oxidative–antioxidant balance markers in infertile men. Using lectin-ELISA with biotinylated lectins specific to α2,6-linked (Sambucus nigra agglutinin, SNA) and α2,3-linked (Maackia amurensis agglutinin, MAA) sialic acid (SA), the CLU sialylation in 132 seminal plasmas (SP) and 91 blood sera (BS) were analyzed. Oxidative–antioxidant status was measured by determining Sirtuin-3 (SIRT3), Sirtuin-5 (SIRT5), total antioxidant status (TAS), and ferric reducing antioxidant power (FRAP) levels. We indicate that multiple sperm disorders are associated with decreased expression of MAA-reactive SA in SP. Decreased SP SIRT3 concentrations may be associated with teratozoospermia and oligoasthenoteratozoospermia. ROC curve and cluster analysis revealed that SP relative reactivity of CLU glycans with MAA, the value of MAA/SNA ratio, and SIRT3 and SIRT5 concentrations may constitute an additional set of markers differentiating infertile oligoasthenoteratozoospermic patients (OAT) from normozoospermic (N), asthenoteratozoospermic (AT) and teratozoospermic (T). The multinomial logistic regression analysis confirmed the potential utility of SIRT3 determinations for differentiation between N and OAT groups as well as between N and T groups for SIRT3 and SIRT5. For BS, based on ROC curve and cluster analysis, relative reactivities of CLU glycans with SNA, MAA, SIRT3 and FRAP concentrations may be useful in the differentiation of normozoospermic patients from those with sperm disorders. The multinomial logistic regression analysis showed that the SNA relative reactivity with CLU glycans significantly differentiated the N group from AT, OAT and T groups, and FRAP concentrations significantly differed between N and AT groups, which additionally confirms the potential utility of these biomarkers in the differentiation of infertile patients with abnormal sperm parameters. The knowledge about associations between examined parameters may also influence future research aimed at seeking new male infertility therapies.
Collapse
|
3
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
4
|
Zhang C, Schumacher KN, Dodds ED, Hage DS. Glycoprotein analysis using lectin microcolumns and capillary electrophoresis: Characterization of alpha 1-acid glycoprotein by combined separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122855. [PMID: 34274643 DOI: 10.1016/j.jchromb.2021.122855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Separations based on combinations of 2.1 mm I.D. high-performance affinity microcolumns and capillary electrophoresis were developed and used to characterize the glycoforms of an intact glycoprotein. Human alpha1-acid glycoprotein (AGP) was used as a model analyte due to its heterogeneous glycosylation resulting from variations in its degree of branching, fucosylation, and number of sialic acids. Three separation formats were examined based on microcolumns that contained the lectins concanavalin A (Con A) or Aleuria aurantia lectin (AAL). These microcolumns were used with one another or in combination with capillary electrophoresis. N-Glycan analysis of the non-retained and retained AGP fractions was carried out by using PNGase F digestion and nanoflow electrospray ionization mass spectrometry. Con A microcolumns were found to selectively enrich AGP that contained bi-antennary N-glycans, while AAL microcolumns retained AGP with fucose-containing N-glycans. Results from these separation methods indicated that fucosylation of the N-linked glycans was more abundant when a high degree of branching was present in AGP. Sialic acid residues were more abundant when higher degrees of branching and more fucose residues were present in AGP. The separation and analysis methods that were developed could be used with relatively small amounts of AGP and can be adapted for use with other intact glycoproteins.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | - Eric D Dodds
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
5
|
