1
|
Andres S, Bartling B, Stiensmeier V, Starke A, Schmicke M. Comparative cryopreservation of bovine and porcine primary hepatocytes. Front Vet Sci 2023; 10:1211135. [PMID: 37614462 PMCID: PMC10442649 DOI: 10.3389/fvets.2023.1211135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/25/2023] Open
Abstract
The isolation of primary hepatocytes from liver tissue of farm animals yields a very high number of cells, and a part of them can be stored by cryopreservation for future experiments. As no experience exists with the cryopreservation of hepatocytes from cattle, our study aimed at the cryopreservation of bovine hepatocytes by use of different protocols compared with the cryopreservation of hepatocytes from pig. We tested different freezing media (William's Medium E vs. University of Wisconsin solution), cryoprotectants (dimethyl sulfoxide with vs. without trehalose as additional additive), freezing systems (standard freezing container vs. controlled-rate freezer) and freezing times (4 vs. 28 d). These tests identified a general influence of species and freezing systems, whereas the influence of freezing media, trehalose additive and freezing time was less or not obvious. In this regard, we determined a mean recovery of 30% of bovine hepatocytes and 55% of porcine hepatocytes cryopreserved in a controlled-rate freezer, whereas the rates were about 10% less when hepatocytes were frozen in a standard freezing container. In accordance with this observation, the cultivation of cryopreserved hepatocytes from cattle was less effective than that of porcine hepatocytes. Hepatocytes from cattle can be successfully cryopreserved and partially cultured after cryopreservation but with lower percentage than porcine hepatocytes.
Collapse
Affiliation(s)
- Sandra Andres
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vera Stiensmeier
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Starke
- Department for Ruminants and Swine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marion Schmicke
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Clinic for Cattle, Endocrinology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
2
|
Lee SML, Kern A, Jauch KW, Thasler R, Niess H, Thasler WE. Cold Preservation of Human Hepatocytes with High Viability. Biopreserv Biobank 2023; 21:367-377. [PMID: 36355346 DOI: 10.1089/bio.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Freshly isolated human hepatocytes are an important model for translational research, validation of experiments done in animals, and preclinical studies. Human hepatocyte isolation often cannot be carried out easily on demand in common research laboratories, and researchers often collaborate to share hepatocytes or outsource hepatocyte isolations. As a prerequisite for such a strategy, hepatocytes have to maintain their phenotypes after transport. Therefore, this study aimed to determine if overnight storage or shipment of hepatocytes affects their quality when viability, adherence, and cytochrome P450 (CYP) activities are considered. Hepatocytes were stored overnight or shipped to a collaborator in a cold storage solution on wet ice. On the next day, viability of hepatocytes was assessed before plating the cells to determine adherence. Hepatocytes were also cultured in a sandwich culture to determine CYP activities and inducibility. The results showed that although viability (79% ± 0.7% on isolation) was significantly decreased by overnight storage or shipment by 11% (p < 0.001) or 15% (p < 0.001), respectively, the viability of hepatocytes the next day at above 64% ± 2.2% remained sufficiently high for further experiments. In addition, hepatocytes stored for 18 or 24 hours were adherent the next day, and a high confluence of 81% ± 10% to 91% ± 4% was achieved after 48 hours in culture when hepatocytes were adhered on collagen-coated plates. Furthermore, CYP enzyme activities were inducible and not affected by variables such as fibrosis, age, type of operation, steatosis, and body mass index. However, our data would suggest that the type of cancer (primary/secondary), sex (male/female), hypertension, glutamic oxaloacetic transaminase activity, partial thromboplastin time, and size of perfused liver had significant effects (p < 0.05) on induction of some CYP enzymes. In conclusion, human hepatocyte isolation can be carried out at a centralized site and shared between multiple researchers, increasing flexibility and access to a representative human liver in vitro model.
Collapse
Affiliation(s)
- Serene M L Lee
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
- HTCR-Services GmbH, Munich, Germany
| | - Armin Kern
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer AG, Wuppertal, Germany
| | - Karl-Walter Jauch
- Medical Directorate, University Hospital, LMU Munich, Munich, Germany
- Human Tissue and Cell Research Foundation, Regensburg, Germany
| | | | - Hanno Niess
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang E Thasler
- Human Tissue and Cell Research Foundation, Regensburg, Germany
- Department of General, Visceral and Minimally Invasive Surgery, Red Cross Hospital Munich, Munich, Germany
| |
Collapse
|
3
|
Cox JA, Zwart EP, Luijten M, White PA. The development and prevalidation of an in vitro mutagenicity assay based on MutaMouse primary hepatocytes, Part I: Isolation, structural, genetic, and biochemical characterization. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:331-347. [PMID: 30592088 PMCID: PMC6590113 DOI: 10.1002/em.22253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
To develop an improved in vitro mammalian cell gene mutation assay, it is imperative to address the known deficiencies associated with existing assays. Primary hepatocytes isolated from the MutaMouse are ideal for an in vitro gene mutation assay due to their metabolic competence, their "normal" karyotype (i.e., neither transformed nor immortalized), and the presence of the MutaMouse transgene for rapid and reliable mutation scoring. The cells were extensively characterized to confirm their utility. Freshly isolated cells were found to have a hepatocyte-like morphology, predominantly consisting of binucleated cells. These cells maintain hepatocyte-specific markers for up to 3 days in culture. Analyses revealed a normal murine hepatocyte karyotype with a modal ploidy number of 4n. Fluorescence in situ hybridization analysis confirmed the presence of the lambda shuttle vector on chromosome 3. The doubling time was determined to be 22.5 ± 3.3 h. Gene expression and enzymatic activity of key Phase I and Phase II metabolic enzymes were maintained for at least 8 and 24 h in culture, respectively. Exposure to β-naphthoflavone led to approximately 900- and 9-fold increases in Cyp1a1 and Cyp1a2 gene expression, respectively, and approximately twofold induction in cytochrome P450 (CYP) 1A1/1A2 activity. Exposure to phenobarbital resulted in an approximately twofold increase in CYP 2B6 enzyme activity. Following this characterization, it is evident that MutaMouse primary hepatocytes have considerable promise for in vitro mutagenicity assessment. The performance of these cells in an in vitro gene mutation assay is assessed in Part II. Environ. Mol. Mutagen. 60:331-347, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Julie A. Cox
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOntarioCanada
| | - Edwin P. Zwart
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul A. White
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOntarioCanada
| |
Collapse
|
4
|
Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver 'organ on a chip'. Exp Cell Res 2018; 363:15-25. [PMID: 29291400 PMCID: PMC5944300 DOI: 10.1016/j.yexcr.2017.12.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
The liver plays critical roles in both homeostasis and pathology. It is the major site of drug metabolism in the body and, as such, a common target for drug-induced toxicity and is susceptible to a wide range of diseases. In contrast to other solid organs, the liver possesses the unique ability to regenerate. The physiological importance and plasticity of this organ make it a crucial system of study to better understand human physiology, disease, and response to exogenous compounds. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems. These aspects have impelled many to develop liver tissue systems for study in isolation outside the body. Herein, we discuss these biologically engineered organoids and microphysiological systems.
