1
|
Feick D, Rüdesheim S, Marok FZ, Selzer D, Loer HLH, Teutonico D, Frechen S, van der Lee M, Moes DJAR, Swen JJ, Schwab M, Lehr T. Physiologically-based pharmacokinetic modeling of quinidine to establish a CYP3A4, P-gp, and CYP2D6 drug-drug-gene interaction network. CPT Pharmacometrics Syst Pharmacol 2023; 12:1143-1156. [PMID: 37165978 PMCID: PMC10431052 DOI: 10.1002/psp4.12981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
The antiarrhythmic agent quinidine is a potent inhibitor of cytochrome P450 (CYP) 2D6 and P-glycoprotein (P-gp) and is therefore recommended for use in clinical drug-drug interaction (DDI) studies. However, as quinidine is also a substrate of CYP3A4 and P-gp, it is susceptible to DDIs involving these proteins. Physiologically-based pharmacokinetic (PBPK) modeling can help to mechanistically assess the absorption, distribution, metabolism, and excretion processes of a drug and has proven its usefulness in predicting even complex interaction scenarios. The objectives of the presented work were to develop a PBPK model of quinidine and to integrate the model into a comprehensive drug-drug(-gene) interaction (DD(G)I) network with a diverse set of CYP3A4 and P-gp perpetrators as well as CYP2D6 and P-gp victims. The quinidine parent-metabolite model including 3-hydroxyquinidine was developed using pharmacokinetic profiles from clinical studies after intravenous and oral administration covering a broad dosing range (0.1-600 mg). The model covers efflux transport via P-gp and metabolic transformation to either 3-hydroxyquinidine or unspecified metabolites via CYP3A4. The 3-hydroxyquinidine model includes further metabolism by CYP3A4 as well as an unspecific hepatic clearance. Model performance was assessed graphically and quantitatively with greater than 90% of predicted pharmacokinetic parameters within two-fold of corresponding observed values. The model was successfully used to simulate various DD(G)I scenarios with greater than 90% of predicted DD(G)I pharmacokinetic parameter ratios within two-fold prediction success limits. The presented network will be provided to the research community and can be extended to include further perpetrators, victims, and targets, to support investigations of DD(G)Is.
Collapse
Affiliation(s)
- Denise Feick
- Clinical PharmacySaarland UniversitySaarbrückenGermany
| | - Simeon Rüdesheim
- Clinical PharmacySaarland UniversitySaarbrückenGermany
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgartGermany
| | | | | | | | - Donato Teutonico
- Translational Medicine & Early DevelopmentSanofi‐Aventis R&DChilly‐MazarinFrance
| | - Sebastian Frechen
- Bayer AG, Pharmaceuticals, Research & DevelopmentSystems Pharmacology & MedicineLeverkusenGermany
| | - Maaike van der Lee
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, Pharmacy and BiochemistryUniversity of TübingenTübingenGermany
- Cluster of Excellence iFIT (EXC2180) “Image‐guided and Functionally Instructed Tumor Therapies”University of TübingenTübingenGermany
| | - Thorsten Lehr
- Clinical PharmacySaarland UniversitySaarbrückenGermany
| |
Collapse
|
2
|
Gupta AK, Haas-Neill S, Talukder M. The safety of oral antifungals for the treatment of onychomycosis. Expert Opin Drug Saf 2023; 22:1169-1178. [PMID: 37925672 DOI: 10.1080/14740338.2023.2280137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Oral antifungals are used for the treatment of moderate-severe onychomycosis. Terbinafine and itraconazole are approved for onychomycosis treatment in North America; additionally, fluconazole is indicated for onychomycosis in Europe. Other oral antifungals such as ketoconazole and griseofulvin are no longer used for the treatment of onychomycosis due to safety concerns and relatively lower efficacy. SEARCH STRATEGY On 7 March 2023, we conducted a comprehensive search in PubMed and Google Scholar, while also manually examining selected article bibliographies and package inserts. AREAS COVERED Terbinafine, itraconazole, and fluconazole have several interactions with cytochrome-p450, and either alone, or when co-administered with other drugs these interactions can facilitate a multitude of adverse events. This article identifies possible hepatic, renal, cutaneous, cardiovascular, neurological, hemopoietic, and obstetric adverse events. We have also compared the rates of hepatotoxicity, clinically apparent liver injury, and alanine transaminase elevations between oral antifungals, and recommendations for hepatic monitoring. EXPERT OPINION We recommend laboratory testing of liver function tests prior to the administration of any oral antifungals, especially when clinically indicated. In the event of a first treatment failure, the diagnosis of onychomycosis must be confirmed, and consideration given to antifungal susceptibility testing. Antifungal stewardship will help reduce the incidence of antifungal resistance.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc, London, ON, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Mesbah Talukder
- Mediprobe Research Inc, London, ON, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Mar PL, Horbal P, Chung MK, Dukes JW, Ezekowitz M, Lakkireddy D, Lip GYH, Miletello M, Noseworthy PA, Reiffel JA, Tisdale JE, Olshansky B, Gopinathannair R. Drug Interactions Affecting Antiarrhythmic Drug Use. Circ Arrhythm Electrophysiol 2022; 15:e007955. [PMID: 35491871 DOI: 10.1161/circep.121.007955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiarrhythmic drugs (AAD) play an important role in the management of arrhythmias. Drug interactions involving AAD are common in clinical practice. As AADs have a narrow therapeutic window, both pharmacokinetic as well as pharmacodynamic interactions involving AAD can result in serious adverse drug reactions ranging from arrhythmia recurrence, failure of device-based therapy, and heart failure, to death. Pharmacokinetic drug interactions frequently involve the inhibition of key metabolic pathways, resulting in accumulation of a substrate drug. Additionally, over the past 2 decades, the P-gp (permeability glycoprotein) has been increasingly cited as a significant source of drug interactions. Pharmacodynamic drug interactions involving AADs commonly involve additive QT prolongation. Amiodarone, quinidine, and dofetilide are AADs with numerous and clinically significant drug interactions. Recent studies have also demonstrated increased morbidity and mortality with the use of digoxin and other AAD which interact with P-gp. QT prolongation is an important pharmacodynamic interaction involving mainly Vaughan-Williams class III AAD as many commonly used drug classes, such as macrolide antibiotics, fluoroquinolone antibiotics, antipsychotics, and antiemetics prolong the QT interval. Whenever possible, serious drug-drug interactions involving AAD should be avoided. If unavoidable, patients will require closer monitoring and the concomitant use of interacting agents should be minimized. Increasing awareness of drug interactions among clinicians will significantly improve patient safety for patients with arrhythmias.
Collapse
Affiliation(s)
- Philip L Mar
- Department of Medicine, Division of Cardiology, St. Louis University, St. Louis, MO (P.L.M., P.H.)
| | - Piotr Horbal
- Department of Medicine, Division of Cardiology, St. Louis University, St. Louis, MO (P.L.M., P.H.)
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute (M.K.C.), Cleveland Clinic, OH
| | | | - Michael Ezekowitz
- Lankenau Heart Institute, Bryn Mawr Hospital & Sidney Kimmel Medical College (M.E.)
| | | | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, United Kingdom (G.Y.H.L.).,Department of Clinical Medicine, Aalborg, Denmark (G.Y.H.L.)
| | | | - Peter A Noseworthy
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.A.N.)
| | - James A Reiffel
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY (J.A.R.)
| | - James E Tisdale
- College of Pharmacy, Purdue University (J.E.T.).,School of Medicine, Indiana University, Indianapolis (J.E.T.)
| | - Brian Olshansky
- Division of Cardiology, Department of Medicine, University of Iowa, Iowa City (B.O.)
| | | | | |
Collapse
|
4
|
Dantonio AL, Doran AC, Obach RS. Intersystem Extrapolation Factors Are Substrate-Dependent for CYP3A4: Impact on Cytochrome P450 Reaction Phenotyping. Drug Metab Dispos 2022; 50:249-257. [PMID: 34903590 DOI: 10.1124/dmd.121.000758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
The use of intersystem extrapolation factors (ISEF) is required for the quantitative scaling of drug metabolism data generated in individually expressed cytochrome P450 (CYP) enzymes when estimating fractional contribution (fm) to metabolism by P450 enzymes in vivo. For successful prediction of fm, ISEF values must be universal across all substrates for any individual enzyme. In this study, ISEF values were generated for ten CYP3A4 selective substrates using a common source of recombinant heterologously expressed CYP3A4 (rCYP) and a pool of human liver microsomes. The resulting ISEF values for CYP3A4 were substrate-dependent and ranged 8-fold, with the highest value generated from intrinsic clearance of midazolam depletion (0.36) and the lowest from quinidine depletion (0.044). Application of these ISEF values for estimation of the fractional contribution of CYP3A4 and CYP2C19 to omeprazole clearance yielded values that ranged from 0.21-0.63 and 0.37-0.79, respectively, as compared with back-extrapolated in vivo fm values of 0.27 (CYP3A4) and 0.85 (CYP2C19) from clinical pharmacokinetic data. For risperidone, estimated fm values for CYP3A4 and CYP2D6 ranged from 0.87-0.98 and 0.02-0.13, respectively, as compared with in vivo values of 0.36 (CYP3A4) and 0.63-0.88 (CYP2D6), showing that the importance of CYP3A4 was overestimated, and the importance of CYP2D6 underestimated. Overall, these findings suggest that ISEF values for CYP3A4 can vary with the marker substrate used to derive them, thereby reducing the effectiveness of the approach of using metabolism data from rCYP3A4 with ISEF values for the prediction of fraction metabolized values in vivo. SIGNIFICANCE STATEMENT: Intersystem extrapolation factors are utilized for assigning fractional contributions of individual enzymes to drug clearance (fm) from drug metabolism data generated in recombinant P450s. The present data shows that intersystem extrapolation factors values for cytochrome P4503A4 vary with the substrate. This can lead to variable and erroneous prediction of fm.