Muñoz-Prieto A, Escribano D, Horvatić A, Contreras-Aguilar MD, Bernal L, Rubić I, Cerón JJ, Dąbrowski R, Mrljak V. Changes in salivary proteins can reflect beneficial physiological effects of ejaculation in the dog. Theriogenology 2021; 164:51-57. [PMID: 33550091 DOI: 10.1016/j.theriogenology.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The objective of this study was to study the changes in salivary proteins that occur in the dog after the ejaculation process. Saliva samples from eight dogs before and after induced ejaculation were analyzed by proteomic using Tandem Mass Tag (TMT) labeling and LC-MS/MS analysis. A total of 33 salivary proteins showed significant changes after the ejaculation process. The up-regulated proteins that showed changes of higher magnitude were mucin-7 (MUC-7), peroxiredoxin-4 (PRDX4) and galectin-3 (LEGALS3) whereas proteins such as alpha-1-acid glycoprotein (A1G1) and alpha-1B-glycoprotein (A1BG) were the most down-regulated. MUC-7 and PRDX4 expression in saliva after ejaculation could be associated with the protective "environment" created by the organism to exert pr 3o-fertility activities and antioxidants benefits in spermatozoa. Also LEGALS3 increment could be associated with an improvement of wellbeing and could contribute to a positive global effect in the body. Down-regulations of A1G1 and A1GB proteins found in saliva after ejaculation could be associated with a reduction in systemic inflammation. Overall it can be concluded that, changes in proteins in saliva that are produced after ejaculation can reflect a state of increase immune defenses, improvement of antioxidant status and low inflammation.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Anita Horvatić
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Bernal
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Ivana Rubić
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Gleboka St., 20-612, Lublin, Poland.
| | - Vladimir Mrljak
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| |
Collapse
|
6
|
Janiszewska E, Kratz EM. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Mol Reprod Dev 2020; 87:515-524. [PMID: 32222009 DOI: 10.1002/mrd.23340] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 11/06/2022]
Abstract
Male infertility is becoming a rapidly growing problem around the world, mainly in the highly developed countries. Seminal proteome composition seems to be one of the crucial factors of the proper course of fertilization - clusterin (CLU) is among the most important ones. CLU, as one of the crucial seminal plasma glycoproteins, plays a very important role in sperm capacitation and immune tolerance in the female reproductive tract. CLU is also known as a sensitive marker of oxidative stress. It has six n-glycosylation sites and also exhibits chaperone activity. An analysis of changes in the profile and degree of CLU glycosylation may shed some new light on the molecular mechanisms of the fertilization process and may be used as an additional diagnostic marker of male fertility. This study constitutes a review of the recently available literature concerning human seminal CLU, including changes in its glycosylation, analyzed in the context of human reproduction.
Collapse
Affiliation(s)
- Ewa Janiszewska
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw, Poland
| |
Collapse
|
7
|
Ka U A A, Ferens-Sieczkowska MA, Olejnik B, Ko Odziejczyk J, Zimmer M, Kratz EM. The content of immunomodulatory glycoepitopes in seminal plasma glycoproteins of fertile and infertile men. Reprod Fertil Dev 2019; 31:579-589. [PMID: 30380399 DOI: 10.1071/rd18124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
According to a concept of fetoembryonic defence, protein-carbohydrate interaction may be involved in the regulation of maternal immunity that prevents rejection of allograft spermatozoa, embryo and fetus. In the present study we focussed on the evaluation of the expression of glycoepitopes that may be of crucial importance in this process: LewisY (LeY) and LewisX (LeX) as well as terminal sialylation. Polyacrylamide gel electrophoresis with sodium dodecyl sulphate was used to separate seminal plasma samples of fertile (n=10) and infertile (n=103) men; these were then probed with lectins specific to fucose (Lotus tetragonolobus agglutinin and Ulex europaeus agglutinin) and sialic acid (Sambucus nigra agglutinin and Maackia amurensis agglutinin). Differential expression of α2,3-bound sialic acid was found in six out of seven analysed bands, whereas differences in the other analysed glycoepitopes were found in fewer numbers of bands. Mass spectrometry analysis focussed on the identification of proteins carrying glycans with immunomodulatory epitopes, including fibronectin, lactoferrin, clusterin, zinc-α2-glycoprotein, prostate acid phosphatase and prostate-specific antigen; these should be submitted to further detailed analysis.