Collapse
Affiliation(s)
- Colin H Beckwitt
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute of Regenerative Medicine University of Pittsburgh, Pittsburgh, PA 15213, USA; Research and Development Service, VA Pittsburgh Health System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
5
|
den Braver-Sewradj SP, den Braver MW, Baze A, Decorde J, Fonsi M, Bachellier P, Vermeulen NPE, Commandeur JNM, Richert L, Vos JC. Direct comparison of UDP-glucuronosyltransferase and cytochrome P450 activities in human liver microsomes, plated and suspended primary human hepatocytes from five liver donors. Eur J Pharm Sci 2017; 109:96-110. [PMID: 28778465 DOI: 10.1016/j.ejps.2017.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 11/26/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) and cytochrome P450s (CYPs) are the major enzymes involved in hepatic metabolism of drugs. Hepatic drug metabolism is commonly investigated using human liver microsomes (HLM) or primary human hepatocytes (PHH). We describe the development of a sensitive assay to phenotype activities of six major hepatic UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7) in intact PHH by analysis of glucuronidation of selective probe substrates. The non-selective, general substrate 7-hydroxycoumarin was included for comparison. For each liver donor preparation (five donors) UGT activities in cryopreserved suspended and plated PHH were compared to HLM prepared from the same donors. Standard CYP reaction phenotyping of seven major isoforms was performed in parallel. For all donors, CYP- and UGT-isoforms activity profiles were comparable in PHH and HLM, indicating that reaction phenotyping with selective probe substrates in intact cells primarily reflects respective CYP or UGT activity. System-dependent effects on UGT and CYP isoform activity were still found. While UGT activity of UGT1A1 was equivalent in plated and suspended PHH, UGT1A3, UGT1A6 and UGT2B7 activity was higher in suspended PHH and UGT1A9 and UGT1A4 activity was higher in plated PHH. The well-known decrease in activity of most CYP isoforms in plated compared to suspended PHH was confirmed. Importantly, we found a significant loss in CYP2C19 and CYP2B6 in HLM, activity being lower than in intact cells. Taken together, these findings implicate that, dependent on the UGT or CYP isoforms involved in the metabolism of a given compound, the outcome of metabolic assays is strongly dependent on the choice of the in vitro system. The currently described UGT- and CYP- activity profiling method can be used as a standard assay in intact cells and can especially aid in reaction phenotyping of in vitro systems for which a limited number of cells are available.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, O
- 2 building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, O
- 2 building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Audrey Baze
- Kaly-Cell, 20A Rue du Général Leclerc, Plobsheim, France; UNISTRA, 4 Rue Blaise Pascal, Strasbourg, France
| | | | | | - Philippe Bachellier
- UNISTRA, 4 Rue Blaise Pascal, Strasbourg, France; Centre de Chirurgie Viscérale et de Transplantation, Hôpital de Hautepierre, 67098 Strasbourg, France
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, O
- 2 building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, O
- 2 building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Lysiane Richert
- Kaly-Cell, 20A Rue du Général Leclerc, Plobsheim, France; PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, O
- 2 building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology 2017; 78:15-21. [DOI: 10.1016/j.cryobiol.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/30/2017] [Accepted: 07/29/2017] [Indexed: 11/18/2022]
|
7
|
Kilbride P, Lamb S, Gibbons S, Bundy J, Erro E, Selden C, Fuller B, Morris J. Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device. PLoS One 2017; 12:e0183385. [PMID: 28841674 PMCID: PMC5572048 DOI: 10.1371/journal.pone.0183385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
For large and complex tissue engineered constructs to be available on demand, long term storage using methods, such as cryopreservation, are essential. This study optimised parameters such as excess media concentration and warming rates and used the findings to enable the successful cryopreservation of 2.3 litres of alginate encapsulated liver cell spheroids. This volume of biomass is typical of those required for successful treatment of Acute Liver Failure using our Bioartificial Liver Device. Adding a buffer of medium above the biomass, as well as slow (0.6°C/min) warming rates was found to give the best results, so long as the warming through the equilibrium melting temperature was rapid. After 72 h post thaw-culture, viable cell number, glucose consumption, lactate production, and alpha-fetoprotein production had recovered to pre-freeze values in the 2.3 litre biomass (1.00 ± 0.05, 1.19 ± 0.10, 1.23 ± 0.18, 2.03 ± 0.04 per ml biomass of the pre-cryopreservation values respectively). It was also shown that further improvements in warming rates of the biomass could reduce recovery time to < 48 h. This is the first example of a biomass of this volume being successfully cryopreserved in a single cassette and re-cultured. It demonstrates that a bioartificial liver device can be cryopreserved, and has wider applications to scale-up large volume cryopreservation.
Collapse
Affiliation(s)
- Peter Kilbride
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
- * E-mail:
| | - Stephen Lamb
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| | - Stephanie Gibbons
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - James Bundy
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Eloy Erro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Clare Selden
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - Barry Fuller
- Department of Surgery, Royal Free Hospital Campus, University College London, London, United Kingdom
| | - John Morris
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| |
Collapse
|
8
|
Nevi L, Cardinale V, Carpino G, Costantini D, Di Matteo S, Cantafora A, Melandro F, Brunelli R, Bastianelli C, Aliberti C, Monti M, Bosco D, Berloco PB, Panici PB, Reid L, Gaudio E, Alvaro D. Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors. Sci Rep 2017; 7:6080. [PMID: 28729654 PMCID: PMC5519713 DOI: 10.1038/s41598-017-05858-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023] Open
Abstract
Human biliary tree stem/progenitor cells (hBTSCs) are being used for cell therapies of patients with liver cirrhosis. A cryopreservation method was established to optimize sourcing of hBTSCs for these clinical programs and that comprises serum-free Kubota’s Medium (KM) supplemented with 10% dimethyl sulfoxide (DMSO), 15% human serum albumin (HSA) and 0.1% hyaluronans. Cryopreserved versus freshly isolated hBTSCs were similar in vitro with respect to self-replication, stemness traits, and multipotency. They were able to differentiate to functional hepatocytes,cholangiocytes or pancreatic islets, yielding similar levels of secretion of albumin or of glucose-inducible levels of insulin. Cryopreserved versus freshly isolated hBTSCs were equally able to engraft into immunocompromised mice yielding cells with human-specific gene expression and human albumin levels in murine serum that were higher for cryopreserved than for freshly isolated hBTSCs. The successful cryopreservation of hBTSCs facilitates establishment of hBTSCs cell banking offering logistical advantages for clinical programs for treatment of liver diseases.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Daniele Costantini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Sabina Di Matteo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Alfredo Cantafora
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Roberto Brunelli
- Department of Gynaecologic-Obstetric and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Bastianelli
- Department of Gynaecologic-Obstetric and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Camilla Aliberti
- Department of Gynaecologic-Obstetric and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Monti
- Department of Gynaecologic-Obstetric and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosco
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Lola Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, North Carolina, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Doll MA, Salazar-González RA, Bodduluri S, W. Hein D. Arylamine N-acetyltransferase 2 genotype-dependent N-acetylation of isoniazid in cryopreserved human hepatocytes. Acta Pharm Sin B 2017; 7:517-522. [PMID: 28752039 PMCID: PMC5518664 DOI: 10.1016/j.apsb.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 01/21/2023] Open
Abstract
Cryopreserved human hepatocytes were used to investigate the
role of arylamine N-acetyltransferase 2 (NAT2; EC 2.3.1.5)
polymorphism on the N-acetylation of isoniazid (INH).
NAT2 genotype was determined by Taqman allelic
discrimination assay and INH N-acetylation was measured by
high performance liquid chromatography. INH N-acetylation
rates in vitro exhibited a robust and highly significant
(P<0.005) NAT2 phenotype-dependent metabolism.
N-acetylation rates in situ were INH
concentration- and time-dependent. Following incubation for 24 h
with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly
(P = 0.0023 and P = 0.0002) across
cryopreserved human hepatocytes samples from rapid, intermediate, and slow
acetylators, respectively. The clear association between NAT2
genotype and phenotype supports use of NAT2 genotype to guide
INH dosing strategies in the treatment and prevention of
tuberculosis.
Collapse
|
10
|
Richert L, Baze A, Parmentier C, Gerets HHJ, Sison-Young R, Dorau M, Lovatt C, Czich A, Goldring C, Park BK, Juhila S, Foster AJ, Williams DP. Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats. Toxicol Lett 2016; 258:207-215. [PMID: 27363785 DOI: 10.1016/j.toxlet.2016.06.1127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/25/2022]
Abstract
Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug.
Collapse
Affiliation(s)
- Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France; Université de Franche-Comté, EA 4267 Besançon, France.
| | - Audrey Baze
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| | | | - Helga H J Gerets
- UCB BioPharma SPRL, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium.
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, University of Liverpool, Liverpool L69 3GE, UK.
| | - Martina Dorau
- Sanofi-Aventis Deutschland GmbH, R&D DSAR Preclinical Safety, Industriepark Hoechst, D-65926 Frankfurt, Germany.
| | - Cerys Lovatt
- GlaxoSmithKline, Safety Assessment, Stevenage, Hertfordshire, UK.
| | - Andreas Czich
- Sanofi-Aventis Deutschland GmbH, R&D DSAR Preclinical Safety, Industriepark Hoechst, D-65926 Frankfurt, Germany.
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, University of Liverpool, Liverpool L69 3GE, UK.
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, University of Liverpool, Liverpool L69 3GE, UK.
| | - Satu Juhila
- Orion Corporation, R&D, In Vitro Biology, Orionintie 1A, P.O. Box 65, FI-02101 Espoo, Finland.
| | - Alison J Foster
- Translational Safety, Drug Safety & Metabolism, AstraZeneca, Cambridge Science Park, Cambridge, UK.
| | - Dominic P Williams
- Translational Safety, Drug Safety & Metabolism, AstraZeneca, Cambridge Science Park, Cambridge, UK.
| |
Collapse
|
11
|
den Braver-Sewradj SP, den Braver MW, Vermeulen NP, Commandeur JN, Richert L, Vos JC. Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol In Vitro 2016; 33:71-9. [DOI: 10.1016/j.tiv.2016.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
|
12
|
Solanas E, Sostres C, Serrablo A, García-Gil A, Aranguren F, Jimenez P, Serrano MT. Incubation with dimethyl sulfoxide prior to cryopreservation improves functionality of thawed human primary hepatocytes. Biopreserv Biobank 2015; 10:446-53. [PMID: 24845046 DOI: 10.1089/bio.2012.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Efficient cryopreservation of human hepatocytes is essential for their use in cell therapy. This study investigated the effects of adding melatonin and/or dimethyl sulfoxide (DMSO) to pre-incubation and/or freezing solutions on the viability and function of thawed human hepatocytes. METHODS Isolated human hepatocytes were pre-incubated for 90 min at 4°C in Williams' Medium E (WEM), WEM containing 5 mM melatonin dissolved in DMSO, or WEM containing the equivalent amount of DMSO (1%). The hepatocytes were frozen in University of Wisconsin solution (UW) and 10% DMSO, with or without 5 mM melatonin. After thawing, viability, plating efficiency, mitochondrial dehydrogenase activity (MTT), and albumin and urea production were analyzed. RESULTS Viability and plating efficiency were not affected by melatonin or DMSO in pre-incubation media. Unexpectedly, hepatocytes pre-incubated with DMSO had significantly higher MTT (29.7% vs. control, p<0.01), albumin (82.8% vs. control, p<0.05), and urea amounts (26.2% vs. control, p=0.06) than those incubated only with WEM. Hepatocytes pre-incubated in media containing melatonin had amounts between those of cells incubated with DMSO or only with WEM (p<0.05 for MTT and p>0.05 for albumin and urea values). Also, the addition of melatonin to the freezing media did not significantly improve any of the studied parameters (p>0.05). DISCUSSION Adding 1% DMSO to pre-incubation media prior to the cryopreservation of human hepatocytes preserves hepatocyte function after thawing. These findings could be considered in current hepatocyte cryopreservation protocols.
