1
|
Ikeda H. Ectodermal origin and tissue dedifferentiation in the podocyst production by the polyps of the Asian moon jelly (Aurelia coerulea). J Morphol 2024; 285:e21711. [PMID: 38840450 DOI: 10.1002/jmor.21711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
The histological origin of podocysts in scyphozoans has long been undetermined, with uncertainty whether they arise from mesenchymal amoebocytes or stalk and pedal disc ectoderm in polyps. Histological investigation on the pedal disc was difficult due to the settlement of polyps on hard substrates. In this study, we investigated the histological characteristics of polyps during podocyst production in Asian moon jelly (Aurelia coerulea) with utilizing those attached on thin polystyrene substrates. Fine histological features of the pedal disc became possible after the substrates were decomposed during histological processing. Our findings unequivocally demonstrate that the cell mass of podocysts originates from the ectoderm of the pedal disc and the stalk without the involvement of amoebocytes in the mesoglea. Preceding the podocyst formation, the pedal disc undergoes enlargement facilitated by the elongated stalk ectodermal cells, which attach to a substrate. Subsequently, the pedal disc ectoderm give rise to the primary podocyst cells with accumulating nutrient granules in the cytoplasm and forming the cyst capsule cooperatively with the invaginated pedal disc ectoderm. Direct transformation from the ectodermal cells to podocyst cells suggests that podocyst formation involves tissue dedifferentiation. Throughout the period of podocyst production, the gastrodermis of polyps is physically separated from the ectoderm by the mesoglea and shows no histological changes, and no amoebocytes appear in the mesoglea. These histological properties are totally different from those in other modes of asexual reproduction, which incorporate the endoderm of polyps, suggesting the developmental and evolutionary differences between these asexual reproductions and podocyst production in Scyphozoa.
Collapse
Affiliation(s)
- Hideki Ikeda
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
2
|
Spradling AC. The Ancient Origin and Function of Germline Cysts. Results Probl Cell Differ 2024; 71:3-21. [PMID: 37996670 DOI: 10.1007/978-3-031-37936-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wang R, Bialas AL, Goel T, Collins EMS. Mechano-Chemical Coupling in Hydra Regeneration and Patterning. Integr Comp Biol 2023; 63:1422-1441. [PMID: 37339912 DOI: 10.1093/icb/icad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
The freshwater cnidarian Hydra can regenerate from wounds, small tissue fragments and even from aggregated cells. This process requires the de novo development of a body axis and oral-aboral polarity, a fundamental developmental process that involves chemical patterning and mechanical shape changes. Gierer and Meinhardt recognized that Hydra's simple body plan and amenability to in vivo experiments make it an experimentally and mathematically tractable model to study developmental patterning and symmetry breaking. They developed a reaction-diffusion model, involving a short-range activator and a long-range inhibitor, which successfully explained patterning in the adult animal. In 2011, HyWnt3 was identified as a candidate for the activator. However, despite the continued efforts of both physicists and biologists, the predicted inhibitor remains elusive. Furthermore, the Gierer-Meinhardt model cannot explain de novo axis formation in cellular aggregates that lack inherited tissue polarity. The aim of this review is to synthesize the current knowledge on Hydra symmetry breaking and patterning. We summarize the history of patterning studies and insights from recent biomechanical and molecular studies, and highlight the need for continued validation of theoretical assumptions and collaboration across disciplinary boundaries. We conclude by proposing new experiments to test current mechano-chemical coupling models and suggest ideas for expanding the Gierer-Meinhardt model to explain de novo patterning, as observed in Hydra aggregates. The availability of a fully sequenced genome, transgenic fluorescent reporter strains, and modern imaging techniques, that enable unprecedented observation of cellular events in vivo, promise to allow the community to crack Hydra's secret to patterning.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - April L Bialas
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
| | - Tapan Goel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
4
|
Traffic light Hydra allows for simultaneous in vivo imaging of all three cell lineages. Dev Biol 2022; 488:74-80. [DOI: 10.1016/j.ydbio.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
5
|
Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Student S, Leśniewska M, Rost-Roszkowska M. Ovaries and testes of Lithobius forficatus (Myriapoda, Chilopoda) react differently to the presence of cadmium in the environment. Sci Rep 2022; 12:6705. [PMID: 35469038 PMCID: PMC9038927 DOI: 10.1038/s41598-022-10664-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
Proper reproduction depends on properly functioning gonads (ovaries and testes). Many xenobiotics, including heavy metals, can cause changes in somatic and germ line cells, thus damaging the reproductive capacity. The aim of this study was to investigate the effect of the heavy metal cadmium on the gonads, including germ line and somatic cells. It is important to determine whether cell death processes are triggered in both types of cells in the gonads, and which gonads are more sensitive to the presence of cadmium in the environment. The research was conducted on the soil-dwelling arthropod Lithobius forficatus (Myriapoda, Chilopoda), which is common for European fauna. Animals were cultured in soil supplemented with Cd for different periods (short- and long-term treatment). Gonads were isolated and prepared for qualitative and quantitative analysis, which enabled us to describe all changes which appeared after both the short- and long-term cadmium treatment. The results of our study showed that cadmium affects the structure and ultrastructure of both gonads in soil-dwelling organisms including the activation of cell death processes. However, the male germ line cells are more sensitive to cadmium than female germ line cells. We also observed that germ line cells are protected by the somatic cells of both gonads.