Collapse
|
5
|
Yamazaki S, Evers R, De Zwart L. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 11:55-67. [PMID: 34668334 PMCID: PMC8752109 DOI: 10.1002/psp4.12733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
As one of the key components in model‐informed drug discovery and development, physiologically‐based pharmacokinetic (PBPK) modeling linked with in vitro‐to‐in vivo extrapolation (IVIVE) is widely applied to quantitatively predict drug–drug interactions (DDIs) on drug‐metabolizing enzymes and transporters. This study aimed to investigate an IVIVE for intestinal P‐glycoprotein (Pgp, ABCB1)‐mediated DDIs among three Pgp substrates, digoxin, dabigatran etexilate, and quinidine, and two Pgp inhibitors, itraconazole and verapamil, via PBPK modeling. For Pgp substrates, assuming unbound Michaelis‐Menten constant (Km) to be intrinsic, in vitro‐to‐in vivo scaling factors for maximal Pgp‐mediated efflux rate (Jmax) were optimized based on the clinically observed results without co‐administration of Pgp inhibitors. For Pgp inhibitors, PBPK models utilized the reported in vitro values of Pgp inhibition constants (Ki), 1.0 μM for itraconazole and 2.0 μM for verapamil. Overall, the PBPK modeling sufficiently described Pgp‐mediated DDIs between these substrates and inhibitors with the prediction errors of less than or equal to ±25% in most cases, suggesting a reasonable IVIVE for Pgp kinetics in the clinical DDI results. The modeling results also suggest that Pgp kinetic parameters of both the substrates (Km and Jmax) and the inhibitors (Ki) are sensitive to Pgp‐mediated DDIs, thus being key for successful DDI prediction. It would also be critical to incorporate appropriate unbound inhibitor concentrations at the site of action into PBPK models. The present results support a quantitative prediction of Pgp‐mediated DDIs using in vitro parameters, which will significantly increase the value of in vitro studies to design and run clinical DDI studies safely and effectively.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, LLC, San Diego, California, USA
| | - Raymond Evers
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Loeckie De Zwart
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
6
|
Wang Y, Sparidans RW, Potters S, Lebre MC, Beijnen JH, Schinkel AH. ABCB1 and ABCG2, but not CYP3A4 limit oral availability and brain accumulation of the RET inhibitor pralsetinib. Pharmacol Res 2021; 172:105850. [PMID: 34450308 DOI: 10.1016/j.phrs.2021.105850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Pralsetinib is an FDA-approved oral small-molecule inhibitor for treatment of rearranged during transfection (RET) proto-oncogene fusion-positive non-small cell lung cancer. We investigated how the efflux transporters ABCB1 and ABCG2, the SLCO1A/1B uptake transporters and the drug-metabolizing enzyme CYP3A influence pralsetinib pharmacokinetics. EXPERIMENTAL APPROACH In vitro, transepithelial pralsetinib transport was assessed. In vivo, pralsetinib (10 mg/kg) was administered orally to relevant genetically modified mouse models. Pralsetinib concentrations in cell medium, plasma samples and organ homogenates were measured using liquid chromatography-tandem mass spectrometry. KEY RESULTS Pralsetinib was efficiently transported by human (h)ABCB1 and mouse (m)Abcg2, but not hACBG2. In vivo, mAbcb1a/1b markedly and mAbcg2 slightly limited pralsetinib brain penetration (6.3-and 1.8-fold, respectively). Testis distribution showed similar results. Abcb1a/1b;Abcg2-/- mice showed 1.5-fold higher plasma exposure, 23-fold increased brain penetration, and 4-fold reduced recovery of pralsetinib in the small intestinal content. mSlco1a/1b deficiency did not affect pralsetinib oral availability or tissue exposure. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted pralsetinib plasma exposure (1.3-fold) and brain penetration (19.6-fold) in wild-type mice. Additionally, pralsetinib was a modest substrate of mCYP3A, but not of hCYP3A4, which did not noticeably restrict the oral availability or tissue distribution of pralsetinib. CONCLUSIONS AND IMPLICATIONS SLCO1A/1B and CYP3A4 are unlikely to affect the pharmacokinetics of pralsetinib, but ABCG2 and especially ABCB1 markedly limit its brain and testis penetration, as well as oral availability. These effects are mostly reversed by oral coadministration of the ABCB1/ABCG2 inhibitor elacridar. These insights may be useful in the further clinical development of pralsetinib.
Collapse
Affiliation(s)
- Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sander Potters
- Leiden university, Faculty of Science, Leiden Academic Centre for Drug Research (LACDR), Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
7
|
An Assessment of Occasional Bio-Inequivalence for BCS1 and BCS3 Drugs: What are the Underlying Reasons? J Pharm Sci 2021; 111:124-134. [PMID: 34363838 DOI: 10.1016/j.xphs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Despite having adequate solubility properties, bioequivalence (BE) studies performed on immediate release formulations containing BCS1/3 drugs occasionally fail. By systematically evaluating a set of 17 soluble drugs where unexpected BE failures have been reported and comparing to a set of 29 drugs where no such reports have been documented, a broad assessment of the risk factors leading to BE failure was performed. BE failures for BCS1/3 drugs were predominantly related to changes in Cmax rather than AUC. Cmax changes were typically modest, with minimal clinical significance for most drugs. Overall, drugs with a sharp plasma peak were identified as a key factor in BE failure risk. A new pharmacokinetic term (t½Cmax) is proposed to identify drugs at higher risk due to their peak plasma profile shape. In addition, the analysis revealed that weak acids, and drugs with particularly high gastric solubility are potentially more vulnerable to BE failure, particularly when these features are combined with a sharp Cmax peak. BCS3 drugs, which are often characterised as being more vulnerable to BE failure due to their potential for permeation and transit to be altered, particularly by excipient change, were not in general at greater risk of BE failures. These findings will help to inform how biowaivers may be optimally applied in the future.
Collapse
|
8
|
Kobayashi K, Abe Y, Kawai A, Furihata T, Endo T, Takeda H. Pharmacokinetic Drug Interactions of an Orally Available TRH Analog (Rovatirelin) With a CYP3A4/5 and P-Glycoprotein Inhibitor (Itraconazole). J Clin Pharmacol 2020; 60:1314-1323. [PMID: 32459872 DOI: 10.1002/jcph.1628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
The effects of itraconazole on the pharmacokinetics of rovatirelin were investigated in an open-label, single-sequence drug-drug interaction study in 16 healthy subjects. Subjects were administered a single oral dose of rovatirelin (1.6 mg) on day 1 and day 15. From day 8 through 16, subjects received daily oral doses of itraconazole (200 mg/day). Concentrations of rovatirelin and (thiazolylalanyl)methylpyrrolidine (TAMP), the major metabolite of rovatirelin formed by cytochrome P450 (CYP) 3A4/5, were determined in plasma and urine. Pharmacokinetic parameters were used to evaluate the drug-drug interaction potential of rovatirelin as a victim. With coadministration, maximum concentration (Cmax ) and area under the concentration-time curve extrapolated to infinity (AUCinf ) of rovatirelin increased 3.05-fold and 2.82-fold, respectively, and the 90% confidence intervals of the ratios for Cmax (2.64-3.52) and AUCinf (2.47-3.23) did not fall within the 0.8-1.25 boundaries. Urinary excretion of rovatirelin increased at almost the same ratio as the AUCinf ratio with coadministration; however, renal clearance did not change. Cmax , AUCinf , and urinary excretion of TAMP were decreased by coadministration. Itraconazole has the potential to inhibit drug transport via intestinal P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP); therefore, substrate assessments of rovatirelin for the 2 transporters were evaluated using Caco-2 cell monolayers. In vitro studies showed that rovatirelin is a substrate for P-gp but not for BCRP. The current study shows that itraconazole's effect on rovatirelin pharmacokinetics is mediated through inhibition of CYP3A4/5 and intestinal P-gp.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| | - Asuka Kawai
- Clinical Development Division, Kissei Pharmaceutical Co, Ltd., Bunkyo, Tokyo, Japan
| | - Takao Furihata
- Clinical Development Division, Kissei Pharmaceutical Co, Ltd., Bunkyo, Tokyo, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| | - Hiroo Takeda
- Central Research Laboratories, Kissei Pharmaceutical Co, Ltd., Azumino, Nagano, Japan
| |
Collapse
|
9
|
Chen Y, Cabalu TD, Callegari E, Einolf H, Liu L, Parrott N, Peters SA, Schuck E, Sharma P, Tracey H, Upreti VV, Zheng M, Zhu AZX, Hall SD. Recommendations for the Design of Clinical Drug-Drug Interaction Studies With Itraconazole Using a Mechanistic Physiologically-Based Pharmacokinetic Model. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:685-695. [PMID: 31215774 PMCID: PMC6765698 DOI: 10.1002/psp4.12449] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 01/14/2023]
Abstract
Regulatory agencies currently recommend itraconazole (ITZ) as a strong cytochrome P450 3A (CYP3A) inhibitor for clinical drug–drug interaction (DDI) studies. This work by an International Consortium for Innovation and Quality in Pharmaceutical Development working group (WG) is to develop and verify a mechanistic ITZ physiologically‐based pharmacokinetic model and provide recommendations for optimal DDI study design based on model simulations. To support model development and verification, in vitro and clinical PK data for ITZ and its metabolites were collected from WG member companies. The model predictions of ITZ DDIs with seven different CYP3A substrates were within the guest criteria for 92% of area under the concentration‐time curve ratios and 95% of maximum plasma concentration ratios, thus verifying the model for DDI predictions. The verified model was used to simulate various clinical DDI study scenarios considering formulation, duration of dosing, dose regimen, and food status to recommend the optimal design for maximal inhibitory effect by ITZ.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., a member of the Roche Group, South San Francisco, California, USA
| | - Tamara D Cabalu
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ernesto Callegari
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut, USA
| | - Heidi Einolf
- Modeling & Simulation, PK Sciences, Novartis Institutes for Biomedical Research, East Hanover, New Jersey, USA
| | - Lichuan Liu
- Genentech Inc., a member of the Roche Group, South San Francisco, California, USA
| | - Neil Parrott
- Pharmaceutical Sciences, Pharmaceutical Research and Early Development, Roche Innovation Centre, Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Edgar Schuck
- Modeling & Simulation, Clinical Pharmacology Science/Medicine Development Center (MDC), Eisai Inc., Woodcliff Lake, New Jersey, USA
| | - Pradeep Sharma
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, Innovative Medicines (IMED) Biotech Unit , AstraZeneca R&D, Cambridge, UK
| | - Helen Tracey
- Department of Mechanistic Safety and Disposition, GlaxoSmithKline, Hertfordshire, UK
| | - Vijay V Upreti
- Clinical Pharmacology Modeling and Simulation, Amgen Inc., South San Francisco, California, USA
| | - Ming Zheng
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
| | - Andy Z X Zhu
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Stephen D Hall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Naidoo P, Chetty M. Progress in the Consideration of Possible Sex Differences in Drug Interaction Studies. Curr Drug Metab 2019; 20:114-123. [PMID: 30488793 DOI: 10.2174/1389200220666181128160813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
Abstract
Background:
Anecdotal evidence suggests that there may be sex differences in Drug-drug Interactions
(DDI) involving specific drugs. Regulators have provided general guidance for the inclusion of females in clinical
studies. Some clinical studies have reported sex differences in the Pharmacokinetics (PK) of CYP3A4 substrates,
suggesting that DDI involving CYP3A4 substrates could potentially show sex differences.