Collapse
Affiliation(s)
- Estela Solanas
- 1 IIS Aragón, CIBER Enfermedades Hepáticas y Digestivas (CIBERehd). Molecular Research Laboratory , Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The use of cryopreserved hepatocytes has increased in the last decade due to the improvement of the freezing and thawing methods, and has even achieved acceptance by the US Food and Drug Administration for use in drug metabolizing enzyme induction studies. This chapter provides an overview of the theories behind the process of cryopreservation as well as practical advice on methods to cryopreserve hepatocytes, which retain functions similar to fresh cells after thawing. Parameters, such as cell density, cryoprotectants, freezing media, storage conditions, and thawing techniques, should be critically considered. Special emphasis is put on human hepatocytes, but information for the cryopreservation of animal hepatocytes is also described.
Collapse
|
14
|
Gouliarmou V, Pelkonen O, Coecke S. Differentiation-Promoting Medium Additives for Hepatocyte Cultivation and Cryopreservation. Methods Mol Biol 2015; 1250:143-159. [PMID: 26272140 DOI: 10.1007/978-1-4939-2074-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Isolated primary hepatocytes are considered as the reference system for in vitro hepatic methods. Following the isolation of primary hepatocytes from liver tissue, an unfavorable process named dedifferentiation is initiated leading to the attenuation of the hepatocellular phenotype both at the morphological and functional level. Freshly isolated hepatocytes can be used immediately or can be cryopreserved for future purposes. Currently, a number of antidedifferentiation strategies exist to extend the life span of isolated hepatocytes. The addition of differentiation-promoting compounds to the hepatocyte culture medium is the oldest and simplest antidedifferentiation approach applied. In the present chapter, the most commonly used medium additives for cultivation and cryopreservation of primary hepatocytes are reviewed.
Collapse
Affiliation(s)
- Varvara Gouliarmou
- EURL ECVAM, Systems Toxicology Unit, Institute for Health and Consumer Protection, European Commission, Joint Research Center, Via Fermi 2749, Ispra, 21027, Italy
| | | | | |
Collapse
|
15
|
Stokich B, Osgood Q, Grimm D, Moorthy S, Chakraborty N, Menze MA. Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology 2014; 69:281-90. [DOI: 10.1016/j.cryobiol.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
16
|
Giri S, Bader A. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support. J Clin Exp Hepatol 2014; 4:191-201. [PMID: 25755560 PMCID: PMC4284290 DOI: 10.1016/j.jceh.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. METHODS Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. RESULTS After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. CONCLUSION We established a conditional human fetal hepatocytes cell line with mesenchymal characteristics. Thus immortalization of human fetal hepatocytes cell line by telomerase biology offers a great challenge to examine basic biological mechanisms which are directly related to human and best cell source having unlimited population doubling for bioartificial support without any risk of replicative senescence and pathogenic risks.
Collapse
Key Words
- AFP, alpha-fetoprotein
- BLD, bioartificail liver device
- E7
- E7, human papilloma virus
- EBV, epstein barr virus
- EGFP, enhanced green fluorescent protein
- FACs, flow cytometry
- FH, fetal hepatocytes
- GFP, green fluorescent cells positive cells
- HPV, human papilloma virus
- SV T 40 antigen
- SV40 T, simian virus 40 large T
- bioartificial liver device
- hTERT
- hTERT, human telomerase reverse transcriptase
- human fetal hepatocytes
- iPS, pluripotent stem cell
Collapse
Affiliation(s)
- Shibashish Giri
- Address for correspondence: Shibashish Giri, Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), Medical Faculty, University of Leipzig, Leipzig, Germany. Tel.: +49 341 9731353; fax: +49 341 9731329.
| | | |
Collapse
|
17
|
Zhou M, Huang Y, Cheng Z, Zhao F, Li J, Zhi X, Tian X, Sun W, Hu K. Revival, characterization, and hepatitis B virus infection of cryopreserved human fetal hepatocytes. J Virol Methods 2014; 207:29-37. [PMID: 24977316 DOI: 10.1016/j.jviromet.2014.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 02/08/2023]
Abstract
Primary human hepatocytes are considered the ideal cellular model for in-vitro studies of liver-specific pathology, such as hepatitis B virus (HBV) infection. However, poor accessibility, limited cell numbers, and lot-to-lot variation of primary human hepatocytes limit their broad application. Human fetal hepatocytes were isolated from postmortem embryonic liver tissues by two-step collagenase perfusion and cryopreserved. A monolayer of cryopreserved human fetal hepatocytes was established by optimizing such conditions as cell density and viability and purification of viable cells by Percoll. Finally, revived human fetal hepatocytes were characterized and infected with HBV. A large number of viable human fetal hepatocytes could be isolated and cryopreserved, with seeding density and viability being critical for the establishment of a compact monolayer culture. Using low-viability cryopreserved human fetal hepatocytes, a typical monolayer was established by purification with Percoll. The revived cells were actively proliferative, showed identical morphologic characteristics to non-cryopreserved cells, and had a typical hepatic gene expression profile. Moreover, this optimized model was susceptible to HBV infection and could be used to screen entry inhibitors against HBV infection. In conclusion, these methods can be used on human fetal hepatocytes to provide a cell bank for studies of the early stages of HBV infection.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yayun Huang
- Biomedical Center, Hubei University of Technology, Wuhan, Hubei, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiafu Li
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoguang Zhi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaohui Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weihua Sun
- Biomedical Center, Hubei University of Technology, Wuhan, Hubei, China
| | - Kanghong Hu
- Biomedical Center, Hubei University of Technology, Wuhan, Hubei, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
18
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
19
|
Desbans C, Hilgendorf C, Lutz M, Bachellier P, Zacharias T, Weber JC, Dolgos H, Richert L, Ungell AL. Prediction of fraction metabolized via CYP3A in humans utilizing cryopreserved human hepatocytes from a set of 12 single donors. Xenobiotica 2013; 44:17-27. [DOI: 10.3109/00498254.2013.809617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Mateus A, Matsson P, Artursson P. Rapid Measurement of Intracellular Unbound Drug Concentrations. Mol Pharm 2013; 10:2467-78. [DOI: 10.1021/mp4000822] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University
of Lisbon, 1649-003 Lisbon, Portugal
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Uppsala University Drug Optimization
and Pharmaceutical Profiling Platform (UDOPP)—a node of the
Chemical Biology Consortium Sweden (CBCS), Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
21
|
Juric S, Lundquist P, Hu Y, Juréus A, Sohlenius-Sternbeck AK. The utility of cold-preserved human hepatocytes in studies on cytochrome P450 induction and hepatic drug transport. Xenobiotica 2013; 43:785-91. [PMID: 23570537 DOI: 10.3109/00498254.2013.767952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human hepatocytes that had been cold-preserved in SureTran(TM) matrix (Abcellute Ltd, Cardiff, UK) were used for studies on cell viability, cytochrome P450 (CYP) 3A4, 2B6 and 1A2 induction and hepatic drug transporters. It has recently been shown that basal CYP activities are maintained in cold-preserved hepatocytes (Palmgren et al., 2012). After 5 d of cold preservation, the viability was still more than 70%, and after 8 d it was around 60%. In hepatocytes that had been cold-preserved for 3 d, the activity of CYP3A4 was induced around 15-fold upon treatment with 8 µM rifampicin for 72 h. For CYP2B6, the activity was induced 4- to 16-fold in hepatocytes that had been cold-preserved for 3 d and thereafter treated with 1 mM phenobarbital for 72 h. The activity of CYP1A2 was low and close to the limit of detection in non-treated cells that had been cold-preserved for up to 3 d, while the activity increased in cells treated with 0.3-25 µM β-naphthoflavone for 72 h. CYP3A4, 2B6 and 1A2 mRNA levels were only determined with hepatocytes from one donor and increased upon treatment with the inducers. Hepatic uptakes of estrone-3-sulfate, taurocholate, ipratropium and rosuvastatin were stable in human hepatocytes that had been cold-preserved for up to 2 d. In summary, cold-preserved human hepatocytes demonstrate retained viability and can advantageously be used for in vitro induction studies and for studies of hepatic uptake transporters.