Collapse
Affiliation(s)
- Izabela Poprawa
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Małgorzata Leśniewska
- Department of General Zoology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
6
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
7
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
8
|
Cazet JF, Cho A, Juliano CE. Generic injuries are sufficient to induce ectopic Wnt organizers in Hydra. eLife 2021; 10:60562. [PMID: 33779545 PMCID: PMC8049744 DOI: 10.7554/elife.60562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Adrienne Cho
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
9
|
Steichele M, Sauermann LS, König AC, Hauck S, Böttger A. Ancestral role of TNF-R pathway in cell differentiation in the basal metazoan Hydra. J Cell Sci 2021; 134:224109. [PMID: 33277380 DOI: 10.1242/jcs.255422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Tumour necrosis factor receptors (TNF-Rs) and their ligands, tumour necrosis factors, are highly conserved proteins described in all metazoan phyla. They function as inducers of extrinsic apoptotic signalling and facilitate inflammation, differentiation and cell survival. TNF-Rs use distinct adaptor molecules to activate signalling cascades. Fas-associated protein with death domain (FADD) family adaptors often mediate apoptosis, and TNF-R-associated factor (TRAF) family adaptors mediate cell differentiation and inflammation. Most of these pathway components are conserved in cnidarians, and, here, we investigated the Hydra TNF-R. We report that it is related to the ectodysplasin receptor, which is involved in epithelial cell differentiation in mammals. In Hydra, it is localised in epithelial cells with incorporated nematocytes in tentacles and body column, indicating a similar function. Further experiments suggest that it interacts with the Hydra homologue of a TRAF adaptor, but not with FADD proteins. Hydra FADD proteins colocalised with Hydra caspases in death effector filaments and recruited caspases, suggesting that they are part of an apoptotic signalling pathway. Regulating epithelial cell differentiation via TRAF adaptors therefore seems to be an ancient function of TNF-Rs, whereas FADD-caspase interactions may be part of a separate apoptotic pathway.
Collapse
Affiliation(s)
- Mona Steichele
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Lara S Sauermann
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Ann-Christine König
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Stefanie Hauck
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Angelika Böttger
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| |
Collapse
|
10
|
Shikina S, Chen CC, Chiu YL, Tsai PH, Chang CF. Apoptosis in gonadal somatic cells of scleractinian corals: implications of structural adjustments for gamete production and release. Proc Biol Sci 2020; 287:20200578. [PMID: 32605522 DOI: 10.1098/rspb.2020.0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apoptosis is an evolutionarily conserved process of programmed cell death. Here, we show structural changes in the gonads caused by apoptosis during gametogenesis in the scleractinian coral, Euphyllia ancora. Anatomical and histological analyses revealed that from the non-spawning to the spawning season, testes and ovaries increased in size due to active proliferation, differentiation and development of germ cells. Additionally, the thickness and cell density of the gonadal somatic layer decreased significantly as the spawning season approached. Further analyses demonstrated that the changes in the gonadal somatic layer were caused by apoptosis in a subpopulation of gonadal somatic cells. The occurrence of apoptosis in the gonadal somatic layer was also confirmed in other scleractinian corals. Our findings suggest that decreases in thickness and cell density of the gonadal somatic layer are structural adjustments facilitating oocyte and spermary (male germ cell cluster) enlargement and subsequent gamete release from the gonads. In animal reproduction, apoptosis in germ cells is an important process that controls the number and quality of gametes. However, apoptosis in gonadal somatic cells has rarely been reported among metazoans. Thus, our data provide evidence for a unique use of apoptosis in animal reproduction.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Department of AquSaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,Department of AquSaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
11
|
A novel bilateral grafting technique for studying patterning in Hydra. Dev Biol 2020; 462:60-65. [PMID: 32165148 DOI: 10.1016/j.ydbio.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 11/21/2022]
Abstract
Control of patterning and the specification of body axes are fundamental aspects of animal development involving complex interactions between chemical, physical, and genetic signals. The freshwater polyp Hydra has long been recognized as a useful model system to address these questions due to its simple anatomy, optical transparency, and strong regenerative abilities, which enabled clever grafting experiments to alter and probe patterning. Reliable methods exist for the transplantation of small tissue pieces into the body column or the combination of sections cut perpendicular to the body axis, which can be used to examine oral-aboral gradients and axis induction potential of tissue fragments. However, existing methods do not allow researchers to probe questions of axis alignment and lateral information exchange. We therefore developed a technique to produce chimeric animals split longitudinally along the body axis of the animal by anesthetizing the animals with the terpene linalool and threading the donor pieces onto pairs of fine glass needles. Our novel approach can be applied to study questions in Hydra research that have thus far been inaccessible, including patterning processes acting perpendicular to the oral-aboral axis and the extent of lateral cell migration.