Collapse
Affiliation(s)
- Anna Ka U A
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Miros Awa Ferens-Sieczkowska
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Beata Olejnik
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Justyna Ko Odziejczyk
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| | - Mariusz Zimmer
- 2nd Department and Clinic of Gynaecology and Obstetrics, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida Street 44A, 50-345 Wroclaw, Poland
| |
Collapse
|
8
|
Zhang C, Hage DS. Development and evaluation of silica-based lectin microcolumns for glycoform analysis of alpha 1-acid glycoprotein. Anal Chim Acta 2019; 1078:189-199. [PMID: 31358219 PMCID: PMC6668930 DOI: 10.1016/j.aca.2019.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/26/2019] [Indexed: 02/09/2023]
Abstract
Silica-based lectin microcolumns were developed and optimized for the separation and analysis of glycoform fractions in alpha1-acid glycoprotein (AGP) based on both the degree of branching and level of fucosylation. Concanavalin A (Con A) and Aleuria Aurantia lectin (AAL) were immobilized onto HPLC-grade silica by reductive amination and packed into 2.1 mm i.d. × 5.0 cm microcolumns. Factors examined for these microcolumns include their protein content, binding capacity, binding strength and band-broadening under isocratic conditions (Con A) or step elution conditions (AAL) and in the presence of various flow rates or temperatures. These factors were examined by using experiments based on frontal analysis, zonal elution, peak profiling and peak decay analysis. Up to 200 μg AGP could be loaded onto a Con A microcolumn and provide linear elution conditions, and 100 μg AGP could be applied to an AAL microcolumn. The final conditions for separating retained and non-retained AGP glycoform fractions on a Con A microcolumn used a flow rate of 50 μL min-1 and a temperature of 50 °C, which gave a separation of these fractions within 20 min or less. The final conditions for an AAL microcolumn included a flow rate of 0.75 mL min-1, a temperature of 50 °C, and the use of 2.0 mM l-fucose as a competing agent for elution, giving a separation of non-retained and retained AGP glycoforms in 6 min or less. The inter-day precisions were ±0.7-4.0% or less for the retention times of the AGP glycoforms and ±2.2-3.0% or less for their peak areas.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
9
|
Plant Lectins as Medical Tools against Digestive System Cancers. Int J Mol Sci 2017; 18:ijms18071403. [PMID: 28671623 PMCID: PMC5535896 DOI: 10.3390/ijms18071403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
Digestive system cancers-those of the esophagus, stomach, small intestine, colon-rectum, liver, and pancreas-are highly related to genetics and lifestyle. Most are considered highly mortal due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms or masked by other pathologies. Different tools are being investigated in the search of a more precise diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer activities. The present report integrates existing information on the activity of plant lectins on various types of digestive system cancers, and surveys the current state of research into their properties for diagnosis and selective treatment.
Collapse
|
10
|
Yazawa S, Takahashi R, Yokobori T, Sano R, Mogi A, Saniabadi AR, Kuwano H, Asao T. Fucosylated Glycans in α1-Acid Glycoprotein for Monitoring Treatment Outcomes and Prognosis of Cancer Patients. PLoS One 2016; 11:e0156277. [PMID: 27295180 PMCID: PMC4905682 DOI: 10.1371/journal.pone.0156277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
One standard treatment option for advanced-stage cancer is surgical resection of malignant tumors following by adjuvant chemotherapy and chemoradiotherapy. Additionally, neoadjuvant chemotherapy may be applied if required. During the time course of treatments, patients are generally followed by computed tomography (CT) surveillance, and by tumor marker diagnosis. However, currently, early evidence of recurrence and/or metastasis of tumors with a clinically relevant biomarker remains a major therapeutic challenge. In particular, there has been no validated biomarker for predicting treatment outcomes in therapeutic settings. Recently, we have looked at glycoforms of serum α1-acid glycoprotein (AGP) by using a crossed affinoimmunoelectrophoresis with two lectins and an anti-AGP antibody. The primary glycan structures of AGP were also analyzed by a mass spectrometer and a novel software in a large number of patients with various cancers. Accordingly, the relative abundance of α1,3fucosylated glycans in AGP (FUCAGP) was found to be significantly high in cancer patients as compared with the healthy controls. Further, strikingly elevated levels of FUCAGP were found in patients with poor prognosis but not in patients with good prognosis. In the current study, levels of FUCAGP in serum samples from various cancer patients were analyzed and 17 patients including 13 who had undergone chemotherapy were followed for several years post operation. FUCAGP level determined diligently by using a mass spectrometer was found to change along with disease prognosis as well as with responses to treatments, in particular, to various chemotherapies. Therefore, FUCAGP levels measured during following-up of the patients after operation appeared to be clinically relevant biomarker of treatment intervention.