Collapse
Affiliation(s)
- Sanja Juric
- DMPK, CNSP iMed, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | | | | | | | | |
Collapse
|
22
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
23
|
Aghdai MH, Jamshidzadeh A, Nematizadeh M, Behzadiannia M, Niknahad H, Amirghofran Z, Esfandiari E, Azarpira N. Evaluating the Effects of Dithiothreitol and Fructose on Cell Viability and Function of Cryopreserved Primary Rat Hepatocytes and HepG2 Cell Line. HEPATITIS MONTHLY 2013; 13:e7824. [PMID: 23585767 PMCID: PMC3620527 DOI: 10.5812/hepatmon.7824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/07/2012] [Accepted: 12/09/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocytes are used as an in vitro model to evaluate drug metabolism. Human hepatocyte transplant has been considered as the temporary treatment of acute liver failure. Optimization freezing methods is very important to preserve both cell viability and function which are achieved by cryopreservation mostly always. OBJECTIVES The present study aimed to investigate the cryoprotective effect of DTT and fructose on primary rat hepatocytes and HepG2 cells. MATERIALS AND METHODS Both fresh rat hepatocytes and HepG2 cell line were incubated with fructose (100 and 200 mM) and dithiothreitol (DTT) (25, 50, 100, 250, and 500 μM) at 37°C for 1 and 3 hours, respectively. The preincubated hepatocytes were cryopreserved for two weeks. Hepatocytes viability and function were determined post thawing and the results were compared with the control group. RESULTS The viability of both rat hepatocytes and HepG2 cells were significantly increased after one hour preincubation with fructose 200 mM. Preincubation with DTT (50 μM, 100 μM. 250 μM and 500 μM) improved the viability and function upon thawing in both cell types (P < 0.001). In rat hepatocytes, no significant change was observed in albumin, urea production, and LDH leakage after preincubation with fructose or DTT. In HepG2 cells, albumin and urea production were significantly increased after preincubation with DTT (500 μM, 1 hour). The GSH content was significantly increased in DTT (250 and 500 μM, 1 hour) groups in both rat hepatocyte and HepG2 cells. CONCLUSIONS Incubation of hepatocytes with fructose and DTT prior to the cryopreservation can increase the cell viability and function after thawing.
Collapse
Affiliation(s)
- Mahdokht H Aghdai
- Transplant Research Center Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahsa Nematizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahtab Behzadiannia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Zahra Amirghofran
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Elaheh Esfandiari
- Transplant Research Center Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Negar Azarpira
- Transplant Research Center Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Negar Azarpira , Transplant Research Center Zand Street, Namazi Hospital, Shiraz University of Medical Sciences, 7193711351, Shiraz, IR Iran. Tel.: +98-7116474331, Fax: +98-7116474331, E-mail:
| |
Collapse
|
24
|
Aupet S, Simoné G, Heyd B, Bachellier P, Vidal I, Richert L, Martin H. Isolation of viable human hepatic progenitors from adult livers is possible even after 48 hours of cold ischemia. Tissue Eng Part C Methods 2013. [PMID: 23198983 DOI: 10.1089/ten.tec.2012.0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Liver transplantation, utilized routinely for end-stage liver disease, has been constrained by the paucity of organ donors, and is being complemented by alternative strategies such as liver cell transplantation. One of the most promising forms of liver cell transplantation is hepatic stem cell therapies, as the number of human hepatic stem cells (hHpSCs) and other early hepatic progenitor cells (HPCs) are sufficient to provide treatment for multiple patients from a single liver source. In the present study, human adult livers were exposed to cold ischemia and then processed after <24 or 48 h. Cells positive for epithelial cell adhesion molecule (EpCAM), a marker on early lineage stage HPCs, were immunoselected and counted. Approximately 100,000 EpCAM(+) cells/gram of tissue was obtained from surgical resection of livers subjected to cold ischemia up to 24 h and comparable numbers, albeit somewhat lower, were obtained from those exposed to 48 h of cold ischemia. The yields are similar to those reported from livers with minimal exposure to ischemia. When cultured on plastic dishes and in Kubota's Medium, a serum-free medium designed for early lineage stage HPCs, colonies of rapidly expanding cells formed. They were confirmed to be probable hHpSCs by their ability to survive and expand on plastic and in Kubota's Medium for months, by co-expression of EpCAM and neural cell adhesion molecule, minimal if any albumin expression, with EpCAM found throughout the cells, and no expression of alpha-fetoprotein. The yields of viable EpCAM(+) cells were surprisingly large, and the numbers from a single donor liver are sufficient to treat approximately 50-100 patients given the numbers of EpCAM(+) cells currently used in hepatic stem cell therapies. Thus, cold ischemic livers for up to 48 h are a new source of cells that might be used for liver cell therapies.
Collapse
Affiliation(s)
- Sophie Aupet
- EA4267 FDE, SFR133, Faculté de Médecine et Pharmacie, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Palmgren AP, Fihn BM, Bird J, Courtney P, Grime K. A novel matrix for the short-term storage of cells: utility in drug metabolism and drug transporter studies with rat, dog and human hepatocytes. Xenobiotica 2012; 43:487-97. [DOI: 10.3109/00498254.2012.738316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Smith CM, Nolan CK, Edwards MA, Hatfield JB, Stewart TW, Ferguson SS, Lecluyse EL, Sahi J. A comprehensive evaluation of metabolic activity and intrinsic clearance in suspensions and monolayer cultures of cryopreserved primary human hepatocytes. J Pharm Sci 2012; 101:3989-4002. [PMID: 22806329 DOI: 10.1002/jps.23262] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/14/2012] [Accepted: 06/21/2012] [Indexed: 01/12/2023]
Abstract
Primary human hepatocytes are widely used for metabolic stability evaluations. However, there are limited data directly comparing phase I and phase II drug-metabolizing enzymes in fresh and cryopreserved hepatocytes prepared from the same human donor liver. We evaluated the metabolic competency of human hepatocytes prepared from seven donor tissues before and after cryopreservation. Temporal-dependent enzyme activity in suspension and matched adherent cultures of primary human hepatocytes was also assessed. Cryopreservation of hepatocytes resulted in statistically significant increases in activities of CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A but not CYP2C8, CYP2C19, FMO, UGT, and SULT, relative to fresh hepatocytes. In suspension cultures of hepatocytes, enzyme stabilities were as follows: UGT<CYP3A<CYP1A2<CYP2D6<CYP2C9<SULT. CYP1A2 and CYP3A enzyme stability was significantly greater in plated cells relative to suspension with mean enzyme inactivation time values of 2.69 ± 0.39 and 1.62 ± 0.09 h in suspension and 21.3 ± 2.1 and 28.8 ± 20.4 h in culture, respectively. These data demonstrate that cryopreservation is not detrimental to primary human hepatocytes enzyme activities, indicate time-dependent changes in metabolic activity in both suspension and adherent cultures, and support the utility of adherent cultures of cryopreserved hepatocytes for prediction of metabolic clearance for low-clearance drugs.
Collapse
Affiliation(s)
- Cornelia M Smith
- ADME/TOX Division of Life Technologies, Durham, North Carolina 27703, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Saliem M, Holm F, Tengzelius RB, Jorns C, Nilsson LM, Ericzon BG, Ellis E, Hovatta O. Improved cryopreservation of human hepatocytes using a new xeno free cryoprotectant solution. World J Hepatol 2012; 4:176-83. [PMID: 22662286 PMCID: PMC3365437 DOI: 10.4254/wjh.v4.i5.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 09/19/2011] [Accepted: 04/25/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To optimize a xeno-free cryopreservation protocol for primary human hepatocytes. METHODS The demand for cryopreserved hepatocytes is increasing for both clinical and research purposes. Despite several hepatocyte cryopreservation protocols being available, improvements are urgently needed. We first compared controlled rate freezing to polystyrene box freezing and did not find any significant change between the groups. Using the polystyrene box freezing, we compared two xeno-free freezing solutions for freezing of primary human hepatocytes: a new medium (STEM-CELLBANKER, CB), which contains dimethylsulphoxide (DMSO) and anhydrous dextrose, both permeating and non-permeating cryoprotectants, and the frequently used DMSO - University of Wisconsin (DMSO-UW) medium. The viability of the hepatocytes was assessed by the trypan blue exclusion method as well as a calcein-esterase based live-dead assay before and after cryopreservation. The function of the hepatocytes was evaluated before and after cryopreservation by assessing enzymatic activity of 6 major cytochrome P450 isoforms (CYPs): CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A7. RESULTS The new cryoprotectant combination preserved hepatocyte viability significantly better than the standard DMSO-UW protocol (P < 0.01). There was no significant difference in viability estimation between both the trypan blue (TB) and the Live-Dead Assay methods. There was a correlation between viability of fresh hepatocytes and the difference in cell viability between CB and DMSO protocols (r(2) = 0.69) using the TB method. However, due to high within-group variability in the activities of the major CYPs, any statistical between-group differences were precluded. Cryopreservation of human hepatocytes using the cryoprotectant combination was a simple and xeno-free procedure yielding better hepatocyte viability. Thus, it may be a better alternative to the standard DMSO-UW protocol. Estimating CYP activities did not seem to be a relevant way to compare hepatocyte function between different groups due to high normal variability between different liver samples. CONCLUSION The cryoprotectant combination may be a better alternative to the standard DMSO-UW protocol in primary human hepatocyte cryopreservation.