Collapse
|
12
|
Goel T, Wang R, Martin S, Lanphear E, Collins EMS. Linalool acts as a fast and reversible anesthetic in Hydra. PLoS One 2019; 14:e0224221. [PMID: 31648269 PMCID: PMC6812832 DOI: 10.1371/journal.pone.0224221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/08/2019] [Indexed: 01/23/2023] Open
Abstract
The ability to make transgenic Hydra lines has allowed for quantitative in vivo studies of Hydra regeneration and physiology. These studies commonly include excision, grafting and transplantation experiments along with high-resolution imaging of live animals, which can be challenging due to the animal’s response to touch and light stimuli. While various anesthetics have been used in Hydra studies, they tend to be toxic over the course of a few hours or their long-term effects on animal health are unknown. Here, we show that the monoterpenoid alcohol linalool is a useful anesthetic for Hydra. Linalool is easy to use, non-toxic, fast acting, and reversible. It has no detectable long-term effects on cell viability or cell proliferation. We demonstrate that the same animal can be immobilized in linalool multiple times at intervals of several hours for repeated imaging over 2–3 days. This uniquely allows for in vivo imaging of dynamic processes such as head regeneration. We directly compare linalool to currently used anesthetics and show its superior performance. Linalool will be a useful tool for tissue manipulation and imaging in Hydra research in both research and teaching contexts.
Collapse
Affiliation(s)
- Tapan Goel
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Rui Wang
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Sara Martin
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Elizabeth Lanphear
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S. Collins
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci U S A 2018; 115:6231-6236. [PMID: 29784822 PMCID: PMC6004442 DOI: 10.1073/pnas.1713682115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Besides genetic regulation, mechanical forces have been identified as important cues in numerous developmental processes. Mechanical forces can activate biochemical cascades in a process called mechanotransduction. Recent studies in vertebrates and flies elucidated the role of mechanical forces for mesodermal gene expression. However, it remains unclear whether mechanotransduction is a universal regulatory mechanism throughout Metazoa. Here, we show in the sea anemone Nematostella vectensis that mechanical pressure can ectopically activate or restore brachyury expression. This mechanotransduction is dependent on β-catenin, similar to vertebrates. We propose that a regulatory feedback loop between genetic and mechanical gene activation exists during gastrulation and the β-catenin–dependent mechanotransduction is an ancient regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians. Although the genetic regulation of cellular differentiation processes is well established, recent studies have revealed the role of mechanotransduction on a variety of biological processes, including regulation of gene expression. However, it remains unclear how universal and widespread mechanotransduction is in embryonic development of animals. Here, we investigate mechanosensitive gene expression during gastrulation of the starlet sea anemone Nematostella vectensis, a cnidarian model organism. We show that the blastoporal marker gene brachyury is down-regulated by blocking myosin II-dependent gastrulation movements. Brachyury expression can be restored by applying external mechanical force. Using CRISPR/Cas9 and morpholino antisense technology, we also show that mechanotransduction leading to brachyury expression is β-catenin dependent, similar to recent findings in fish and Drosophila [Brunet T, et al. (2013) Nat Commun 4:1–15]. Finally, we demonstrate that prolonged application of mechanical stress on the embryo leads to ectopic brachyury expression. Thus, our data indicate that β-catenin–dependent mechanotransduction is an ancient gene regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.
Collapse
|
14
|
Roles of Germline Stem Cells and Somatic Multipotent Stem Cells in Hydra Sexual Reproduction. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Zeeshan M, Murugadas A, Ghaskadbi S, Ramaswamy BR, Akbarsha MA. Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:54-69. [PMID: 28222982 DOI: 10.1016/j.envpol.2016.12.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
The mechanisms underlying cobalt toxicity in aquatic species in general and cnidarians in particular remain poorly understood. Herein we investigated cobalt toxicity in a Hydra model from morphological, histological, developmental, and molecular biological perspectives. Hydra, exposed to cobalt (0-60 mg/L), were altered in morphology, histology, and regeneration. Exposure to standardized sublethal doses of cobalt impaired feeding by affecting nematocytes, which in turn affected reproduction. At the cellular level, excessive ROS generation, as the principal mechanism of action, primarily occurred in the lysosomes, which was accompanied by the upregulation of expression of the antioxidant genes SOD, GST, GPx, and G6PD. The number of Hsp70 and FoxO transcripts also increased. Interestingly, the upregulations were higher in the 24-h than in the 48-h time-point group, indicating that ROS overwhelmed the cellular defense mechanisms at the latter time-point. Comet assay revealed DNA damage. Cell cycle analysis indicated the induction of apoptosis accompanied or not by cell cycle arrest. Immunoblot analyses revealed that cobalt treatment triggered mitochondria-mediated apoptosis as inferred from the modulation of the key proteins Bax, Bcl-2, and caspase-3. From this data, we suggest the use of Hydra as a model organism for the risk assessment of heavy metal pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Dept. of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Anbazhagan Murugadas
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Dept. of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | | | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Rodrigues M, Ostermann T, Kremeser L, Lindner H, Beisel C, Berezikov E, Hobmayer B, Ladurner P. Profiling of adhesive-related genes in the freshwater cnidarian Hydra magnipapillata by transcriptomics and proteomics. BIOFOULING 2016; 32:1115-1129. [PMID: 27661452 PMCID: PMC5080974 DOI: 10.1080/08927014.2016.1233325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to underwater surfaces. Using transcriptome sequencing and a basal disc-specific RNA-seq combined with in situ hybridisation a highly specific set of candidate adhesive genes was identified. A de novo transcriptome assembly of 55,849 transcripts (>200 bp) was generated using paired-end and single reads from Illumina libraries constructed from different polyp conditions. Differential transcriptomics and spatial gene expression analysis by in situ hybridisation allowed the identification of 40 transcripts exclusively expressed in the ectodermal basal disc cells. Comparisons after mass spectrometry analysis of the adhesive secretion showed a total of 21 transcripts to be basal disc specific and eventually secreted through basal disc cells. This is the first study to survey adhesion-related genes in Hydra. The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra.