Objective:
The aim of this review was to investigate whether recent prospective DDI studies have included both
sexes and whether there was evidence for the presence or absence of sex differences with the DDIs.
Methods:
The relevant details from 156 drug interaction studies within 124 papers were extracted and evaluated.
Results:
Only eight studies (five papers) compared the outcome of the DDI between males and females. The majority
of the studies had only male volunteers. Five studies had females only while 60 had males only, with 7.7% of the
studies having an equal proportion of both sexes. Surprisingly, four studies did not specify the sex of the subjects.
:
Based on the limited number of studies comparing males and females, no specific trends or conclusions were evident.
Sex differences in the interaction were reported between ketoconazole and midazolam as well as clarithromycin and
midazolam. However, no sex difference was observed with the interaction between clarithromycin and triazolam or
erythromycin and triazolam. No sex-related PK differences were observed with the interaction between ketoconazole
and domperidone, although sex-related differences in QT prolongation were observed.
Conclusion:
This review has shown that only limited progress had been made with the inclusion of both sexes in
DDI studies.
Collapse
Affiliation(s)
- Panjasaram Naidoo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Manoranjenni Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, KwaZulu Natal, South Africa
| |
Collapse
|
11
|
Prieto Garcia L, Janzén D, Kanebratt KP, Ericsson H, Lennernäs H, Lundahl A. Physiologically Based Pharmacokinetic Model of Itraconazole and Two of Its Metabolites to Improve the Predictions and the Mechanistic Understanding of CYP3A4 Drug-Drug Interactions. Drug Metab Dispos 2018; 46:1420-1433. [PMID: 30068519 DOI: 10.1124/dmd.118.081364] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/27/2018] [Indexed: 02/13/2025] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling for itraconazole using a bottom-up approach is challenging, not only due to complex saturable pharmacokinetics (PK) and the presence of three metabolites exhibiting CYP3A4 inhibition, but also because of discrepancies in reported in vitro data. The overall objective of this study is to provide a comprehensive mechanistic PBPK model for itraconazole in order to increase the confidence in its drug-drug interaction (DDI) predictions. To achieve this, key in vitro and in vivo data for itraconazole and its major metabolites were generated. These data were crucial to developing a novel bottom-up PBPK model in Simcyp (Simcyp Ltd., Certara, Sheffield, United Kingdom) for itraconazole and two of its major metabolites: hydroxy-itraconazole (OH-ITZ) and keto-itraconazole (keto-ITZ). Performance of the model was validated using prespecified acceptance criteria against different dosing regimens, formulations for 29 PK, and DDI studies with midazolam and other CYP3A4 substrates. The main outcome is an accurate PBPK model that simultaneously predicts the PK profiles of itraconazole, OH-ITZ, and keto-ITZ. In addition, itraconazole DDIs with midazolam and other CYP3A4 substrates were successfully predicted within a 2-fold error. Prediction precision and bias of DDI expressed as geometric mean fold error were for the area under the concentration-time curve and peak concentration, 1.06 and 0.96, respectively. To conclude, in this paper a comprehensive data set for itraconazole and its metabolites is provided that enables bottom-up mechanism-based PBPK modeling. The presented model is applicable for studying the contribution from the metabolites and allows improved assessments of itraconazole DDI.
Collapse
Affiliation(s)
- Luna Prieto Garcia
- Drug Metabolism and Pharmacokinetics; Cardiovascular, Renal and Metabolism (L.P.G., D.J., K.P.K., A.L.) and Quantitative Clinical Pharmacology; Early Clinical Development (H.E.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; and Department of Pharmacy, Uppsala University, Uppsala, Sweden (H.L.)
| | - David Janzén
- Drug Metabolism and Pharmacokinetics; Cardiovascular, Renal and Metabolism (L.P.G., D.J., K.P.K., A.L.) and Quantitative Clinical Pharmacology; Early Clinical Development (H.E.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; and Department of Pharmacy, Uppsala University, Uppsala, Sweden (H.L.)
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics; Cardiovascular, Renal and Metabolism (L.P.G., D.J., K.P.K., A.L.) and Quantitative Clinical Pharmacology; Early Clinical Development (H.E.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; and Department of Pharmacy, Uppsala University, Uppsala, Sweden (H.L.)
| | - Hans Ericsson
- Drug Metabolism and Pharmacokinetics; Cardiovascular, Renal and Metabolism (L.P.G., D.J., K.P.K., A.L.) and Quantitative Clinical Pharmacology; Early Clinical Development (H.E.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; and Department of Pharmacy, Uppsala University, Uppsala, Sweden (H.L.)
| | - Hans Lennernäs
- Drug Metabolism and Pharmacokinetics; Cardiovascular, Renal and Metabolism (L.P.G., D.J., K.P.K., A.L.) and Quantitative Clinical Pharmacology; Early Clinical Development (H.E.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; and Department of Pharmacy, Uppsala University, Uppsala, Sweden (H.L.)
| | - Anna Lundahl
- Drug Metabolism and Pharmacokinetics; Cardiovascular, Renal and Metabolism (L.P.G., D.J., K.P.K., A.L.) and Quantitative Clinical Pharmacology; Early Clinical Development (H.E.), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; and Department of Pharmacy, Uppsala University, Uppsala, Sweden (H.L.)
| |
Collapse
|
12
|
Tod M, Goutelle S, Bleyzac N, Bourguignon L. A Generic Model for Quantitative Prediction of Interactions Mediated by Efflux Transporters and Cytochromes: Application to P-Glycoprotein and Cytochrome 3A4. Clin Pharmacokinet 2018; 58:503-523. [DOI: 10.1007/s40262-018-0711-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Fihlman M, Hemmilä T, Hagelberg NM, Backman JT, Laitila J, Laine K, Neuvonen PJ, Olkkola KT, Saari TI. Voriconazole greatly increases the exposure to oral buprenorphine. Eur J Clin Pharmacol 2018; 74:1615-1622. [PMID: 30167757 DOI: 10.1007/s00228-018-2548-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/22/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Buprenorphine has low oral bioavailability. Regardless of sublingual administration, a notable part of buprenorphine is exposed to extensive first-pass metabolism by the cytochrome P450 (CYP) 3A4. As drug interaction studies with buprenorphine are limited, we wanted to investigate the effect of voriconazole, a strong CYP3A4 inhibitor, on the pharmacokinetics and pharmacodynamics of oral buprenorphine. METHODS Twelve healthy volunteers were given either placebo or voriconazole (orally, 400 mg twice on day 1 and 200 mg twice on days 2-5) for 5 days in a randomized, cross-over study. On day 5, they ingested 0.2 mg (3.6 mg during placebo phase) oral buprenorphine. We measured plasma and urine concentrations of buprenorphine and norbuprenorphine and monitored their pharmacological effects. Pharmacokinetic parameters were normalized for a buprenorphine dose of 1.0 mg. RESULTS Voriconazole greatly increased the mean area under the plasma concentration-time curve (AUC0-18) of buprenorphine (4.3-fold, P < 0.001), its peak concentration (Cmax) (3.9-fold), half-life (P < 0.05), and excretion into urine (Ae; P < 0.001). Voriconazole also markedly enhanced the Cmax (P < 0.001), AUC0-18 (P < 0.001), and Ae (P < 0.05) of unconjugated norbuprenorphine but decreased its renal clearance (P < 0.001). Mild dizziness and nausea occurred during both study phases. CONCLUSIONS Voriconazole greatly increases exposure to oral buprenorphine, mainly by inhibiting intestinal and liver CYP3A4. Effect on some transporters may explain elevated norbuprenorphine concentrations. Although oral buprenorphine is not commonly used, this interaction may become relevant in patients receiving sublingual buprenorphine together with voriconazole or other CYP3A4 or transporter inhibitors.
Collapse
Affiliation(s)
- Mari Fihlman
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Tuija Hemmilä
- Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Nora M Hagelberg
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Laitila
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Laine
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.,Medbase Ltd., Turku, Finland
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Klaus T Olkkola
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teijo I Saari
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland. .,Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland.
| |
Collapse
|
14
|
Marsousi N, Desmeules JA, Rudaz S, Daali Y. Prediction of drug-drug interactions using physiologically-based pharmacokinetic models of CYP450 modulators included in Simcyp software. Biopharm Drug Dispos 2017; 39:3-17. [PMID: 28960401 DOI: 10.1002/bdd.2107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 01/16/2023]
Abstract
In recent years, physiologically based PharmacoKinetic (PBPK) modeling has received growing interest as a useful tool for the assessment of drug pharmacokinetics. It has been demonstrated to be informative and helpful to quantify the modification in drug exposure due to specific physio-pathological conditions, age, genetic polymorphisms, ethnicity and particularly drug-drug interactions (DDIs). In this paper, the prediction success of DDIs involving various cytochrome P450 isoenzyme (CYP) modulators namely ketoconazole (a competitive inhibitor of CYP3A), itraconazole (a competitive inhibitor of CYP3A), clarithromycin (a mechanism-based inhibitor of CYP3A), quinidine (a competitive inhibitor of CYP2D6), paroxetine (a mechanism-based inhibitor of CYP2D6), ciprofloxacin (a competitive inhibitor of CYP1A2), fluconazole (a competitive inhibitor of CYP2C9/2C19) and rifampicin (an inducer of CYP3A) were assessed using Simcyp® software. The aim of this report was to establish confidence in each CYP-specific modulator file so they can be used in the future for the prediction of DDIs involving new victim compounds. Our evaluation of these PBPK models suggested that they can be successfully used to evaluate DDIs in untested scenarios. The only noticeable exception concerned a quinidine inhibitor model that requires further improvement. Additionally, other important aspects such as model validation criteria were discussed.