Collapse
Affiliation(s)
- Mohammed Saliem
- Mohammed Saliem, Frida Holm, Rosita Bergström Tengzelius, Outi Hovatta, Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Alexandre E, Baze A, Parmentier C, Desbans C, Pekthong D, Gerin B, Wack C, Bachellier P, Heyd B, Weber JC, Richert L. Plateable cryopreserved human hepatocytes for the assessment of cytochrome P450 inducibility: experimental condition-related variables affecting their response to inducers. Xenobiotica 2012; 42:968-79. [DOI: 10.3109/00498254.2012.676693] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Seeliger C, Culmes M, Schyschka L, Yan X, Damm G, Wang Z, Kleeff J, Thasler WE, Hengstler J, Stöckle U, Ehnert S, Nüssler AK. Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future application for urea detoxification. Cell Transplant 2012; 22:119-131. [PMID: 22507189 DOI: 10.3727/096368912x638946] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte transplantation is considered to be an alternative to orthotopic liver transplantation. Cells can be used to bridge patients waiting for a donor organ, decrease mortality in acute liver failure, and support metabolic liver diseases. The limited availability of primary human hepatocytes for such applications has led to the generation of alternative hepatocyte-like cells from various adult stem or precursor cells. The aim of this study was to generate hepatocyte-like cells from adipose-derived mesenchymal stem cells (Ad-MSCs) for clinical applications, which are available "off the shelf." Epigenetic changes in hepatocyte-like cells were induced by 5-azacytidine, which, in combination with other supplements, leads to significantly improved metabolic and enzymatic activities compared to nontreated cells. Cells with sufficient hepatic features were generated with a four-step protocol: 5-azacytidine (step 1); epidermal growth factor (step 2); fibroblast growth factor-4, dexamethasone, insulin-transferrin-sodium-selenite, and nicotinamide (step 3); and hepatocyte growth factor, dexamethasone, insulin-transferrin-sodium-selenite, and nicotinamide (step 4). Generated differentiated cells had higher phase I (CYP1A1/2, CYP2E1, CYP2B6, CYP3A4) and phase II activities compared to the undifferentiated cells. A strong expression of CYP3A7 and a weak expression of 3A4, as well as the important detoxification markers α-fetoprotein and albumin, could also be detected at the mRNA level. Importantly, urea metabolism (basal, NH4-stimulated, NH4- and ornithine-stimulated) was comparable to freshly isolated human hepatocytes, and unlike cryopreserved human hepatocytes, this activity was maintained after 6 months of cryopreservation. These findings suggest that these cells may be suitable for clinical application, especially for treatment of urea cycle disorders.
Collapse
Affiliation(s)
- C Seeliger
- Technical University Munich, MRI, Department of Trauma Surgery, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Turner RA, Mendel G, Wauthier E, Barbier C, Reid LM. Hyaluronan-supplemented buffers preserve adhesion mechanisms facilitating cryopreservation of human hepatic stem/progenitor cells. Cell Transplant 2012; 21:2257-66. [PMID: 22472355 DOI: 10.3727/096368912x637000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The supply of human hepatic stem cells (hHpSCs) and other hepatic progenitors has been constrained by the limited availability of liver tissues from surgical resections, the rejected organs from organ donation programs, and the need to use cells immediately. To facilitate accessibility to these precious tissue resources, we have established an effective method for serum-free cryopreservation of the cells, allowing them to be stockpiled and stored for use as an off-the-shelf product for experimental or clinical programs. The method involves use of buffers, some serum-free, designed for cryopreservation and further supplemented with hyaluronans (HA) that preserve adhesion mechanisms facilitating postthaw culturing of the cells and preservation of functions. Multiple cryopreservation buffers were found to yield high viabilities (80-90%) of cells on thawing of the progenitor cells. Serum-free CS10 supplemented with 0.05% hyaluronan proved the most effective, both in terms of viabilities of cells on thawing and in yielding cell attachment and formation of expanding colonies of cells that stably maintain the stem/progenitor cell phenotype. Buffers to which 0.05 or 0.1% HAs were added showed cells postthaw to be phenotypically stable as stem/progenitors, as well as having a high efficiency of attachment and expansion in culture. Success correlated with improved expression of adhesion molecules, particularly CD44, the hyaluronan receptor, E-cadherin, β4 integrin in hHpSCs, and β1 integrins in hepatoblasts. The improved methods in cryopreservation offer more efficient strategies for stem cell banking in both research and potential therapy applications.
Collapse
Affiliation(s)
- Rachael A Turner
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
31
|
Gramignoli R, Green ML, Tahan V, Dorko K, Skvorak KJ, Marongiu F, Zao W, Venkataramanan R, Ellis ECS, Geller D, Breite AG, Dwulet FE, McCarthy RC, Strom SC. Development and application of purified tissue dissociation enzyme mixtures for human hepatocyte isolation. Cell Transplant 2011; 21:1245-1260. [PMID: 22080793 DOI: 10.3727/096368911x600939] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human hepatocyte transplantation is gaining acceptance for the treatment of liver diseases. However, the reagents used to isolate hepatocytes from liver tissue are not standardized and show lot-to-lot variability in enzyme activity and endotoxin contamination. For clinical application, highly purified reagents are preferable to crude digest preparations. A purified tissue dissociating enzyme (TDE) preparation (CIzyme(TM) purified enzymes) was developed based on the enzyme compositions found in a superior lot of collagenase previously used by our group for human hepatocyte isolation. The performance of this enzyme preparation was compared to collagenase type XI on 110 liver cases by assessing hepatocyte yield, viability, and seven other functional assays that included plating efficiency, basal and induced CYP450 activities, phase II conjugation activity, and ammonia metabolism. No statistically significant difference was observed between these TDEs when they were used to isolate hepatocytes from liver resections or organ donor tissue on 54 hepatocyte isolations with type XI enzyme and 56 isolations using CIzyme(TM). These results show that a highly purified and defined TDE preparation can be formulated that provides excellent performance with respect to viability, yield, and functional activity of the isolated cells. In addition to reproducible formulation, these purified enzyme products have only 2-3% of the endotoxin of crude enzyme preparations. These results show that purified enzymes such as CIzyme(TM) will be a safe and effective for the isolation of human hepatocytes for clinical transplants.
Collapse
Affiliation(s)
- Roberto Gramignoli
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hang HL, Zhang L, Shi XL, Bian JM, Ding YT. Isolation, culture and cryopreservation of adult human hepatocytes. Shijie Huaren Xiaohua Zazhi 2011; 19:2016-2021. [DOI: 10.11569/wcjd.v19.i19.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a stable method for the isolation, culture and cryopreservation of adult primary hepatocytes to provide a potential hepatocyte resource for the treatment of acute and chronic liver diseases using hepatocyte transplantation and bioartificial liver support systems, and for the use of hepatocytes as an in vitro model of the liver.
METHODS: Adult hepatocytes were isolated from 20 separate donors using a two-step extracorporeal collagenase perfusion technique. The hepatocytes were preincubated in HepatoZYME-SFM medium for 2, 6, 12, 24, 36, 48 or 72 h, transferred to HepatoZYME-SFM medium containing 10% FBS and 10% DMSO, immediately put into an isopropanol progressive freezing container at -80 ℃ overnight, and immersed in liquid nitrogen the next day. During the post-thaw culture period, cell viability, plating efficiency, albumin secretion and urea synthesis were analyzed.
RESULTS: The viability and plating efficiency of hepatocytes isolated using the two-step extracorporeal collagenase perfusion technique were 75.0% ± 4.6% and 72.0% ± 6.0%, respectively. Preincubation at 4 ℃ for 12 or 24 hours proved to be optimal for albumin secretion. Compared to the immediate cryopreservation group, significant improvement was observed in viability (61.4% ± 4.8%, 62.0% ± 5.6% vs 53.4% ± 4.2%, both P < 0.05), plating efficiency (63.2% ± 5.8%, 62.6% ± 3.6% vs 55.2% ± 4.6%, both P < 0.05), albumin secretion and urea synthesis (P < 0.05) in cells preincubated at 4 ℃ for 12 and 24 hours.