Collapse
Affiliation(s)
- Marcelo Rodrigues
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas Ostermann
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremeser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Eugene Berezikov
- ERIBA, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
|
18
|
Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA. ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:1-12. [PMID: 26945520 DOI: 10.1016/j.cbpc.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022]
Abstract
Copper, an essential microelement, is known to be toxic to aquatic life at concentrations higher than that could be tolerated. Copper-induced oxidative stress has been documented in vitro, yet the in vivo effects of metal-induced oxidative stress have not been extensively studied in the lower invertebrates. The objective of the present study has been to find the effect of ROS-mediated toxicity of environmentally relevant concentrations of copper at organismal and cellular levels in Hydra magnipapillata. Exposure to copper at sublethal concentrations (0.06 and 0.1mg/L) for 24 or 48h resulted in generation of significant levels of intracellular reactive oxygen species (ROS). We infer that the free radicals here originate predominantly at the lysosomes but partly at the mitochondria also as visualized by H2-DHCFDA staining. Quantitative real-time PCR of RNA extracted from copper-exposed polyps revealed dose-dependent up-regulation of all antioxidant response genes (CAT, SOD, GPx, GST, GR, G6PD). Concurrent increase of Hsp70 and FoxO genes suggests the ability of polyps to respond to stress, which at 48h was not the same as at 24h. Interestingly, the transcript levels of all genes were down-regulated at 48h as compared to 24h incubation period. Comet assay indicated copper as a powerful genotoxicant, and the DNA damage was dose- as well as duration-dependent. Western blotting of proteins (Bax, Bcl-2 and caspase-3) confirmed ROS-mediated mitochondrial cell death in copper-exposed animals. These changes correlated well with changes in morphology, regeneration and aspects of reproduction. Taken together, the results indicate increased production of intracellular ROS in Hydra on copper exposure.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Anbazhagan Murugadas
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Ramasamy Babu Rajendran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Sakamaki K, Imai K, Tomii K, Miller DJ. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. Bioessays 2015; 37:767-76. [DOI: 10.1002/bies.201500010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - David J. Miller
- Department of Molecular and Cell Biology; ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Queensland Australia
| |
Collapse
|
20
|
Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae). Micron 2015; 70:26-33. [DOI: 10.1016/j.micron.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/19/2022]
|
21
|
Naturally occurring tumours in the basal metazoan Hydra. Nat Commun 2014; 5:4222. [PMID: 24957317 DOI: 10.1038/ncomms5222] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/27/2014] [Indexed: 01/04/2023] Open
Abstract
The molecular nature of tumours is well studied in vertebrates, although their evolutionary origin remains unknown. In particular, there is no evidence for naturally occurring tumours in pre-bilaterian animals, such as sponges and cnidarians. This is somewhat surprising given that recent computational studies have predicted that most metazoans might be prone to develop tumours. Here we provide first evidence for naturally occurring tumours in two species of Hydra. Histological, cellular and molecular data reveal that these tumours are transplantable and might originate by differentiation arrest of female gametes. Growth of tumour cells is independent from the cellular environment. Tumour-bearing polyps have significantly reduced fitness. In addition, Hydra tumours show a greatly altered transcriptome that mimics expression shifts in vertebrate cancers. Therefore, this study shows that spontaneous tumours have deep evolutionary roots and that early branching animals may be informative in revealing the fundamental mechanisms of tumorigenesis.
Collapse
|
22
|
Glauber KM, Dana CE, Park SS, Colby DA, Noro Y, Fujisawa T, Chamberlin AR, Steele RE. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra. Development 2014; 140:4788-96. [PMID: 24255098 DOI: 10.1242/dev.094490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes.
Collapse
Affiliation(s)
- Kristine M Glauber
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
24
|
Vogt KSC, Harmata KL, Coulombe HL, Bross LS, Blackstone NW. Causes and consequences of stolon regression in a colonial hydroid. J Exp Biol 2011; 214:3197-205. [DOI: 10.1242/jeb.057430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SUMMARY
A cnidarian colony can be idealized as a group of feeding polyps connected by tube-like stolons. Morphological variation ranges from runner-like forms with sparse polyp and stolon development to sheet-like forms with dense polyp and stolon development. These forms have typically been considered in a foraging context, consistent with a focus on rates of polyp development relative to stolon elongation. At the same time, rates of stolon regression can affect this morphological variation; several aspects of regression were investigated in this context. More sheet-like forms were produced by periodic peroxide treatment, which induced high rates of stolon regression. Caspase inhibitors altered the effects of regression induced by peroxide or vitamin C. These inhibitors generally diminished physical regression and the abundance of associated reactive oxygen species. Caspase inhibitors also altered cellular ultrastructure, resulting in features suggestive of necrosis rather than apoptosis. At the same time, caspase inhibitors had little effect on reactive nitrogen species that are also associated with regression. Although regression is most easily triggered by pharmacological perturbations related to reactive oxygen species (e.g. peroxide or vitamin C), a variety of environmental effects, particularly restricted environments and an interaction between feeding and temperature, can also induce regression. Stolon regression may thus be a factor contributing to natural variation between runners and sheets.