Collapse
Affiliation(s)
- Niloufar Marsousi
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Switzerland.,School of Pharmaceutical Sciences, Geneva and Lausanne Universities, Switzerland
| | - Jules A Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Switzerland.,School of Pharmaceutical Sciences, Geneva and Lausanne Universities, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Basel, Switzerland.,Faculty of Medicine, Geneva University, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, Geneva and Lausanne Universities, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Basel, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Switzerland.,School of Pharmaceutical Sciences, Geneva and Lausanne Universities, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Basel, Switzerland.,Faculty of Medicine, Geneva University, Switzerland
| |
Collapse
|
15
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
16
|
Nashimoto S, Sato Y, Takekuma Y, Sugawara M. Inhibitory effect of ezetimibe can be prevented by an administration interval of 4 h between α-tocopherol and ezetimibe. Biopharm Drug Dispos 2017; 38:280-289. [PMID: 28027412 DOI: 10.1002/bdd.2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022]
Abstract
Tocopherol is used not only as an ethical drug but also as a supplement. In 2008, it was reported that α-tocopherol is partly transported via an intestinal cholesterol transporter, Niemann-Pick C1-Like 1 (NPC1L1). Ezetimibe, a selective inhibitor of NPC1L1, is administered for a long time to inhibit cholesterol absorption and there is a possibility that the absorption of α-tocopherol is also inhibited by ezetimibe. This study investigated the influence of ezetimibe on the absorption of α-tocopherol with single administration and long-term administration. An approach to avoid its undesirable consequence was also examined. α-Tocopherol (10 mg/kg) and ezetimibe (0.1 mg/kg) were administered to rats, and the plasma concentration profiles of α-tocopherol and tissue concentrations were investigated. The plasma concentration of α-tocopherol was decreased by the combination use of ezetimibe in the case of concurrent single administration. On the other hand, inhibition of the absorption of α-tocopherol was prevented by an administration interval of 4 h. In a group of rats administered for 2 months with a 4 h interval, not only the plasma concentration but also the liver concentration was increased compared with those in a group with concurrent combination intake of α-tocopherol and ezetimibe. The absorption of α-tocopherol was inhibited by ezetimibe. The inhibitory effect of ezetimibe can be prevented by an administration interval of 4 h, although ezetimibe is a medicine of enterohepatic circulation. Attention should be paid to the use of ezetimibe and components of NPC1L1 substrates such as α-tocopherol. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shunsuke Nashimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoh Takekuma
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Mitsuru Sugawara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
17
|
Iga K, Kiriyama A. Simulations of Cytochrome P450 3A4-Mediated Drug-Drug Interactions by Simple Two-Compartment Model-Assisted Static Method. J Pharm Sci 2017; 106:1426-1438. [PMID: 28089686 DOI: 10.1016/j.xphs.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
In order to predict cytochrome P450 3A4 (CYP3A4)-mediated drug-drug interactions (DDIs), a simple 2-compartment model-assisted, overall inhibition activity (Ai,overall) method was derived based on 2 concepts. One concept was that the increase in blood victim level and fold increase in the area under the blood victim level curve produced by DDI are determined entirely by Ai,overall, the hepatic availability of the victim and fraction of urinary excreted unchanged victim, where Ai,overall is determined by the perpetrator-specific CYP isoform inhibition activities (Ai,CYPs, DDI predictor-1) and victim-specific fractional CYP isoform contributions (fm,CYPs, predictor-2). The other concept was that a DDI can be bridged to other DDIs, so that any possible DDI produced by a given victim or a given perpetrator can be predicted by using these predictors. The Ai,CYP3A4s of 12 common CYP3A4 inhibitors were able to be determined and shown to be useful for the prediction of CYP3A4-mediated DDIs wherein victims were metabolized by multiple CYP isoforms. Additionally, it was demonstrated that fm,CYP values with high confidence can be estimated by bridging DDIs produced by the same victim and different perpetrators. This bridging approach will accelerate prediction of DDIs produced by new chemical entities from the existing DDI database.
Collapse
Affiliation(s)
- Katsumi Iga
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe-shi, Kyoto 610-0395, Japan.
| | - Akiko Kiriyama
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe-shi, Kyoto 610-0395, Japan
| |
Collapse
|
18
|
Aonuma K, Shiga T, Atarashi H, Doki K, Echizen H, Hagiwara N, Hasegawa J, Hayashi H, Hirao K, Ichida F, Ikeda T, Maeda Y, Matsumoto N, Sakaeda T, Shimizu W, Sugawara M, Totsuka K, Tsuchishita Y, Ueno K, Watanabe E, Hashiguchi M, Hirata S, Kasai H, Matsumoto Y, Nogami A, Sekiguchi Y, Shinohara T, Sugiyama A, Sumitomo N, Suzuki A, Takahashi N, Yukawa E, Homma M, Horie M, Inoue H, Ito H, Miura T, Ohe T, Shinozaki K, Tanaka K. Guidelines for Therapeutic Drug Monitoring of Cardiovascular Drugs Clinical Use of Blood Drug Concentration Monitoring (JCS 2015) ― Digest Version ―. Circ J 2017; 81:581-612. [DOI: 10.1253/circj.cj-66-0138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Mao J, Martin I, McLeod J, Nolan G, van Horn R, Vourvahis M, Lin YS. Perspective: 4β-hydroxycholesterol as an emerging endogenous biomarker of hepatic CYP3A. Drug Metab Rev 2016; 49:18-34. [PMID: 27718639 DOI: 10.1080/03602532.2016.1239630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A key goal in the clinical development of a new molecular entity is to quickly identify whether it has the potential for drug-drug interactions. In particular, confirmation of in vitro data in the early stage of clinical development would facilitate the decision making and inform future clinical pharmacology study designs. Plasma 4β-hydroxycholesterol (4β-HC) is considered as an emerging endogenous biomarker for cytochrome P450 3A (CYP3A), one of the major drug metabolizing enzymes. Although there are increasing reports of the use of 4β-HC in academic- and industry-sponsored clinical studies, a thorough review, summary and consideration of the advantages and challenges of using 4β-HC to evaluate changes in CYP3A activity has not been attempted. Herein, we review the biology of 4β-HC, its response to treatment with CYP3A inducers, inhibitors and mixed inducer/inhibitors in healthy volunteers and patients, the association of 4β-HC with other probes of CYP3A activity (e.g. midazolam, urinary cortisol ratios), and present predictive pharmacokinetic models. We provide recommendations for studying hepatic CYP3A activity in clinical pharmacology studies utilizing 4β-HC at different stages of drug development.
Collapse
Affiliation(s)
- Jialin Mao
- a Drug Metabolism and Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Iain Martin
- b Pharmacokinetics, Pharmacodynamics and Drug Metabolism , Merck , Boston , MA , USA
| | - James McLeod
- c Drug Development , Galleon Pharmaceuticals , Horsham , PA , USA
| | - Gail Nolan
- d Drug Metabolism and Pharmacokinetics , GlaxoSmithKline , Hertfordshire , UK
| | - Robert van Horn
- e Translational Medicine and Early Development , Sanofi , Bridgewater , NJ , USA
| | | | - Yvonne S Lin
- g Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| |
Collapse
|
20
|
Fihlman M, Hemmilä T, Hagelberg NM, Kuusniemi K, Backman JT, Laitila J, Laine K, Neuvonen PJ, Olkkola KT, Saari TI. Voriconazole more likely than posaconazole increases plasma exposure to sublingual buprenorphine causing a risk of a clinically important interaction. Eur J Clin Pharmacol 2016; 72:1363-1371. [PMID: 27510521 DOI: 10.1007/s00228-016-2109-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/26/2016] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to determine possible effects of voriconazole and posaconazole on the pharmacokinetics and pharmacological effects of sublingual buprenorphine. METHODS We used a randomized, placebo-controlled crossover study design with 12 healthy male volunteers. Subjects were given a dose of 0.4 mg (0.6 mg during placebo phase) sublingual buprenorphine after a 5-day oral pretreatment with either (i) placebo, (ii) voriconazole 400 mg twice daily on the first day and 200 mg twice daily thereafter or (iii) posaconazole 400 mg twice daily. Plasma and urine concentrations of buprenorphine and its primary active metabolite norbuprenorphine were monitored over 18 h and pharmacological effects were measured. RESULTS Compared to placebo, voriconazole increased the mean area under the plasma concentration-time curve (AUC0-∞) of buprenorphine 1.80-fold (90 % confidence interval 1.45-2.24; P < 0.001), its peak concentration (Cmax) 1.37-fold (P < 0.013) and half-life (t ½ ) 1.37-fold (P < 0.001). Posaconazole increased the AUC00-∞ of buprenorphine 1.25-fold (P < 0.001). Most of the plasma norbuprenorphine concentrations were below the limit of quantification (0.05 ng/ml). Voriconazole, unlike posaconazole, increased the urinary excretion of norbuprenorphine 1.58-fold (90 % confidence interval 1.18-2.12; P < 0.001) but there was no quantifiable parent buprenorphine in urine. Plasma buprenorphine concentrations correlated with the pharmacological effects, but the effects did not differ significantly between the phases. CONCLUSIONS Voriconazole, and to a minor extent posaconazole, increase plasma exposure to sublingual buprenorphine, probably via inhibition of cytochrome P450 3 A and/or P-glycoprotein. Care should be exercised in the combined use of buprenorphine with triazole antimycotics, particularly with voriconazole, because their interaction can be of clinical importance.