Collapse
Affiliation(s)
- Shin Yazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
- * E-mail:
| | - Ryo Takahashi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Abby R. Saniabadi
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Japan
- Big Data Center for Integrative Analysis, Gunma University Initiative for Advance Research, Maebashi, Japan
| |
Collapse
|
11
|
Żurawska-Płaksej E, Kratz EM, Ferens-Sieczkowska M, Knapik-Kordecka M, Piwowar A. Changes in glycosylation of human blood plasma chitotriosidase in patients with type 2 diabetes. Glycoconj J 2015; 33:29-39. [DOI: 10.1007/s10719-015-9629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/03/2023]
|
12
|
Rego J, Moura A, Nouwens A, McGowan M, Boe-Hansen G. Seminal plasma protein profiles of ejaculates obtained by internal artificial vagina and electroejaculation in Brahman bulls. Anim Reprod Sci 2015; 160:126-37. [DOI: 10.1016/j.anireprosci.2015.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
|
13
|
Tecle E, Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 2015; 82:635-50. [PMID: 26061344 PMCID: PMC4744710 DOI: 10.1002/mrd.22500] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/30/2015] [Indexed: 01/05/2023]
Abstract
Mammalian spermatozoa are coated with a thick glycocalyx that is assembled during sperm development, maturation, and upon contact with seminal fluid. The sperm glycocalyx is critical for sperm survival in the female reproductive tract and is modified during capacitation. The complex interplay among the various glycoconjugates generates numerous signaling motifs that may regulate sperm function and, as a result, fertility. Nascent spermatozoa assemble their own glycans while the cells still possess a functional endoplasmic reticulum and Golgi in the seminiferous tubule, but once spermatogenesis is complete, they lose the capacity to produce glycoconjugates de novo. Sperm glycans continue to be modified, during epididymal transit by extracellular glycosidases and glycosyltransferases. Furthermore, epididymal cells secrete glycoconjugates (glycophosphatidylinositol-anchored glycoproteins and glycolipids) and glycan-rich microvesicles that can fuse with the maturing sperm membrane. The sperm glycocalyx mediates numerous functions in the female reproductive tract, including the following: inhibition of premature capacitation; passage through the cervical mucus; protection from innate and adaptive female immunity; formation of the sperm reservoir; and masking sperm proteins involved in fertilization. The immense diversity in sperm-associated glycans within and between species forms a remarkable challenge to our understanding of essential sperm glycan functions.