Collapse
Affiliation(s)
| | - Katherine L. Harmata
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Hilary L. Coulombe
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Lori S. Bross
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Neil W. Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
25
|
Chera S, Ghila L, Wenger Y, Galliot B. Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Dev Growth Differ 2011; 53:186-201. [PMID: 21338345 DOI: 10.1111/j.1440-169x.2011.01250.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
After bisection, Hydra polyps regenerate their head from the lower half thanks to a head-organizer activity that is rapidly established at the tip. Head regeneration is also highly plastic as both the wild-type and the epithelial Hydra (that lack the interstitial cell lineage) can regenerate their head. In the wild-type context, we previously showed that after mid-gastric bisection, a large subset of the interstitial cells undergo apoptosis, inducing compensatory proliferation of the surrounding progenitors. This asymmetric process is necessary and sufficient to launch head regeneration. The apoptotic cells transiently release Wnt3, which promotes the formation of a proliferative zone by activating the beta-catenin pathway in the adjacent cycling cells. However the injury-induced signaling that triggers apoptosis is unknown. We previously reported an asymmetric immediate activation of the mitogen-activated protein kinase/ribosomal S6 kinase/cAMP response element binding protein (MAPK/RSK/CREB) pathway in head-regenerating tips after mid-gastric bisection. We show here that pharmacological inhibition of the MAPK/ERK pathway or RNAi knockdown of the RSK, CREB, CREB binding protein (CBP) genes prevents apoptosis, compensatory proliferation and blocks head regeneration. As the activation of the MAPK pathway upon injury plays an essential role in regenerating bilaterian species, these results suggest that the MAPK-dependent activation of apoptosis-induced compensatory proliferation represents an evolutionary-conserved mechanism to launch a regenerative process.
Collapse
Affiliation(s)
- Simona Chera
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation.
Collapse
Affiliation(s)
- Ulrich Technau
- Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, Austria.
| | | |
Collapse
|
27
|
Abstract
Background In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals.
Collapse
|
28
|
Abstract
Hydra is a member of the ancient metazoan phylum Cnidaria and is an especially well investigated model organism for questions of the evolutionary origin of metazoan processes. Apoptosis in Hydra is important for the regulation of cellular homeostasis under different conditions of nutrient supply. The molecular mechanisms leading to apoptosis in Hydra are surprisingly extensive and comparable to those in mammals. Genome wide sequence analysis has revealed the presence of large caspase and Bcl-2 families, the apoptotic protease activating factor (APAF-1), inhibitors of apoptotic proteases (IAPs) and components of a putative death receptor pathway. Regulation of apoptosis in Hydra may involve BH-3 only proteins and survival pathways, possibly including insulin signalling.
Collapse
|
29
|
Lasi M, Pauly B, Schmidt N, Cikala M, Stiening B, Käsbauer T, Zenner G, Popp T, Wagner A, Knapp RT, Huber AH, Grunert M, Söding J, David CN, Böttger A. The molecular cell death machinery in the simple cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins. Cell Res 2010; 20:812-25. [PMID: 20479784 DOI: 10.1038/cr.2010.66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fresh water polyp Hydra belongs to the phylum Cnidaria, which diverged from the metazoan lineage before the appearance of bilaterians. In order to understand the evolution of apoptosis in metazoans, we have begun to elucidate the molecular cell death machinery in this model organism. Based on ESTs and the whole Hydra genome assembly, we have identified 15 caspases. We show that one is activated during apoptosis, four have characteristics of initiator caspases with N-terminal DED, CARD or DD domain and two undergo autoprocessing in vitro. In addition, we describe seven Bcl-2-like and two Bak-like proteins. For most of the Bcl-2 family proteins, we have observed mitochondrial localization. When expressed in mammalian cells, HyBak-like 1 and 2 strongly induced apoptosis. Six of the Bcl-2 family members inhibited apoptosis induced by camptothecin in mammalian cells with HyBcl-2-like 4 showing an especially strong protective effect. This protein also interacted with HyBak-like 1 in a yeast two-hybrid assay. Mutation of the conserved leucine in its BH3 domain abolished both the interaction with HyBak-like 1 and the anti-apoptotic effect. Moreover, we describe novel Hydra BH-3-only proteins. One of these interacted with Bcl-2-like 4 and induced apoptosis in mammalian cells. Our data indicate that the evolution of a complex network for cell death regulation arose at the earliest and simplest level of multicellular organization, where it exhibited a substantially higher level of complexity than in the protostome model organisms Caenorhabditis and Drosophila.