CONCLUSION: The two-step extracorporeal collagenase perfusion technique provides a novel, simple, and reliable method for hepatocyte isolation. Preincubation of human hepatocytes at 4 ℃ for 12 to 24 hours prior to cryopreservation allows to obtain hepatocytes ideal for use in pharmacotoxicology, bioartificial liver and cell therapy.
Collapse
|
33
|
The homeobox gene HLXB9 is upregulated in a morphological subset of poorly differentiated hepatocellular carcinoma. Virchows Arch 2011; 458:697-708. [PMID: 21484430 DOI: 10.1007/s00428-011-1070-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/09/2011] [Accepted: 03/21/2011] [Indexed: 12/12/2022]
Abstract
The prognostic outcome for hepatocellular carcinoma (HCC) remains poor. Disease progression is accompanied by dedifferentiation of the carcinoma, a process that is not well understood. The aim of this study was to get more insight into the molecular characteristics of dedifferentiated carcinomas using high throughput techniques. Microarray-based global gene expression analysis was performed on five poorly differentiated HCC cell lines compared with non-neoplastic hepatic controls and a set of three cholangiolar carcinoma (CC) cell lines. The gene with the highest upregulation was HLXB9. HLXB9 is a gene of the homeobox genfamily important for the development of the pancreas. RT-PCR confirmed the upregulation of HLXB9 in surgical specimens of carcinoma tissue, suggesting its biological significance. Interestingly, HLXB9 upregulation was primary observed in poorly differentiated HCC with a pseudoglandular pattern compared with a solid pattern HCC or in moderate or well-differentiated HCC. Additional the expression of translated HLXB9, the protein HB9 (NCBI: NP_001158727), was analyzed by western blotting. Expression of HB9 was only detected in the cytoplasm but not in the nuclei of the HCC cells. For validation CC were also investigated. Again, we found an upregulation of HLXB9 in CC cells accompanied by an expression of HB9 in the cytoplasms of these tumor cells, respectively. In conclusion, homeobox HLXB9 is upregulated in poorly differentiated HCC with a pseudoglandular pattern. The translated HB9 protein is found in the cytoplasm of these HCC and CC. We therefore assume HLXB9 as a possible link in the understanding of the development of HCC and CC, respectively.
Collapse
|
34
|
Lu JN, Wang CC, Young TH. The Behaviors of Long-Term Cryopreserved Human Hepatocytes on Different Biomaterials. Artif Organs 2011; 35:E65-72. [DOI: 10.1111/j.1525-1594.2010.01191.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Török E, Lutgehetmann M, Bierwolf J, Melbeck S, Düllmann J, Nashan B, Ma PX, Pollok JM. Primary human hepatocytes on biodegradable poly(l-lactic acid) matrices: a promising model for improving transplantation efficiency with tissue engineering. Liver Transpl 2011; 17:104-14. [PMID: 21280182 DOI: 10.1002/lt.22200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplantation is an established treatment for acute and chronic liver disease. However, because of the shortage of donor organs, it does not fulfill the needs of all patients. Hepatocyte transplantation is promising as an alternative method for the treatment of end-stage liver disease and as bridging therapy until liver transplantation. Our group has been working on the optimization of matrix-based hepatocyte transplantation. In order to increase cell survival after transplantation, freshly isolated human hepatocytes were seeded onto biodegradable poly(l-lactic acid) (PLLA) polymer scaffolds and were cultured in a flow bioreactor. PLLA discs were seeded with human hepatocytes and exposed to a recirculated medium flow for 6 days. Human hepatocytes formed spheroidal aggregates with a liver-like morphology and active metabolic function. Phase contrast microscopy showed increasing numbers of spheroids of increasing diameter during the culture period. Hematoxylin and eosin histology showed viable and intact hepatocytes inside the spheroids. Immunohistochemistry confirmed sustained hepatocyte function and a preserved hepatocyte-specific cytoskeleton. Albumin, alpha-1-antitrypsin, and urea assays showed continued production during the culture period. Northern blot analysis demonstrated increasing albumin signals. Scanning electron micrographs showed hepatocyte spheroids with relatively smooth undulating surfaces and numerous microvilli. Transmission electron micrographs revealed intact hepatocytes and junctional complexes with coated pits and vesicles inside the spheroids. Therefore, we conclude that primary human hepatocytes, precultured in a flow bioreactor on a PLLA scaffold, reorganize to form morphologically intact liver neotissue, and this might offer an optimized method for hepatocyte transplantation because of the expected reduction of the initial cell loss, the high regenerative potential in vivo, and the preformed functional integrity.
Collapse
Affiliation(s)
- Eva Török
- Departments of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lübberstedt M, Müller-Vieira U, Mayer M, Biemel KM, Knöspel F, Knobeloch D, Nüssler AK, Gerlach JC, Zeilinger K. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods 2011; 63:59-68. [PMID: 20460162 DOI: 10.1016/j.vascn.2010.04.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/15/2010] [Accepted: 04/28/2010] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Primary human hepatocytes are considered as a highly predictive in vitro model for preclinical drug metabolism studies. Due to the limited availability of human liver tissue for cell isolation, there is a need of alternative cell sources for pharmaceutical research. METHODS In this study, the metabolic activity and long-term stability of the human hepatoma cell line HepaRG were investigated in comparison to primary human hepatocytes (pHH). Hepatocyte-specific parameters (albumin and urea synthesis, galactose and sorbitol elimination) and the activity of human-relevant cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were assayed in both groups over a period of 14 days subsequently to a two week culture period in differentiated state in case of the HepaRG cells, and compared with those of cryopreserved hepatocytes in suspension. In addition, the inducibility of CYP enzymes and the intrinsic clearances of eleven reference drugs were determined. RESULTS The results show overall stable metabolic activity of HepaRG cells over the monitored time period. Higher albumin production and galactose/sorbitol elimination rates were observed compared with pHH, while urea production was not detected. CYP enzyme-dependent drug metabolic capacities were shown to be stable over the cultivation time in HepaRG cells and were comparable or even higher (CYP2C9, CYP2D6, CYP3A4) than in pHH, whereas commercially available hepatocytes showed a different pattern The intrinsic clearance rates of reference drugs and enzyme induction of most CYP enzymes were similar in HepaRG cells and pHH. CYP1A2 activity was highly inducible in HepaRG by β-naphthoflavone. DISCUSSION In conclusion, the results from this study indicate that HepaRG cells could provide a suitable alternative to pHH in pharmaceutical research and development for metabolism studies such as CYP induction or sub-chronic to chronic hepatotoxicity studies.
Collapse
Affiliation(s)
- Marc Lübberstedt
- Division of Experimental Surgery, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakamura A, Ueno T, Yagi Y, Okuda K, Ogata T, Nakamura T, Torimura T, Iwamoto H, Ramadoss S, Sata M, Tsutsumi V, Yasuda K, Tomiyasu Y, Obayashi K, Tashiro K, Kuhara S. Human primary cultured hepatic stellate cells can be cryopreserved. Med Mol Morphol 2010; 43:107-15. [PMID: 20683699 DOI: 10.1007/s00795-009-0484-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/04/2009] [Indexed: 12/28/2022]
Abstract
We compared the morphological and functional characteristics of cultured unfrozen hepatic stellate cells (HSCs) and cryopreserved HSCs obtained from human livers. We used liver tissues obtained by surgical resection from patients with metastatic liver cancer or with hepatocellular carcinoma. HSCs were isolated and allowed to spread in culture. Comparison of morphological and functional features between the unfrozen HSCs and cryopreserved HSCs was performed at each passage using the following techniques: light microscopy, immunohistochemistry, cell growth curve, metallothionein (MTT) assay, and PI staining, Western blot, real-time polymerase chain reaction (PCR), and gene expression analysis using microarrays. The purity of HSCs was more than 90% in all passages. alpha-Smooth muscle actin (SMA-)positive HSCs gradually increased in successive passages, and the positive cell rate and rate of increase in cell number were similar in both groups. Expression of platelet-derived growth factor (PDGF) receptor, transforming growth factor (TGF)-beta receptor, and alpha-SMA mRNAs and protein was similar during each passage in the two groups. Gene expression was nearly identical at each passage in unfrozen and frozen/thawed samples obtained from the same patient. In conclusion, an adequate protocol for the cryopreservation of human primary cultured HSCs could be established.
Collapse
Affiliation(s)
- Anna Nakamura
- Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang ZX, Sha H, Li QY, Zhang QH, Li AQ, Lin H, Gao Y. Hypothermic storage of hepatocytes used for bioartificial liver support system: current status and recent advances. Shijie Huaren Xiaohua Zazhi 2010; 18:1792-1798. [DOI: 10.11569/wcjd.v18.i17.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The problem that high-quality hepatocytes are difficult to obtain restricts the use of bioartificial liver support system (BLASS) in clinical practice. Finding an effective way to preserve hepatocytes and constructing a "ready-to-use" hepatocyte bank would efficiently promote the development of the BLASS. Nowadays, the methods for hypothermic storage of hepatocytes could be classified into two types: conventional hypothermic storage at 4 °C or subzero nonfreezing storage, and cryopreservation at -80 °C or -196 °C. Each type of hypothermic storage method has its advantages and disadvantages. Many factors may affect the effect of hypothermic storage (cryopreservation), such as storage solution and cryoprotective agent. Although the precise mechanism underlying the death of hepatocytes during hypothermic storage is not well understood, numerous studies have indicated that apoptosis plays an important role in hypothermic storage injury.