Collapse
Affiliation(s)
- Mari Fihlman
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20521, Turku, Finland.,Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, 20521, Turku, Finland
| | - Tuija Hemmilä
- Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, 20521, Turku, Finland
| | - Nora M Hagelberg
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20521, Turku, Finland.,Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, 20521, Turku, Finland
| | - Kristiina Kuusniemi
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20521, Turku, Finland.,Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, 20521, Turku, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital, 00014, Helsinki, Finland
| | - Jouko Laitila
- Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital, 00014, Helsinki, Finland
| | - Kari Laine
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, 20100, Turku, Finland.,Medbase Ltd, FI-20100, Turku, Finland
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital, 00014, Helsinki, Finland
| | - Klaus T Olkkola
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
| | - Teijo I Saari
- Department of Anaesthesiology and Intensive Care, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20521, Turku, Finland. .,Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, 20521, Turku, Finland.
| |
Collapse
|
21
|
|
22
|
Vermeer LMM, Isringhausen CD, Ogilvie BW, Buckley DB. Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters. Drug Metab Dispos 2016; 44:453-9. [PMID: 26668209 DOI: 10.1124/dmd.115.067744] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 01/18/2023] Open
Abstract
Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics.
Collapse
|
23
|
Saarikoski T, Saari TI, Hagelberg NM, Backman JT, Neuvonen PJ, Scheinin M, Olkkola KT, Laine K. Effects of terbinafine and itraconazole on the pharmacokinetics of orally administered tramadol. Eur J Clin Pharmacol 2015; 71:321-7. [PMID: 25560051 DOI: 10.1007/s00228-014-1799-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/18/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tramadol is widely used for acute, chronic, and neuropathic pain. Its primary active metabolite is O-desmethyltramadol (M1), which is mainly accountable for the μ-opioid receptor-related analgesic effect. Tramadol is metabolized to M1 mainly by cytochrome P450 (CYP)2D6 enzyme and to other metabolites by CYP3A4 and CYP2B6. We investigated the possible interaction of tramadol with the antifungal agents terbinafine (CYP2D6 inhibitor) and itraconazole (CYP3A4 inhibitor). METHODS We used a randomized placebo-controlled crossover study design with 12 healthy subjects, of which 8 were extensive and 4 were ultrarapid CYP2D6 metabolizers. On the pretreatment day 4 with terbinafine (250 mg once daily), itraconazole (200 mg once daily) or placebo, subjects were given tramadol 50 mg orally. Plasma concentrations of tramadol and M1 were determined over 48 h and some pharmacodynamic effects over 12 h. Pharmacokinetic variables were calculated using standard non-compartmental methods. RESULTS Terbinafine increased the area under plasma concentration-time curve (AUC0-∞) of tramadol by 115 % and decreased the AUC0-∞ of M1 by 64 % (P < 0.001). Terbinafine increased the peak concentration (C max) of tramadol by 53 % (P < 0.001) and decreased the C max of M1 by 79 % (P < 0.001). After terbinafine pretreatment the elimination half-life of tramadol and M1 were increased by 48 and 50 %, respectively (P < 0.001). Terbinafine reduced subjective drug effect of tramadol (P < 0.001). Itraconazole had minor effects on tramadol pharmacokinetics. CONCLUSIONS Terbinafine may reduce the opioid effect of tramadol and increase the risk of its monoaminergic adverse effects. Itraconazole has no meaningful interaction with tramadol in subjects who have functional CYP2D6 enzyme.
Collapse
Affiliation(s)
- Tuukka Saarikoski
- Department of Anaesthesiology, Intensive Care, Emergency Care, and Pain Medicine, Turku University Hospital, University of Turku, P.O. Box 52, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Umeyama Y, Fujioka Y, Okuda T. Clarification of P-glycoprotein inhibition-related drug–drug interaction risks based on a literature search of the clinical information. Xenobiotica 2014; 44:1135-44. [DOI: 10.3109/00498254.2014.928958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
|
26
|
Ticlopidine inhibits both O-demethylation and renal clearance of tramadol, increasing the exposure to it, but itraconazole has no marked effect on the ticlopidine-tramadol interaction. Eur J Clin Pharmacol 2012; 69:867-75. [PMID: 23099620 DOI: 10.1007/s00228-012-1433-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/07/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE We assessed possible drug interactions of tramadol given concomitantly with the potent CYP2B6 inhibitor ticlopidine, alone or together with the potent CYP3A4 and P-glycoprotein inhibitor itraconazole. METHODS In a randomized, placebo-controlled cross-over study, 12 healthy subjects ingested 50 mg of tramadol after 4 days of pretreatment with either placebo, ticlopidine (250 mg twice daily) or ticlopidine plus itraconazole (200 mg once daily). Plasma and urine concentrations of tramadol and its active metabolite O-desmethyltramadol (M1) were monitored over 48 h and 24 h, respectively. RESULTS Ticlopidine increased the mean area under the plasma concentration-time curve (AUC0-∞) of tramadol by 2.0-fold (90 % confidence interval (CI) 1.6-2.4; p < 0.001) and Cmax by 1.4-fold (p < 0.001), and reduced its oral and renal clearance (p < 0.01). Ticlopidine reduced the AUC0-3 of M1 (p < 0.001) and the ratio of the AUC0-∞ of M1 to that of tramadol, but did not influence the AUC0-∞ of M1. Tramadol or M1 pharmacokinetics did not differ between the ticlopidine alone and ticlopidine plus itraconazole phases. CONCLUSIONS Ticlopidine increased exposure to tramadol, reduced its renal clearance and inhibited the formation of M1, most likely via inhibition of CYP2B6 and/or CYP2D6. The addition of itraconazole to ticlopidine did not modify the outcome of the drug interaction. Concomitant clinical use of ticlopidine and tramadol may enhance the risk of serotonergic effects, especially when higher doses of tramadol are used.
Collapse
|
27
|
Exposure to Oral S-ketamine Is Unaffected by Itraconazole but Greatly Increased by Ticlopidine. Clin Pharmacol Ther 2011; 90:296-302. [DOI: 10.1038/clpt.2011.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Grönlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K. Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol 2011; 70:78-87. [PMID: 20642550 DOI: 10.1111/j.1365-2125.2010.03653.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Oxycodone is an opioid analgesic that is metabolized mainly in the liver by cytochrome P450 (CYP) 2D6 and 3A4 enzymes. So far, the effects of CYP2D6 or CYP3A4 inhibitors on the pharmacokinetics of oxycodone in humans have not been systematically studied. WHAT THIS STUDY ADDS Drug interactions arising from CYP2D6 inhibition most likely have minor clinical importance for oral oxycodone. When both of CYP2D6 and CYP3A4 pathways are inhibited, the exposure to oral oxycodone is increased substantially. AIM The aim of this study was to find out whether the inhibition of cytochrome P450 2D6 (CYP2D6) with paroxetine or concomitant inhibition of CYP2D6 and CYP3A4 with paroxetine and itraconazole, altered the pharmacokinetics and pharmacological response of orally administered oxycodone. METHODS A randomized placebo-controlled cross-over study design with three phases was used. Eleven healthy subjects ingested 10 mg of oral immediate release oxycodone on the fourth day of pre-treatment with either placebo, paroxetine (20 mg once daily) or paroxetine (20 mg once daily) and itraconazole (200 mg once daily) for 5 days. The plasma concentrations of oxycodone and its oxidative metabolites were measured for 48 h, and pharmacological (analgesic and behavioural) effects were evaluated. RESULTS Paroxetine alone reduced the area under concentration-time curve (AUC(0,0-48 h)) of the CYP2D6 dependent metabolite oxymorphone by 44% (P < 0.05), but had no significant effects on the plasma concentrations of oxycodone or its pharmacological effects when compared with the placebo phase. When both oxidative pathways of the metabolism of oxycodone were inhibited with paroxetine and itraconazole, the mean AUC(0,infinity) of oxycodone increased by 2.9-fold (P < 0.001), and its C(max) by 1.8-fold (P < 0.001). Visual analogue scores for subjective drug effects, drowsiness and deterioration of performance were slightly increased (P < 0.05) after paroxetine + itraconazole pre-treatment when compared with placebo. CONCLUSIONS Drug interactions arising from CYP2D6 inhibition most likely have minor clinical importance for oral oxycodone if the function of the CYP3A4 pathway is normal. When both CYP2D6 and CYP3A4 pathways are inhibited, the exposure to oral oxycodone is increased substantially.
Collapse
Affiliation(s)
- Juha Grönlund
- Department of Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku and Turku University Hospital, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
29
|
Fenneteau F, Poulin P, Nekka F. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. J Pharm Sci 2010; 99:486-514. [PMID: 19479982 DOI: 10.1002/jps.21802] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The first objective of the present study was to predict the pharmacokinetics of selected CYP3A substrates administered at a single oral dose to human. The second objective was to predict pharmacokinetics of the selected drugs in presence of inhibitors of the intestinal and/or hepatic CYP3A activity. We developed a whole-body physiologically based pharmacokinetics (WB-PBPK) model accounting for presystemic elimination of midazolam (MDZ), alprazolam (APZ), triazolam (TRZ), and simvastatin (SMV). The model also accounted for concomitant administration of the above-mentioned drugs with CYP3A inhibitors, namely ketoconazole (KTZ), itraconazole (ITZ), diltiazem (DTZ), saquinavir (SQV), and a furanocoumarin contained in grape-fruit juice (GFJ), namely 6',7'-dihydroxybergamottin (DHB). Model predictions were compared to published clinical data. An uncertainty analysis was performed to account for the variability and uncertainty of model parameters when predicting the model outcomes. We also briefly report on the results of our efforts to develop a global sensitivity analysis and its application to the current WB-PBPK model. Considering the current criterion for a successful prediction, judged satisfied once the clinical data are captured within the 5th and 95th percentiles of the predicted concentration-time profiles, a successful prediction has been obtained for a single oral administration of MDZ and SMV. For APZ and TRZ, however, a slight deviation toward the 95th percentile was observed especially for C(max) but, overall, the in vivo profiles were well captured by the PBPK model. Moreover, the impact of DHB-mediated inhibition on the extent of intestinal pre-systemic elimination of MDZ and SMV has been accurately predicted by the proposed PBPK model. For concomitant administrations of MDZ and ITZ, APZ and KTZ, as well as SMV and DTZ, the in vivo concentration-time profiles were accurately captured by the model. A slight deviation was observed for SMV when coadministered with ITZ, whereas more important deviations have been obtained between the model predictions and in vivo concentration-time profiles of MDZ coadministered with SQV. The same observation was made for TRZ when administered with KTZ. Most of the pharmacokinetic parameters predicted by the PBPK model were successfully predicted within a two-fold error range either in the absence or presence of metabolism-based inhibition. Overall, the present study demonstrated the ability of the PBPK model to predict DDI of CYP3A substrates with promising accuracy.