Collapse
Affiliation(s)
- Margherita Lasi
- Department Biology II, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Anton-Erxleben F, Thomas A, Wittlieb J, Fraune S, Bosch TCG. Plasticity of epithelial cell shape in response to upstream signals: a whole-organism study using transgenic Hydra. ZOOLOGY 2009; 112:185-94. [PMID: 19201587 DOI: 10.1016/j.zool.2008.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/25/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
Multicellular organisms consist of a variety of cells of distinctive morphology, with the cell shapes often reproduced with astonishing accuracy between individuals and across species. The morphology of cells varies with tissues, and cell shape changes are of profound importance in many occasions of morphogenesis. To elucidate the mechanisms of cell shape determination and regulation is therefore an important issue. One of the simplest multicellular organisms is the freshwater polyp Hydra. Although much is known about patterning in this early branching metazoan, there is currently little understanding of how cells in Hydra regulate their shape in response to upstream signals. We previously reported generation of transgenic Hydra to trace cells and to study cell behavior in vivo in an animal at the basis of animal evolution. Here, we use a novel transgenic line which expresses enhanced green fluorescent protein (eGFP) specifically in the ectodermal epithelial cells to analyze the structure and shape of epithelial cells as they are recruited into specific regions along the body column and respond to upstream signals such as components of the canonical Wnt signaling pathway. As a general theme, in contrast to epithelial cells in more complex animals, ectodermal epithelial cells in Hydra are capable of drastic changes in structure, shape, and cell contact along the body column. The remarkable phenotypic plasticity of epithelial cells in response to positional signals allows Hydra to build its body with only a limited number of different cell types.
Collapse
Affiliation(s)
- Friederike Anton-Erxleben
- Zoological Institute, Christian-Albrechts-University, Kiel, Olshausenstr. 40, Am Botanischen Garten 9, D-24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Vogt KSC, Geddes GC, Bross LS, Blackstone NW. Physiological characterization of stolon regression in a colonial hydroid. J Exp Biol 2008; 211:731-40. [DOI: 10.1242/jeb.011148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY
As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here,stolon regression is identified and characterized as a potential process underlying this variation. Typically, regression can be observed in a few stolons of a normally growing colony. For detailed studies, many stolons of a colony can be induced to regress by pharmacological manipulations of reactive oxygen species (e.g. hydrogen peroxide) or reactive nitrogen species (e.g. nitric oxide). The regression process begins with a cessation of gastrovascular flow to the distal part of the stolon. High levels of endogenous H2O2 and NO then accumulate in the regressing stolon. Remarkably, exogenous treatments with either H2O2 or an NO donor equivalently trigger endogenous formation of both H2O2 and NO. Cell death during regression is suggested by both morphological features, detected by transmission electron microscopy, and DNA fragmentation, detected by TUNEL. Stolon regression may occur when colonies detect environmental signals that favor continued growth in the same location rather than outward growth.
Collapse
Affiliation(s)
| | - Gabrielle C. Geddes
- Department of Biological Sciences, Northern Illinois University, DeKalb,IL 60115, USA
| | - Lori S. Bross
- Department of Biological Sciences, Northern Illinois University, DeKalb,IL 60115, USA
| | - Neil W. Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb,IL 60115, USA
| |
Collapse
|
33
|
Pankow S, Bamberger C. The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One 2007; 2:e782. [PMID: 17848985 PMCID: PMC1964547 DOI: 10.1371/journal.pone.0000782] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 07/22/2007] [Indexed: 11/29/2022] Open
Abstract
Here we report the identification and molecular function of the p53 tumor suppressor-like protein nvp63 in a non-bilaterian animal, the starlet sea anemone Nematostella vectensis. So far, p53-like proteins had been found in bilaterians only. The evolutionary origin of p53-like proteins is highly disputed and primordial p53-like proteins are variably thought to protect somatic cells from genotoxic stress. Here we show that ultraviolet (UV) irradiation at low levels selectively induces programmed cell death in early gametes but not somatic cells of adult N. vectensis polyps. We demonstrate with RNA interference that nvp63 mediates this cell death in vivo. Nvp63 is the most archaic member of three p53-like proteins found in N. vectensis and in congruence with all known p53-like proteins, nvp63 binds to the vertebrate p53 DNA recognition sequence and activates target gene transcription in vitro. A transactivation inhibitory domain at its C-terminus with high homology to the vertebrate p63 may regulate nvp63 on a molecular level. The genotoxic stress induced and nvp63 mediated apoptosis in N. vectensis gametes reveals an evolutionary ancient germ cell protective pathway which relies on p63-like proteins and is conserved from cnidarians to vertebrates.
Collapse
Affiliation(s)
- Sandra Pankow
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Casimir Bamberger
- Sundgauallee 64, Freiburg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Hemmrich G, Anokhin B, Zacharias H, Bosch TCG. Molecular phylogenetics in Hydra, a classical model in evolutionary developmental biology. Mol Phylogenet Evol 2007; 44:281-90. [PMID: 17174108 DOI: 10.1016/j.ympev.2006.10.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/13/2006] [Accepted: 10/23/2006] [Indexed: 12/25/2022]
Abstract
Among the earliest diverging animal phyla are the Cnidaria. Freshwater polyps of the genus Hydra (Cnidaria, Hydrozoa) have long been of general interest because different species of Hydra reveal fundamental principles that underlie development, differentiation, regeneration and also symbiosis. The phylogenetic relationships among the Hydra species most commonly used in current research are not resolved yet. Here we estimate the phylogenetic relations among eight scientifically important members of the genus Hydra with molecular data from two nuclear (18S rDNA, 28S rDNA) and two mitochondrial (16S rRNA, cytochrome oxidase subunit I (COI)) genes. The phylogenetic trees obtained by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods were generally compatible with present morphological classification patterns. However, the present analysis also bears on several long-standing questions about Hydra systematics and reveals some characteristics of the phylogenetic relationships of this genus that were unknown so far. It indicates that Hydra viridissima, the only species in Hydra, which contains symbiotic algae, might be considered as the sister group to all other species within this genus. Analyses of both nuclear and mitochondrial sequences support the view that Hydra oligactis and Hydra circumcincta are sisters to all other Hydra species. Unexpectedly, we also find that in contrast to its initial description, the strain used for making transgenic Hydra, Hydra vulgaris (strain AEP) is more closely related to Hydra carnea than to other species of Hydra.