Collapse
|
39
|
Mingoia RT, Glover KP, Nabb DL, Yang CH, Snajdr SI, Han X. Cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss): a validation study to support their application in bioaccumulation assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3052-3058. [PMID: 20196591 DOI: 10.1021/es903909g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Determination of biotransformation rates of xenobiotics in freshly isolated trout hepatocytes has been demonstrated to significantly improve the performance of bioaccumulation assessment models. In order to promote this in vitro approach, trout hepatocytes need to be cryopreserved to facilitate their availability while ensuring their metabolic competency. In the present study, we obtained basal level metabolic enzyme activities for cytochrome P450 (CYP) 1A, CYP3A, glutathione-S-transferase, and uridine 5'-diphospho-glucuronosyltransferase from trout hepatocytes cryopreserved for various periods of time up to three months and compared their values with those obtained from freshly isolated hepatocytes. Similarly, we compared intrinsic clearance (CL(int)) values determined in cryopreserved trout hepatocytes to those determined in freshly isolated hepatocytes for reference compounds molinate, michler's ketone, 4-nonylphenol, 2,4-ditert-butylphenol, benzo(a)pyrene, and pyrene. Our results show that cryopreserved trout hepatocytes maintained greater than 75% of their basal level enzyme activities and greater than 72% of xenobiotic biotransformation capabilities, regardless of the length of cryostorage. As a result, bioconcentration factors of the reference compounds were adequately predicted based on the CL(int) values. We simulated the condition for shipping cryopreserved trout hepatocytes and demonstrated that 24 h dry ice storage did not negatively affect the rates of xenobiotic biotransformation. We conclude that cryopreserved trout hepatocytes are suitable for biotransformation rate determination of xenobiotics in vitro, and therefore, are an acceptable alternative to freshly isolated trout hepatocytes in the application in bioaccumulation assessment.
Collapse
Affiliation(s)
- Robert T Mingoia
- DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hang H, Shi X, Gu GX, Wu Y, Gu J, Ding Y. In vitro analysis of cryopreserved alginate-poly-L-lysine-alginate-microencapsulated human hepatocytes. Liver Int 2010; 30:611-22. [PMID: 20070514 DOI: 10.1111/j.1478-3231.2009.02197.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND The availability of well-characterized human hepatocytes that can be frozen and thawed will be critical for cell therapy. We addressed whether human hepatocytes can recover after microencapsulated cryopreservation and investigated whether these cryopreserved microencapsulated hepatocytes can be used for clinical applications. METHODS Adult hepatocytes of 18 separate donors were isolated with a two-step extracorporeal collagenase perfusion technique. After pre-incubation at 4 degrees C for 12-24 h in HepatoZYME-SFM, hepatocytes were microencapsulated using alginate-poly-L-lysine-alginate microcapsules. The microencapsulated hepatocytes were transferred to a complete medium containing 10% dimethyl sulphoxide. They were immediately placed into an isopropanol progressive freezing container at -80 degrees C overnight and immersed in liquid nitrogen the next day. During the post-thawing culture period, albumin secretion, urea synthesis, cell cycle, mRNA and protein levels, as well as the morphology and pathology structure of pre-incubation before microencapsulated cryopreservation (PMC) groups were analysed. RESULTS Compared with the immediate cryopreservation (IC) groups, we found significant improvement in the mRNA and protein levels in the attached cells, and higher secretion of albumin and urea levels after thawing. In the attached cultured human cryopreserved/thawed hepatocytes from the PMC group, albumin production was not significantly different from those of the direct culture groups on days 2, 3 and 4. The preserved morphology in the PMC group compared with the IC group was obvious. CONCLUSIONS The results of the present study suggested recovery of the functional and morphological integrity of human hepatocytes after pre-incubation at 4 degrees C for 12-24 h before microencapsulated cryopreservation. These studies offer the possibility for clinical applications in pharmacotoxicology, bioartificial liver and cell therapy in humans.
Collapse
Affiliation(s)
- Hualian Hang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical College of Nanjing University, Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | | | | | | | | | | |
Collapse
|
41
|
Terry C, Dhawan A, Mitry RR, Lehec SC, Hughes RD. Optimization of the cryopreservation and thawing protocol for human hepatocytes for use in cell transplantation. Liver Transpl 2010; 16:229-37. [PMID: 20104500 DOI: 10.1002/lt.21983] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryopreservation of human hepatocytes is important for their use in hepatocyte transplantation. On thawing, cryopreserved hepatocytes often have reduced viability and metabolic function in comparison with fresh cells. The aim of this study was to modify the different steps in the standard cryopreservation procedure in an attempt to improve the overall outcome. Human hepatocytes with a viability of 69% +/- SD 16% were isolated from donor livers with a collagenase perfusion technique. Different cell densities, concentrations, rates, and methods of addition of dimethyl sulfoxide were tested for the freezing solution. Modified controlled-rate freezer programs were tested to obtain a linear decrease in the temperature. Once they were frozen, the storage time and thawing method for hepatocytes were investigated. The effects on thawed cell viability and attachment, lactate dehydrogenase release, cytochrome P450 1A1/2 activity, and albumin synthesis were determined. The results were used to produce an improved cryopreservation protocol suitable for good manufacturing practice conditions. With a cell density of 10(7) cells/mL in University of Wisconsin solution containing 300 mM glucose, 10% (vol/vol) dimethyl sulfoxide was added dropwise over 5 minutes, and was immediately frozen. Thawing was done rapidly at 37 degrees C, and dilution was performed with Eagle's minimum essential medium containing 300 mM glucose and 4% human serum albumin. Hepatocytes could be stored at -140 degrees C without significant further loss of function for up to 3 years. With this protocol, hepatocytes had a viability of 52% +/- 9%, an attachment efficiency of 48% +/- 8%, and lactate dehydrogenase leakage of 17% +/- 4%. This protocol is currently in use to cryopreserve hepatocytes for use in cell transplantation at our center.
Collapse
Affiliation(s)
- Claire Terry
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London SE5 9PJ, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Hang H, Shi X, Gu G, Wu Y, Ding Y. A simple isolation and cryopreservation method for adult human hepatocytes. Int J Artif Organs 2010; 32:720-7. [PMID: 19943233 DOI: 10.1177/039139880903201003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objective of this study was to establish a stable method of isolation, culture and cryopreservation of adult primary hepatocytes to provide potential hepatocyte resources for the treatment of acute and chronic liver diseases by hepatocyte transplantation and bioartificial liver support systems, and for the use of hepatocytes as an in vitro model of the liver. METHODS Adult hepatocytes of 20 separate donors were isolated with a two-step extracoporeal collagenase perfusion technique. Seven preincubation time points (2h, 6h, 12h, 24h, 36h, 48h and 72h) were selected, then the hepatocytes were transferred to HepatoZYME-SFM medium containing 10% FBS and 10% DMSO, and were immediately put into an isopropanol progressive freezing container at -80 degrees C overnight and immersed in liquid nitrogen the next day. During the postthawing culture period, viability, plating efficiency, albumin secretion and urea synthesis were analyzed. RESULTS The viability and plating efficiency of hepatocytes after partial hepatectomy using two-step extracorporeal collagenase perfusion technique were 75.0+/-4.6% and 72.0+/-6.0% respectively. Preincubation at 4? for 12 hours or 24 hours proved to be the optimal time at which the albumin secretion was higher than at other time points (p<0.05). Compared to the immediate cryopreservation groups (IC), we also found significant improvement in viability (61.4+/-4.8%/62.0+/-5.6% vs. 53.4+/-4.2%, p<0.05), plating efficiency (63.2+/-5.8%/62.6+/-3.6% vs. 55.2+/-4.6%, p<0.05), albumin secretion and urea synthesis (p<0.05) at these time points. CONCLUSIONS The two-step extracorporeal collagenase perfusion technique after partial hepatectomy provides a novel, simple, and reliable method for hepatocyte isolation. The results of the present study suggest that recovery of human hepatocytes after isolation preincubation at 4 degrees C for 12 hours to 24 hours prior to cryopreservation can obtain hepatocytes ideal for use in pharmacotoxicology, bioartificial liver and cell therapy research purposes.