Collapse
Affiliation(s)
- Frederique Fenneteau
- Faculté de Pharmacie, Université de Montréal, CP 6128, Succursale Centre Ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
30
|
Al-Jenoobi FI. Effect of itraconazole on the pharmacokinetics of diclofenac in beagle dogs. Sci Pharm 2010; 78:465-71. [PMID: 21179359 PMCID: PMC3002807 DOI: 10.3797/scipharm.1003-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 05/19/2010] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to investigate the potential effect of itraconazole on the pharmacokinetics of diclofenac potassium in beagle dogs after oral coadministration. Five male beagle dogs received a single oral 50 mg dose of diclofenac potassium alone in phase I, and along with a single oral 100 mg dose of itraconazole in phase II. Blood samples obtained for 8.0 hours post dose were analysed for diclofenac concentration using a validated high performance liquid chromatography (HPLC) assay method. The area under plasma concentration-time curve (AUC(0ââ)), maximum plasma concentration (C(max)), time to reach C(max) (T(max)) and elimination half-life (t(1/2)), were calculated for diclofenac before and after itraconazole administration. The coadministration of itraconazole with diclofenac potassium has resulted in a significant reduction in AUC(0ââ) and C(max) of diclofenac, which was about 31 and 42%; respectively. No statistically significant differences were observed for T(max) and t(1/2) of diclofenac between the two phases. Therefore, it could be concluded that oral coadministration of itraconazole may have the potential to affect the absorption of diclofenac as indicated by the significant reduction in its AUC and C(max) in beagle dogs.
Collapse
Affiliation(s)
- Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
31
|
Bartell A, Phatak A, Horn K, Postelnick M. Drug Interactions Involving Antifungal Drugs: Time Course and Clinical Significance. CURRENT FUNGAL INFECTION REPORTS 2010. [DOI: 10.1007/s12281-010-0014-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Saari TI, Grönlund J, Hagelberg NM, Neuvonen M, Laine K, Neuvonen PJ, Olkkola KT. Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 2010; 66:387-97. [DOI: 10.1007/s00228-009-0775-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/08/2009] [Indexed: 11/24/2022]
|
33
|
|
34
|
Chang TK. Drug-Metabolizing Enzymes. HANDBOOK OF DRUG-NUTRIENT INTERACTIONS 2009:85-117. [DOI: 10.1007/978-1-60327-362-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Abstract
Cytochrome P450 3A4 (CYP3A4) is present not only in the liver but also in the small intestine, where it functions as a barrier against xenobiotics. Some CYP3A4 substrates exhibit low bioavailability due to intestinal first pass metabolism. The AUCs of such CYP3A4 substrates are remarkably changed by the inhibition, induction, and saturation of CYP3A4 and so prediction of intestinal first-pass metabolism is important. In this article, factors affecting intestinal first-pass metabolism of drugs are reviewed, focusing on the intestinal metabolism by CYP3A. The methods to predict intestinal first-pass metabolism are also reviewed.
Collapse
Affiliation(s)
- Motohiro Kato
- Pre-clinical Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan.
| |
Collapse
|
36
|
Gubbins PO, Amsden JR. Drug-drug interactions of antifungal agents and implications for patient care. Expert Opin Pharmacother 2007; 6:2231-43. [PMID: 16218884 DOI: 10.1517/14656566.6.13.2231] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drug interactions in the gastrointestinal tract, liver and kidneys result from alterations in pH, ionic complexation, and interference with membrane transport proteins and enzymatic processes involved in intestinal absorption, enteric and hepatic metabolism, renal filtration and excretion. Azole antifungals can be involved in drug interactions at all the sites, by one or more of the above mechanisms. Consequently, azoles interact with a vast array of compounds. Drug-drug interactions associated with amphotericin B formulations are predictable and result from the renal toxicity and electrolyte disturbances associated with these compounds. The echinocandins are unknown cytochrome P450 substrates and to date are relatively devoid of significant drug-drug interactions. This article reviews drug interactions involving antifungal agents that affect other agents and implications for patient care are highlighted.
Collapse
Affiliation(s)
- Paul O Gubbins
- Department of Pharmacy Practice, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
37
|
Abstract
Itraconazole is widely used to treat onychomycosis because of its significant therapeutic effects. An otherwise healthy 30-year-old man treated with itraconazole developed frequent premature ventricular contractions (PVC). He presented with a dry cough and palpitation. The results of 12-lead electrocardiography (ECG) were essentially normal, but Holter ECG revealed 17,484 (18%) uniform PVC, including 4 short runs among 96,930 beats/day. Another Holter ECG after withdrawing itraconazole revealed 1,032 premature atrial contractions but no PVC. The corrected QT interval was 0.39 s without itraconazole, 0.41 s with itraconazole, and 0.43 s when multiple PVC were documented. Itraconazole inhibits the fungal cytochrome P450 that is involved in fungal cell membrane formation, interrupts human cytochrome P450A4 in the liver and causes adverse interactions with various drugs such as antiarrythmics, but its cardiac side-effects are obscure. Both patients and physicians should be aware that itraconazole can cause PVC as a side-effect.
Collapse
Affiliation(s)
- Junko Okamoto
- Department of Cardiovascular Surgery, Kinki University School of Medicine, Osaka-Sayama, Japan.
| | | | | |
Collapse
|
38
|
Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol 2006; 61:538-44. [PMID: 16669847 PMCID: PMC1885063 DOI: 10.1111/j.1365-2125.2006.02613.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS Fexofenadine is a substrate of several drug transporters including P-glycoprotein. Our objective was to evaluate the possible effects of two P-glycoprotein inhibitors, itraconazole and diltiazem, on the pharmacokinetics of fexofenadine, a putative probe of P-glycoprotein activity in vivo, and compare the inhibitory effect between the two in healthy volunteers. METHODS In a randomized three-phase crossover study, eight healthy volunteers were given oral doses of 100 mg itraconazole twice daily, 100 mg diltiazem twice daily or a placebo capsule twice daily (control) for 5 days. On the morning of day 5 each subject was given 120 mg fexofenadine, and plasma concentrations and urinary excretion of fexofenadine were measured up to 48 h after dosing. RESULTS Itraconazole pretreatment significantly increased mean (+/-SD) peak plasma concentration (Cmax) of fexofenadine from 699 (+/-366) ng ml-1 to 1346 (+/-561) ng ml-1 (95% CI of differences 253, 1040; P<0.005) and the area under the plasma concentration-time curve [AUC0,infinity] from 4133 (+/-1776) ng ml-1 h to 11287 (+/-4552) ng ml-1 h (95% CI 3731, 10575; P<0.0001). Elimination half-life and renal clearance in the itraconazole phase were not altered significantly compared with those in the control phase. In contrast, diltiazem pretreatment did not affect Cmax (704+/-316 ng ml-1, 95% CI -145, 155), AUC0, infinity (4433+/-1565 ng ml-1 h, 95% CI -1353, 754), or other pharmacokinetic parameters of fexofenadine. CONCLUSIONS Although some drug transporters other than P-glycoprotein are thought to play an important role in fexofenadine pharmacokinetics, itraconazole pretreatment increased fexofenadine exposure, probably due to the reduced first-pass effect by inhibiting the P-glycoprotein activity. As diltiazem pretreatment did not alter fexofenadine pharmacokinetics, therapeutic doses of diltiazem are unlikely to affect the P-glycoprotein activity in vivo.
Collapse
Affiliation(s)
- Mikiko Shimizu
- Department of Clinical Pharmacology, Hirosaki University School of MedicineHirosaki, Japan
| | - Tsukasa Uno
- Department of Clinical Pharmacology, Hirosaki University School of MedicineHirosaki, Japan
| | | | - Tomonori Tateishi
- Department of Clinical Pharmacology, Hirosaki University School of MedicineHirosaki, Japan
| |
Collapse
|
39
|
Li M, Anderson GD, Wang J. Drug-drug interactions involving membrane transporters in the human kidney. Expert Opin Drug Metab Toxicol 2006; 2:505-32. [PMID: 16859401 DOI: 10.1517/17425255.2.4.505] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The kidneys play a critical role in the elimination of xenobiotics. Factors affecting the ability of the kidney to eliminate drugs may result in marked changes in the pharmacokinetics of a given compound. Drug-drug interactions due to competitive inhibition of renal organic anion or cation secretion systems have been noticed clinically for a long time. However, our understanding of the physical sites of interactions, that is, the specific transport proteins that the interacting drugs act on, has just begun very recently. This review summarises the latest progress in molecular identification and functional characterisation of major drug transporters in the human kidney. In particular, the review focuses on relating cloned renal drug transporters to clinically observed drug-drug interactions. The authors' opinion on the current status and future directions of research in these areas is also offered.