Collapse
Affiliation(s)
- Georg Hemmrich
- Zoological Institute, Christian Albrechts University, 24105 Kiel, Germany
| | | | | | | |
Collapse
|
35
|
Böttger A, Alexandrova O. Programmed cell death in Hydra. Semin Cancer Biol 2006; 17:134-46. [PMID: 17197196 DOI: 10.1016/j.semcancer.2006.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/25/2006] [Indexed: 11/21/2022]
Abstract
Hydra is one of the simplest metazoans and thus an important model organism for studies on the evolution of developmental mechanisms in multi-cellular animals. In Hydra apoptosis is involved in the regulation of cell numbers in response to feeding, in regeneration and in the removal of non-self cells. It also participates in the maintenance of cellular homeostasis in germ cells. During oogenesis a special "arrested" apoptosis of nurse cells is observed. The morphology of apoptotic hydra cells is almost indistinguishable from apoptosis in higher animals and caspases as well as members of the Bcl-2 family participate in the process.
Collapse
Affiliation(s)
- Angelika Böttger
- Ludwig-Maximilians-University Munich, Department Biology II, 82110 Planegg-Martinsried, Grosshaderner Str. 2, Germany.
| | | |
Collapse
|
36
|
Cardona A, Hartenstein V, Romero R. Early embryogenesis of planaria: a cryptic larva feeding on maternal resources. Dev Genes Evol 2006; 216:667-81. [PMID: 16932928 DOI: 10.1007/s00427-006-0094-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/21/2006] [Indexed: 11/29/2022]
Abstract
The early planarian embryo presents a complete ciliated epidermis and a pharynx and feeds on maternal yolk cells. In this paper, we report on all the elements involved in the formation of such an autonomous embryo, which we name cryptic larva. First, we provide a description of the spherical and fusiform yolk cells and their relationship with the blastomeres, from the laying of the egg capsule up to their final fate in mid embryonic stages. Then, we describe the early cleavage and the subsequent development of the tissues of the cryptic larva, namely, the primary epidermis, the embryonic pharynx, and a new cell type, the star cells. Finally, we discuss the possibility that the cryptic larva either constitutes a vestigial larva or, more likely, is the evolutionary result of the competition between multiple embryos for the limited and shared maternal resources in the egg capsule.
Collapse
Affiliation(s)
- Albert Cardona
- Molecular Cell and Developmental Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | | | | |
Collapse
|
37
|
Thomsen S, Bosch TCG. Foot differentiation and genomic plasticity in Hydra: lessons from the PPOD gene family. Dev Genes Evol 2006; 216:57-68. [PMID: 16402271 DOI: 10.1007/s00427-005-0032-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
In Hydra, developmental processes are permanently active to maintain a simple body plan consisting of a two-layered, radially symmetrical tube with two differentiated structures, head and foot. Foot formation is a dynamic process and includes terminal differentiation of gastric epithelial cells into mucous secreting basal disc cells. A well-established marker for this highly specialized cell type is a locally expressed peroxidase (Hoffmeister et al. 1985). Based on the foot-specific peroxidase activity, the gene PPOD1 has been identified (Hoffmeister-Ullerich et al. 2002). Unexpectedly, this approach led to the identification of a second gene, PPOD2, with high sequence similarity to PPOD1 but a strikingly different expression pattern. Here, we characterize PPOD2 in more detail and show that both genes, PPOD1 and PPOD2, are members of a gene family with differential complexity and expression patterns in different Hydra species. At the genomic level, differences in gene number and structure within the PPOD gene family, even among closely related species, support a recently proposed phylogeny of the genus Hydra and point to unexpected genomic plasticity within closely related species of this ancient metazoan taxon.
Collapse
Affiliation(s)
- Stefan Thomsen
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany.