Collapse
Affiliation(s)
- Eillen Tecle
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| | - Pascal Gagneux
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| |
Collapse
|
14
|
The analysis of sialylation, N-glycan branching, and expression of O-glycans in seminal plasma of infertile men. DISEASE MARKERS 2015; 2015:941871. [PMID: 25892842 PMCID: PMC4393897 DOI: 10.1155/2015/941871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/17/2015] [Indexed: 01/31/2023]
Abstract
Carbohydrates are known to mediate some events involved in successful fertilization. Although some studies on the glycosylation of seminal plasma proteins are available, the total glycan profile was rarely analyzed as a feature influencing fertilization potential. In this work we aimed to compare some glycosylation traits in seminal plasma glycoproteins of fertile and infertile men. The following findings emerge from our studies: (1) in human seminal plasma the presence and alterations of O-linked glycans were observed; (2) the expression of SNA-reactive sialic acid significantly differs between asthenozoospermia and both normozoospermic (fertile and infertile) groups; (3) the expression of PHA-L-reactive highly branched N-glycans was significantly lower in oligozoospermic patients than in both normozoospermic groups. Indication of the appropriate lectins that would enable the possibly precise determination of the glycan profile seems to be a good supplement to mass spectrum analysis. Extension of the lectin panel is useful for the further research.
Collapse
|
15
|
Kovak MR, Saraswati S, Goddard SD, Diekman AB. Proteomic identification of galectin-3 binding ligands and characterization of galectin-3 proteolytic cleavage in human prostasomes. Andrology 2013; 1:682-91. [PMID: 23836758 DOI: 10.1111/j.2047-2927.2013.00099.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/28/2022]
Abstract
Galectin-3 is a multifunctional carbohydrate-binding protein that was previously characterized as a proteolytic substrate for prostate-specific antigen (PSA) and was shown to be associated with prostasomes in human semen. Prostasomes are exosome-like vesicles that are secreted by the prostatic epithelium and have multiple proposed functions in normal reproduction and prostate cancer. In the current study, galectin-3 binding ligands in human prostasomes were identified and characterized with the goal to investigate galectin-3 function in prostasomes. Galectin-3 binding proteins were isolated by affinity column chromatography. Candidate ligands identified by MS/MS were PSA, prostatic acid phosphatase (PAP), zinc alpha-2-glycoprotein (ZAG), dipeptidyl peptidase-4 (CD26), aminopeptidase N (CD13), neprilysin, clusterin, antibacterial protein (FALL-39) and alpha-1-acid glycoprotein (ORM1). Biochemical methods were used to characterize the ability of galectin-3 to bind to selected ligands, and galectin-3 cleavage assays were utilized to investigate the protease(s) in prostasomes that cleaves galectin-3. CD26, CD13, PSA, PAP and ZAG immunoreactivity were detected in extracts of purified prostasomes. One-dimensional electroblot analysis of prostasomes demonstrated that CD26, PAP and CD13 immunoreactivity co-migrated with galectin-3-reactive protein bands. PSA and ZAG were found to be associated with the surface of prostasomes. Both intact and cleaved galectin-3 were detected in prostate and prostasome extracts. Cleavage and inhibition assays indicated that PSA in prostasomes proteolytically cleaves galectin-3. The identification of these glycoproteins as galectin-3 ligands lays the groundwork for future studies of galectin-3 and prostasome function in reproduction and prostate cancer.
Collapse
Affiliation(s)
- M R Kovak
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
16
|
Ferens-Sieczkowska M, Kowalska B, Kratz EM. Seminal plasma glycoproteins in male infertility and prostate diseases: is there a chance for glyco-biomarkers? Biomarkers 2012; 18:10-22. [DOI: 10.3109/1354750x.2012.719035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Enhanced expression of alpha1-acid glycoprotein and fucosylation in hepatitis B patients provides an insight into pathogenesis. Glycoconj J 2010; 26:1225-34. [PMID: 19459043 DOI: 10.1007/s10719-009-9241-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/06/2009] [Accepted: 04/20/2009] [Indexed: 12/12/2022]
Abstract
Altered glycosylation and concentration of alpha1-acid glycoprotein has been known to be related to the pathogenesis of the hepatic diseases. The present study investigated enhanced fucosylation of AGP in the sera of chronic hepatitis B (HBV-CH) and hepatitis B cirrhosis (HBV-LC) patients by high performance anion exchange chromatography and by ELISA using fucose binding Aleuria aurantia lectin. The concentration of AGP determined by ELISA using monoclonal anti-human AGP (mAb-AGP) showed high level of AGP in HBV-CH and HBV-LC patients. This was further judged by association constant (K (A)) measured by surface plasmon resonance analysis. There was no apparent linkage variation of sialic acid among different patient groups when tested with two sialic acid binding lectins viz., Maackia amurensis agglutinin (MAA, NeuAc alpha2-3-) and Sambucus nigra agglutinin (SNA, NeuAc alpha2-6-) respectively. There was no change of oligosaccharide branching in HBV-CH in comparison to controls whereas a slight change was observed in HBV-LC using ConA. The above results suggest that the changes in concentration of AGP and fucosylation have a prognostic value of hepatitis diseases and it could be possible to use AGP as diagnostic marker besides clinical examination and routine laboratory investigation.