Collapse
Affiliation(s)
- Meng Li
- University of Washington, Department of Pharmaceutics, School of Pharmacy, Seattle, 98195, USA
| | | | | |
Collapse
|
40
|
Abstract
This article reviews the in vitro metabolic and the in vivo pharmacokinetic drug-drug interactions with antifungal drugs, including fluconazole, itraconazole, micafungin, miconazole, and voriconazole. In the in vitro interaction studies, the effects of antifungal drugs on specific activities of cytochrome P450s (CYPs), including CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4, in human liver microsomes are compared to predict the possibility of drug interactions in vivo. Fluconazole, micafungin, and voriconazole have lower inhibitory effects on CYP3A4 activities than itraconazole and miconazole, and IC(50) and/or K(i) values against CYP2C9 and CYP2C19 activities are the lowest for miconazole, followed by voriconazole and fluconazole. In in vivo pharmacokinetic studies, it is well known that itraconazole is a potent clinically important inhibitor of the clearance of CYP3A4 substrates, and fluconazole and voriconazole are reported to increase the blood or plasma concentrations of not only midazolam and cyclosporine (CYP3A4 substrates) but also of phenytoin (CYP2C9 substrate) and/or omeprazole (CYP2C19/CYP3A4 substrate). On the other hand, no inhibition of CYP activities except for CYP3A4 activity by micafungin is observed in vitro, and the blood concentrations of cyclosporine and tacrolimus are not affected by coadministration of micafungin in vivo, suggesting that micafungin would not cause clinically significant interactions with drugs that are metabolized by CYPs via the inhibition of metabolism. Miconazole is a potent inhibitor of all CYPs investigated in vitro, although there are few detailed studies on the clinical significance of this except for CYP2C9. Therefore the differential effects of these antifungal drugs on CYP activities must be considered in the choice of antifungal drugs in patients receiving other drugs.
Collapse
Affiliation(s)
- Toshiro Niwa
- Post Marketing Product Development, Astellas Pharma Inc., Osaka, Japan.
| | | | | |
Collapse
|
41
|
Fernandez-Obregon AC, Rohrback J, Reichel MA, Willis C. Current use of anti-infectives in dermatology. Expert Rev Anti Infect Ther 2005; 3:557-91. [PMID: 16107197 DOI: 10.1586/14787210.3.4.557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dermatologic diseases encompass a broad category of pathologic situations. Infection remains a significant aspect of the pathology faced in patient encounters, and it is natural to expect that anti-infectives play a major element in the armamentarium utilized by dermatologists. Aside from the treatment of the classic bacterial and fungal infections, there are now new uses for antiviral agents to help suppress recurrent disease, such as herpes simplex. There is also the novel approach of using anti-infectives, or agents that have been thought to have antimicrobial activity, to treat inflammatory diseases. This review describes anti-infectives, beginning with common antibiotics used to treat bacterial infections. The discussion will then cover the current use of antivirals. Finally, the description of antifungals will be separated, starting with the oral agents and ending with the topical antimycotics. The use of anti-infectives in tropical dermatology has been purposefully left out, and perhaps should be the subject of a separate review. Cutaneous bacterial infections consist chiefly of those microorganisms that colonize the skin, such as species of staphylococcus and streptococcus. Propionibacterium acnes and certain other anaerobes can be involved in folliculitis, pyodermas and in chronic conditions such as hidradenitis suppurativa.
Collapse
|
42
|
Galetin A, Ito K, Hallifax D, Houston JB. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther 2005; 314:180-90. [PMID: 15784650 DOI: 10.1124/jpet.104.082826] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complexity of in vitro kinetic phenomena observed for CYP3A4 substrates (homo- or heterotropic cooperativity) confounds the prediction of drug-drug interactions, and an evaluation of alternative and/or pragmatic approaches and substrates is needed. The current study focused on the utility of the three most commonly used CYP3A4 in vitro probes for the prediction of 26 reported in vivo interactions with azole inhibitors (increase in area under the curve ranged from 1.2 to 24, 50% in the range of potent inhibition). In addition to midazolam, testosterone, and nifedipine, quinidine was explored as a more "pragmatic" substrate due to its kinetic properties and specificity toward CYP3A4 in comparison with CYP3A5. Ki estimates obtained in human liver microsomes under standardized in vitro conditions for each of the four probes were used to determine the validity of substrate substitution in CYP3A4 drug-drug interaction prediction. Detailed inhibitor-related (microsomal binding, depletion over incubation time) and substrate-related factors (cooperativity, contribution of other metabolic pathways, or renal excretion) were incorporated in the assessment of the interaction potential. All four CYP3A4 probes predicted 69 to 81% of the interactions with azoles within 2-fold of the mean in vivo value. Comparison of simple and multisite mechanistic models and interaction prediction accuracy for each of the in vitro probes indicated that midazolam and quinidine in vitro data provided the best assessment of a potential interaction, with the lowest bias and the highest precision of the prediction. Further investigations with a wider range of inhibitors are required to substantiate these findings.
Collapse
Affiliation(s)
- Aleksandra Galetin
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Rd., Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
43
|
Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC. Renal interaction between itraconazole and cimetidine. J Clin Pharmacol 2005; 44:919-27. [PMID: 15286096 DOI: 10.1177/0091270004266783] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal drug interactions can result from competitive inhibition between drugs that undergo extensive renal tubular secretion by transporters such as P-glycoprotein (P-gp). The purpose of this study was to evaluate the effect of itraconazole, a known P-gp inhibitor, on the renal tubular secretion of cimetidine in healthy volunteers who received intravenous cimetidine alone and following 3 days of oral itraconazole (400 mg/day) administration. Glomerular filtration rate (GFR) was measured continuously during each study visit using iothalamate clearance. Iothalamate, cimetidine, and itraconazole concentrations in plasma and urine were determined using high-performance liquid chromatography/ultraviolet (HPLC/UV) methods. Renal tubular secretion (CL(sec)) of cimetidine was calculated as the difference between renal clearance (CL(r)) and GFR (CL(ioth)) on days 1 and 5. Cimetidine pharmacokinetic estimates were obtained for total clearance (CL(T)), volume of distribution (Vd), elimination rate constant (K(el)), area under the plasma concentration-time curve (AUC(0-240 min)), and average plasma concentration (Cp(ave)) before and after itraconazole administration. Plasma itraconazole concentrations following oral dosing ranged from 0.41 to 0.92 microg/mL. The cimetidine AUC(0-240 min) increased by 25% (p < 0.01) following itraconazole administration. The GFR and Vd remained unchanged, but significant reductions in CL(T) (655 vs. 486 mL/min, p < 0.001) and CL(sec) (410 vs. 311 mL/min, p = 0.001) were observed. The increased systemic exposure of cimetidine during coadministration with itraconazole was likely due to inhibition of P-gp-mediated renal tubular secretion. Further evaluation of renal P-gp-modulating drugs such as itraconazole that may alter the renal excretion of coadministered drugs is warranted.
Collapse
Affiliation(s)
- Chetan S Karyekar
- Renal Clinical Pharmacology Laboratory, School of Pharmacy, and the Department of Medicine, Division of Nephrology, School of Medicine, University of Maryland, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
44
|
Swaisland HC, Ranson M, Smith RP, Leadbetter J, Laight A, McKillop D, Wild MJ. Pharmacokinetic Drug Interactions of Gefitinib with Rifampicin, Itraconazole and Metoprolol. Clin Pharmacokinet 2005; 44:1067-81. [PMID: 16176119 DOI: 10.2165/00003088-200544100-00005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Gefitinib (IRESSA, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, has been approved in several countries for the treatment of advanced non-small-cell lung cancer. Preclinical studies were conducted to determine the cytochrome P450 (CYP) isoenzymes involved in the metabolism of gefitinib and to evaluate the potential of gefitinib to cause drug interactions through inhibition of CYP isoenzymes. Based on these findings, three clinical studies were carried out to investigate pharmacokinetic drug interactions in vivo with gefitinib. METHODS In preclinical studies radiolabelled gefitinib was incubated with: (i) hepatic microsomal protein in the presence of selective CYP inhibitors; and (ii) expressed CYP enzymes. Human hepatic microsomal protein was incubated with selective CYP substrates in the presence of gefitinib. Clinical studies were all phase I, open-label, single-centre studies; two had a randomised, two-way crossover design and the third was nonrandomised. The first and second studies investigated the pharmacokinetics of gefitinib in the presence of a potent CYP3A4 inducer (rifampicin [rifampin]) or inhibitor (itraconazole) in healthy male volunteers. The third study investigated the effects that gefitinib had on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in patients with solid tumours. RESULTS The results of preclinical studies demonstrated that CYP3A4 is involved in the metabolism of gefitinib and that gefitinib is a weak inhibitor of CYP2D6 activity. In clinical studies when gefitinib was administered in the presence of rifampicin, geometric mean (gmean) maximum concentration and area under the plasma concentration-time curve (AUC) were reduced by 65% and 83%, respectively; these changes were statistically significant. When gefitinib was administered in the presence of itraconazole, gmean AUC increased by 78% and 61% at gefitinib doses of 250 and 500 mg, respectively; these changes also being statistically significant. Coadministration of metoprolol with gefitinib resulted in a 35% increase in the metoprolol area under plasma concentration-time curve from time zero to the time of the last quantifiable concentration; this change was not statistically significant. There was no apparent change in the safety profile of gefitinib as a result of coadministration with other agents. CONCLUSIONS Although CYP3A4 inducers may reduce exposure to gefitinib, further work is required to define any resultant effect on the efficacy of gefitinib. Exposure to gefitinib is increased by coadministration with CYP3A4 inhibitors, but since gefitinib is known to have a good tolerability profile, a dosage reduction is not recommended. Gefitinib is unlikely to exert a clinically relevant effect on the pharmacokinetics of drugs that are dependent on CYP2D6-mediated metabolism for their clearance, but the potential to increase plasma concentrations should be considered if gefitinib is coadministered with CYP2D6 substrates that have a narrow therapeutic index or are individually dose titrated.
Collapse
|
45
|
Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 2003; 55:425-61. [PMID: 12869659 DOI: 10.1124/pr.55.3.1] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drug transporters are expressed in many tissues such as the intestine, liver, kidney, and brain, and play key roles in drug absorption, distribution, and excretion. The information on the functional characteristics of drug transporters provides important information to allow improvements in drug delivery or drug design by targeting specific transporter proteins. In this article we summarize the significant role played by drug transporters in drug disposition, focusing particularly on their potential use during the drug discovery and development process. The use of transporter function offers the possibility of delivering a drug to the target organ, avoiding distribution to other organs (thereby reducing the chance of toxic side effects), controlling the elimination process, and/or improving oral bioavailability. It is useful to select a lead compound that may or may not interact with transporters, depending on whether such an interaction is desirable. The expression system of transporters is an efficient tool for screening the activity of individual transport processes. The changes in pharmacokinetics due to genetic polymorphisms and drug-drug interactions involving transporters can often have a direct and adverse effect on the therapeutic safety and efficacy of many important drugs. To obtain detailed information about these interindividual differences, the contribution made by transporters to drug absorption, distribution, and excretion needs to be taken into account throughout the drug discovery and development process.