Collapse
Affiliation(s)
- Hualian Hang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical College of Nanjing University, Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | | | | | | | | |
Collapse
|
43
|
Abstract
The use of cryopreserved hepatocytes has increased in the last decade due to the improvement of the freezing and thawing methods and has even achieved acceptance by the U.S. Food and Drug Administration for use in drug-metabolising enzyme induction studies. This chapter provides an overview of the theories behind the process of cryopreservation and some of the most important advances which have led to the ability to cryopreserve hepatocytes, which when thawed retain functions similar to fresh cells. Parameters such as cell density, cryoprotectants and freezing media should be considered as well as storage conditions and thawing techniques. Special emphasis is placed on human hepatocytes but information for the cryopreservation of animal hepatocytes is also described. Finally, a suggested method for optimising cryopreservation method is outlined.
Collapse
|
44
|
Meng FY, Chen ZS, Han M, Hu XP, Zhou P. An improved purification approach with high cell viability and low cell loss for cryopreserved hepatocytes. Cryobiology 2009; 60:238-9. [PMID: 19932092 DOI: 10.1016/j.cryobiol.2009.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
A modified purification procedure is described for effectively eliminating dead cells after hepatocyte cryopreservation. Isolated hepatocytes from six pig tissue samples were cryopreserved in liquid nitrogen for 2 weeks. After thawing, we developed a pre-incubation step prior to gradient centrifugation. The hepatocytes were subsequent cultured in suspension overnight (12-16 h), and then dead cells were eliminated by Ficoll 400 purification. The results showed that a high viability (mean of 96%) of cells was obtained, with a low viable cell loss in number (2-5%), by using this modified method.
Collapse
Affiliation(s)
- Fan-ying Meng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
45
|
Bakhach J. The cryopreservation of composite tissues: Principles and recent advancement on cryopreservation of different type of tissues. Organogenesis 2009; 5:119-26. [PMID: 20046674 PMCID: PMC2781091 DOI: 10.4161/org.5.3.9583] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 01/23/2023] Open
Abstract
Cryopreservation of human cells and tissue has generated great interest in the scientific community since 1949, when the cryoprotective activity of glycerol was discovered. Nowadays, it is possible to reach the optimal conditions for the cryopreservation of a homogeneous cell population or a one cell-layer tissue with the preservation of a high pourcentage of the initial cells. Success is attained when there is a high recovery rate of cell structures and tissue components after thawing. It is more delicate to obtain cryopreservation of composite tissues and much more a whole organ. The present work deals with fundamental principles of the cryobiology of biological structures, with special attention to the transfer of liquids between intra and extracellular compartments and the initiation of the formation and aggregation of ice during freezing. The consequences of various physical and chemical reactions on biological tissue are described for different cryoprotective agents. Finally, we report a review of results on cyropreservation of various tissues, on the one hand, and various organs, on the other. We also report immunomodulation of antigenic responses to cryopreserved cells and organs.
Collapse
Affiliation(s)
- Joseph Bakhach
- U.m.l Urgence Main Liban; Bellevue Medical Center; Mansourieh, Beirut Lebanon
| |
Collapse
|
46
|
Abstract
Successful cryopreservation of hepatocytes is essential for their use in hepatocyte transplantation. Cryopreservation allows hepatocytes to be available for emergency treatment of acute liver failure and also for planned treatment of liver-based metabolic disorders. In addition, cryopreservation of human hepatocytes can facilitate their use in metabolism and toxicity studies. Cryopreservation can adversely affect the viability and function, especially reduce the attachment efficiency, of hepatocytes on thawing.The cryopreservation process can be divided into steps so that improvements can be made on the 'standard' protocols that are followed in some laboratories. These steps are as follows: pre-incubation of cells; freezing solution, cryoprotectants and cytoprotectants; freezing process; storage; thawing; post-thawing culture. This chapter presents an optimised protocol for cryopreservation of human hepatocytes as developed at King's College Hospital.
Collapse
Affiliation(s)
- Claire Terry
- Institute of Liver Studies, King's College London School of Medicine London, UK
| | | |
Collapse
|
47
|
Illouz S, Alexandre E, Pattenden C, Mark L, Bachellier P, Webb M, Berry D, Dennison A, Richert L. Differential effects of curcumin on cryopreserved versus fresh primary human hepatocytes. Phytother Res 2009; 22:1688-91. [PMID: 18697189 DOI: 10.1002/ptr.2545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Curcumin (CUR) is a major component of a dietary spice derived from the roots of Curcuma longa. It has strong antioxidant activities and hepatoprotective properties. Primary human hepatocytes are clinically used in transplantation or in bioartificial liver devices for the treatment of patients with liver failure. Fresh and cryopreserved hepatocytes are also used in vitro for the study of drugs in pharmacotoxicology. We aimed to assess whether CUR could improve human liver cell viability and prevent oxidative damage responsible for large cell loss during cell preparation. Our study showed beneficial effects of CUR (25 microM) on freshly isolated human hepatocytes, increasing significantly metabolic activity of viable attached cells when seeded with CUR for 24 h. However CUR added during the cell isolation process did not have any significant impact on cell isolation outcomes or on cryopreservation outcomes. Conversely, CUR added during the thawing of frozen cells had a negative effect on the cell attachment capacity of hepatocytes that were cryopreserved in the presence or absence of CUR. In conclusion, although having positive effects on viability and challenge of oxidative stress on cultured human hepatocytes, CUR had no beneficial effect on cell isolation or cryopreservation outcomes.
Collapse
Affiliation(s)
- Severine Illouz
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nishimura M, Narimatsu S, Naito S. Evaluation of Induction Potency of New Drug Candidates on CYP1A2 and CYP3A4 using Real-Time One-Step RT-PCR in Primary Cultures of Cryopreserved Human Hepatocytes. Drug Metab Pharmacokinet 2009; 24:446-50. [DOI: 10.2133/dmpk.24.446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Blanchard N, Alexandre E, Abadie C, Lavé T, Heyd B, Mantion G, Jaeck D, Richert L, Coassolo P. Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 2008; 35:1-15. [PMID: 15788364 DOI: 10.1080/00498250400021820] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Various incubation conditions of human hepatocytes were compared for their accuracy in predicting the in vivo hepatic clearance (CL(H)) of model compounds. The test compounds were the highly cleared, low protein bound naloxone (in vivo CL(H) = 25 ml min(-1) kg(-1); free fraction = 0.6), the medium clearance, highly protein bound midazolam (CL(H) = 12 ml min(-1) kg(-1); free fraction = 0.04) and the low clearance, highly protein bound bosentan (CL(H) = 3.9 ml min(-1) kg(-1); free fraction = 0.02). Each compound was tested in three 'hepatocyte systems', using resections from three donors, in the presence and absence of human serum. Those hepatocyte systems were: conventional primary cultures, freshly isolated suspensions and cryopreserved suspended hepatocytes. Except for a twofold overestimated CL(H) for bosentan from conventional primary cultures, and despite variable cryopreservation recoveries, similar predictions of CL(H) were recorded with all hepatocyte systems. Moreover, the CL(H) values obtained with cryopreserved suspended hepatocytes were similar to those obtained with freshly isolated suspensions. For midazolam and bosentan, the predicted in vivo CL(H) was markedly higher in the presence of serum, whereas serum had little influence on the scaled-up CL(H) of naloxone. In vivo, CL(H) was properly approached for naloxone and bosentan (particularly from experiments in the presence of serum), but it was strongly underestimated for midazolam (particularly in the absence of serum). Additional compounds need to be investigated to confirm the above findings as well as to assess why the clearances of some highly protein-bound compounds are still considerably underestimated.
Collapse
Affiliation(s)
- N Blanchard
- F. Hoffmann-La Roche AG, Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Illouz S, Nakamura T, Webb M, Thava B, Bikchandani J, Robertson G, Lloyd D, Berry D, Wada H, Dennison A. Comparison of University of Wisconsin and ET-Kyoto preservation solutions for the cryopreservation of primary human hepatocytes. Transplant Proc 2008; 40:1706-9. [PMID: 18589177 DOI: 10.1016/j.transproceed.2008.01.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/16/2008] [Indexed: 12/27/2022]
Abstract
Primary human hepatocytes are clinically used for transplantation or in bioartificial liver devices for the treatment of patients with liver failure. We aimed to assess whether an organ preservation solution containing trehalose, namely ET-Kyoto solution (ETK), could improve human liver cell viability when used for cryopreservation in comparison to the University of Wisconsin solution (UW). Our study showed beneficial effects of ETK when used in combination with other cryoprotectants on the viability of thawed hepatocytes. Indeed, no significant difference was seen between the viability of freshly isolated cells and cryopreserved cells when cryopreserved with ETK combined with other cryoprotectants. In contrast, a significant decrease of viability was observed in cells cryopreserved with UW or ETK combined with dimethysulfoxide (DMSO) only, or with UW combined with other cryoprotectants, compared to freshly isolated cells. No significant difference was observed between the four different groups of cryopreserved hepatocytes with regards to cell recovery rate or cell attachment after thawing. However, a significant decrease in cell metabolic activity was found in cells cryopreserved with UW 10% DMSO compared to the other groups. In conclusion, our study confirms the beneficial effect of ETK for the cryopreservation of human hepatocytes in combination with other cryoprotective agents.
Collapse
Affiliation(s)
- S Illouz
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|