Collapse
|
18
|
Abstract
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct-based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg-based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed "pre-fertilisation zona pellucida hardening". This mechanism is mediated by the oviductal-specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin-like glycosaminoglycans (S-GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm-egg interaction and could help to increase the success of IVF systems in domestic animals and humans.
Collapse
Affiliation(s)
- Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Spain.
| | | |
Collapse
|
19
|
|
20
|
Georgiou AS, Snijders APL, Sostaric E, Aflatoonian R, Vazquez JL, Vazquez JM, Roca J, Martinez EA, Wright PC, Fazeli A. Modulation of The Oviductal Environment by Gametes. J Proteome Res 2007; 6:4656-66. [DOI: 10.1021/pr070349m] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Stephen Georgiou
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Ambrosius P. L. Snijders
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Edita Sostaric
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Reza Aflatoonian
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Jose L. Vazquez
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Juan M. Vazquez
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Jordi Roca
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Emilio A. Martinez
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Phillip C. Wright
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom, and Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, 30.071 Murcia, Spain
| |
Collapse
|
21
|
Orczyk-Pawiłowicz M, Hirnle L, Katnik-Prastowska I. Alterations of N-glycan branching and expression of sialic acid on amniotic fluid alpha-1-acid glycoprotein derived from second and third trimesters of normal and prolonged pregnancies. Clin Chim Acta 2006; 367:86-92. [PMID: 16405881 DOI: 10.1016/j.cca.2005.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 11/25/2005] [Accepted: 11/25/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alterations in the AGP glycoform pattern are not only disease related, but also can occur during physiological processes such as pregnancy. In this paper, possible changes in human amniotic fluid AGP glycan branching and in the type of sialic acid glycosidic attachment to glycans were analyzed with regard to different stages of human pregnancy. METHODS Crossed-affinity immunoelectrophoresis with concanavalin A was used to study AGP branching and lectin-ELISA with two agglutinins from Maackia amurensis and Sambucus nigra was applied to differentiate alpha2,3 and alpha2,6 type sialic acid attachments. RESULTS Despite almost unchanged levels of total amniotic fluid AGP during pregnancy, alterations in N-glycan branching and in the expression of sialic acid linkage on AGP were found to be associated with different stages of normal pregnancy. Amniotic fluid AGP glycans derived from third trimester compared with those from the second trimester had a higher percentage of tri- and tetra-antennary sialylated N-glycans. In the second trimester, sialic acid alpha2,6 linkage occurred twice as frequently as alpha2,3 linkage, while during the third trimester alpha2,3 linkage increased and both types of linkage appeared in equal proportion. CONCLUSIONS Branched and alpha2,3-sialylated AGP glycoforms in amniotic fluid could contribute to natural innate fetomaternal defense.
Collapse
Affiliation(s)
- Magdalena Orczyk-Pawiłowicz
- Department of Chemistry and Immunochemistry, Wrocław Medical University, and Department of Obstetrics and Gynaecology, Clinic of Reproduction and Obstetrics, Wrocław, Poland
| | | | | |
Collapse
|