Collapse
Affiliation(s)
- Naomi Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
46
|
Karyekar CS, Eddington ND, Garimella TS, Gubbins PO, Dowling TC. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy 2003; 23:436-42. [PMID: 12680473 DOI: 10.1592/phco.23.4.436.32125] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To evaluate P-glycoprotein (P-gp)-mediated renal drug interactions in an in vitro model of tubular secretion. DESIGN In vitro experiment. SETTING University-affiliated pharmacokinetics laboratory. CELL LINES: Madin-Darby canine kidney (MDCK), multidrug-resistant-1 (MDR1)-MDCK, and human colon carcinoma (Caco-2) cells. INTERVENTION Transepithelial transport (basolateral-to-apical and apical-to-basolateral) of cimetidine was assessed in the absence and presence of various concentrations of the P-gp inhibitors itraconazole and PSC-833 in a renal P-gp cell culture model (MDR1-MDCK). MEASUREMENTS AND MAIN RESULTS Apparent permeability of cimetidine was characterized, and level of P-gp expression was determined by Western blot analysis, in MDCK (wild type), MDR1-MDCK, and Caco-2 cells (for relative comparison). In the presence of PSC-833, cimetidine's apparent permeability value for basolateral-to-apical transport decreased from 2.96 to 1.15 x 10(-6) cm/second, coupled with a decrease in efflux ratio from 2.36 to 1.80. The effect of itraconazole was concentration dependent, with cimetidine's apparent permeability value for basolateral-to-apical transport decreasing from 3.96 to 1.92 x 10(-6) cm/second (p < 0.05), resulting in a 50% decrease in efflux ratio. Expression of P-gp was negligible in MDCK (wild-type) cells, but high-level expression was confirmed in both MDR1-MDCK and Caco-2 cells. CONCLUSION P-glycoprotein plays a significant role in the renal tubular secretion of organic cations such as cimetidine, and the high level of P-gp expression in MDR1-MDCK cells makes this a well-suited model for evaluating mechanisms of renal drug interactions.
Collapse
Affiliation(s)
- Chetan S Karyekar
- Pharmacokinetics-Biopharmaceutics Laboratory, School of Pharmacy, University of Maryland, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
47
|
Imbert F, Jardin M, Fernandez C, Gantier JC, Dromer F, Baron G, Mentre F, Van Beijsterveldt L, Singlas E, Gimenez F. Effect of efflux inhibition on brain uptake of itraconazole in mice infected with Cryptococcus neoformans. Drug Metab Dispos 2003; 31:319-25. [PMID: 12584159 DOI: 10.1124/dmd.31.3.319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Itraconazole is a fungistatic agent that, although highly lipophilic, shows poor transport through the blood brain barrier that may be due to efflux proteins. The combined administration of an efflux inhibitor with itraconazole should increase cerebral itraconazole concentrations and therefore, improve the treatment of Cryptococcus neoformans meningitis with this antifungal agent. To test this hypothesis, we have studied the influence of murine cerebral infection with C. neoformans and the inhibition of efflux by intraperitoneal injection of a P-glycoprotein inhibitor, GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl)9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide], on the pharmacokinetics of itraconazole in plasma and brain after a single intraperitoneal itraconazole injection. We also investigated the influence of efflux inhibition on the efficacy of repeated doses of itraconazole in this murine model. The results showed that in healthy and infected mice pretreated or not with GF120918, plasma itraconazole values of area under the curve (AUC) were similar. In contrast, cerebral values of AUC were higher in infected mice compared with healthy mice. Moreover, the pretreatment of infected mice with GF120918 significantly increased cerebral itraconazole values of area under the curve and decreased weight loss in the treatment with itraconazole of a cerebral infection with C. neoformans.
Collapse
Affiliation(s)
- Frédéric Imbert
- Département de Pharmacie Clinique, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Prakash J, Velpandian T, Pande JN, Gupta SK. Serum Rifampicin Levels in Patients with Tuberculosis. Clin Drug Investig 2003; 23:463-72. [PMID: 17535057 DOI: 10.2165/00044011-200323070-00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To identify patients with tuberculosis (TB) showing poor bioavailability for rifampicin and to delineate the role of possible factors such as overexpression of intestinal cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (PGP) in the drug's bioavailability by administering known blockers. PATIENTS, DESIGN AND SETTING: 77 clinically proven TB patients were included in this nonblinded, randomised, comparative trial carried out at one centre at the All India Institute of Medical Sciences, New Delhi, India. INTERVENTIONS The concentrations of rifampicin and its active metabolite, 25-desacetylrifampicin (DRMP), were measured in blood samples of the 77 TB patients at 0, 1, 2 and 4 hours after their usual morning rifampicin dose. Of these, 19 patients showing the lowest area under the concentration-time curve values from 0 to 4 hours after administration (AUC(0-4)) were selected and pretreated with a single dose of either verapamil (80mg) or itraconazole (200mg) as both PGP and CYP3A4 blockers 1 hour prior to rifampicin administration. Rifampicin and DRMP concentrations were estimated using high performance liquid chromatography in all serum samples collected at the same timepoints. MAIN OUTCOME MEASURES AND RESULTS A statistically significant increase (p < 0.05) was found both in the serum levels of rifampicin at 2 hours and in the AUC(0-4)values (158% and 84%, respectively) after pretreatment with verapamil. However, an increase in the levels of rifampicin was found to be insignificant on pretreatment with itraconazole. The estimated levels of DRMP also supported these results. CONCLUSIONS The increase in rifampicin levels on administration of a PGP/CYP3A4 blocker suggests a pivotal role for PGP/CYP3A4 in the absorption of rifampicin in patients with TB, which may be responsible for lower or variable levels of rifampicin.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
49
|
Pea F, Furlanut M. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 2002; 40:833-68. [PMID: 11735605 DOI: 10.2165/00003088-200140110-00004] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pharmacokinetic interactions involving anti-infective drugs may be important in the intensive care unit (ICU). Although some interactions involve absorption or distribution, the most clinically relevant interactions during anti-infective treatment involve the elimination phase. Cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 are the major isoforms responsible for oxidative metabolism of drugs. Macrolides (especially troleandomycin and erythromycin versus CYP3A4), fluoroquinolones (especially enoxacin, ciprofloxacin and norfloxacin versus CYP1A2) and azole antifungals (especially fluconazole versus CYP2C9 and CYP2C19, and ketoconazole and itraconazole versus CYP3A4) are all inhibitors of CYP-mediated metabolism and may therefore be responsible for toxicity of other coadministered drugs by decreasing their clearance. On the other hand, rifampicin is a nonspecific inducer of CYP-mediated metabolism (especially of CYP2C9, CYP2C19 and CYP3A4) and may therefore cause therapeutic failure of other coadministered drugs by increasing their clearance. Drugs frequently used in the ICU that are at risk of clinically relevant pharrmacokinetic interactions with anti-infective agents include some benzodiazepines (especially midazolam and triazolam), immunosuppressive agents (cyclosporin, tacrolimus), antiasthmatic agents (theophylline), opioid analgesics (alfentanil), anticonvulsants (phenytoin, carbamazepine), calcium antagonists (verapamil, nifedipine, felodipine) and anticoagulants (warfarin). Some lipophilic anti-infective agents inhibit (clarithromycin, itraconazole) or induce (rifampicin) the transmembrane transporter P-glycoprotein, which promotes excretion from renal tubular and intestinal cells. This results in a decrease or increase, respectively, in the clearance of P-glycoprotein substrates at the renal level and an increase or decrease, respectively, of their oral bioavailability at the intestinal level. Hydrophilic anti-infective agents are often eliminated unchanged by renal glomerular filtration and tubular secretion, and are therefore involved in competition for excretion. Beta-lactams are known to compete with other drugs for renal tubular secretion mediated by the organic anion transport system, but this is frequently not of major concern, given their wide therapeutic index. However, there is a risk of nephrotoxicity and neurotoxicity with some cephalosporins and carbapenems. Therapeutic failure with these hydrophilic compounds may be due to haemodynamically active coadministered drugs, such as dopamine, dobutamine and furosemide, which increase their renal clearance by means of enhanced cardiac output and/or renal blood flow. Therefore, coadministration of some drugs should be avoided, or at least careful therapeutic drug monitoring should be performed when available. Monitoring may be especially helpful when there is some coexisting pathophysiological condition affecting drug disposition, for example malabsorption or marked instability of the systemic circulation or of renal or hepatic function.
Collapse
Affiliation(s)
- F Pea
- Institute of Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Pathology and Medicine, Medical School, University of Udine, Italy.
| | | |
Collapse
|
50
|
Wang EJ, Lew K, Casciano CN, Clement RP, Johnson WW. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother 2002; 46:160-5. [PMID: 11751127 PMCID: PMC127000 DOI: 10.1128/aac.46.1.160-165.2002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an interaction could both affect the disposition and exposure to azole antifungal therapeutics and partially explain the clinical drug interactions observed with some antifungals. Using a whole-cell assay in which the retention of a marker substrate is evaluated and quantified, we studied the abilities of the most widely prescribed orally administered azole antifungals to inhibit the function of this transporter. In a cell line presenting an overexpressed amount of the human P-gp transporter, itraconazole and ketoconazole inhibited P-gp function with 50% inhibitory concentrations (IC(50)s) of approximately 2 and approximately 6 microM, respectively. Cyclosporin A was inhibitory with an IC(50) of 1.4 microM in this system. Uniquely, fluconazole had no effect in this assay, a result consistent with known clinical interactions. The effects of these azole antifungals on ATP consumption by P-gp (representing transport activity) were also assessed, and the K(m) values were congruent with the IC(50)s. Therefore, exposure of tissue to the azole antifungals may be modulated by human P-gp, and the clinical interactions of azole antifungals with other drugs may be due, in part, to inhibition of P-gp transport.
Collapse
Affiliation(s)
- Er-jia Wang
- Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Lafayette, New Jersey 07848, USA
| | | | | | | | | |
Collapse
|