| | | |
Collapse
|
38
|
Genikhovich G, Kürn U, Hemmrich G, Bosch TCG. Discovery of genes expressed in Hydra embryogenesis. Dev Biol 2006; 289:466-81. [PMID: 16337937 DOI: 10.1016/j.ydbio.2005.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 10/04/2005] [Accepted: 10/18/2005] [Indexed: 11/22/2022]
Abstract
Hydra's remarkable capacity to regenerate, to proliferate asexually by budding, and to form a pattern de novo from aggregates allows studying complex cellular and molecular processes typical for embryonic development. The underlying assumption is that patterning in adult hydra tissue relies on factors and genes which are active also during early embryogenesis. Previously, we reported that in Hydra the timing of expression of conserved regulatory genes, known to be involved in adult patterning, differs greatly in adults and embryos (Fröbius, A.C., Genikhovich, G., Kürn, U., Anton-Erxleben, F. and Bosch, T.C.G., 2003. Expression of developmental genes during early embryogenesis of Hydra. Dev. Genes Evol. 213, 445-455). Here, we describe an unbiased screening strategy to identify genes that are relevant to Hydra vulgaris embryogenesis. The approach yielded two sets of differentially expressed genes: one set was expressed exclusively or nearly exclusively in the embryos, while the second set was upregulated in embryos in comparison to adult polyps. Many of the genes identified in hydra embryos had no matches in the database. Among the conserved genes upregulated in embryos is the Hydra orthologue of Embryonic Ectoderm Development (HyEED). The expression pattern of HyEED in developing embryos suggests that interstitial stem cells in Hydra originate in the endoderm. Importantly, the observations uncover previously unknown differences in genes expressed by embryos and polyps and indicate that not only the timing of expression of developmental genes but also the genetic context is different in Hydra embryos compared to adults.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
39
|
Habetha M, Bosch TCG. SymbioticHydraexpress a plant-like peroxidase gene during oogenesis. J Exp Biol 2005; 208:2157-65. [PMID: 15914659 DOI: 10.1242/jeb.01571] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSymbiotic associations accompanied by gene exchange between the symbionts form the phylogenetic origin of eukaryotic cells and, therefore, had significant impact on species diversity and evolutionary novelty. Among the phylogenetically oldest metazoan animals known to form symbiotic relationships are the Cnidaria. In the Cnidarian Hydra viridis, symbiotic algae of the genus Chlorella are located in endodermal epithelial cells and impact sexual differentiation. When screening for Hydra viridis genes that are differentially expressed during symbiosis, we found a gene, HvAPX1, coding for a plant-related ascorbate peroxidase. HvAPX1 is expressed exclusively during oogenesis and in contrast to all known ascorbate peroxidase genes in plants does not contain introns. No member of this gene family has previously been identified from a member of the animal kingdom. We discuss the origin of the HvAPX1 gene and propose that it may have been transferred horizontally following an endosymbiotic event early in evolution of the Hydra lineage as an RNA or cDNA intermediate.
Collapse
Affiliation(s)
- Matthias Habetha
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | |
Collapse
|
40
|
Alexandrova O, Schade M, Böttger A, David CN. Oogenesis in Hydra: Nurse cells transfer cytoplasm directly to the growing oocyte. Dev Biol 2005; 281:91-101. [PMID: 15848391 DOI: 10.1016/j.ydbio.2005.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 11/19/2022]
Abstract
Oogenesis in Hydra occurs in so-called egg patches containing several thousand germ cells. Only one oocyte is formed per egg patch; the remaining germ cells differentiate as nurse cells. Whether and how nurse cells contribute cytoplasm to the developing oocyte has been unclear. We have used tissue maceration to characterize the differentiation of oocytes and nurse cells in developing egg patches. We show that nurse cells decrease in size at the same time that developing oocytes increase dramatically in volume. Nurse cells are also tightly attached to oocytes at this stage and confocal images of egg patches stained with the fluorescent membrane dye FM 4-64 clearly show large gaps (10 microm) in the cell membranes separating nurse cells from the developing oocyte. We conclude that nurse cells directly transfer cytoplasm to the developing oocyte. Following this transfer of cytoplasm, nurse cells undergo apoptosis and are phagocytosed by the oocyte. These results demonstrate that basic mechanisms of alimentary oogenesis typical of Caenorhabditis and Drosophila are already present in the early metazoan Hydra.
Collapse
Affiliation(s)
- O Alexandrova
- Department Biologie II, Ludwig-Maximilians-Universität, Grosshadernerstr. 2, 82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
In many organisms, programmed cell death of germ cells is required for normal development. This often occurs through highly conserved events including the transfer of vital cellular material to the growing gametes following death of neighboring cells. Germline cell death also plays a role in such diverse processes as removal of abnormal or superfluous cells at certain checkpoints, establishment of caste differentiation, and individualization of gametes. This review focuses on the cell death events that occur during gametogenesis in both vertebrates and invertebrates. It also examines the signals and machinery that initiate and carry out these germ cell deaths.
Collapse
Affiliation(s)
- J S Baum
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
42
|
Rentzsch F, Hobmayer B, Holstein TW. Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis. Dev Biol 2005; 278:1-12. [PMID: 15649456 DOI: 10.1016/j.ydbio.2004.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 09/04/2004] [Accepted: 10/05/2004] [Indexed: 11/22/2022]
Abstract
In an approach to study the evolutionary conservation of molecules of the Wnt signal transduction pathway, we analyzed the function of the major negative regulator of this pathway, GSK3 (glycogen synthase kinase 3), in the basal metazoan Hydra. Microinjection assays reveal that HyGSK3 inhibits beta-catenin in zebrafish embryos, indicating that the function of GSK3 in the canonical Wnt signaling pathway is evolutionarily conserved. In Hydra, HyGSK3 transcripts are strongly upregulated during gametogenesis. Treatment of female polyps with the GSK3 inhibitors lithium and alsterpaullone prevents the differentiation of nurse cells and subsequent oocyte formation. Our data indicate that GSK3 is required for the early induction of apoptosis in germline cells, which has been shown to be an initial step in Hydra gametogenesis. Our experiments show that main functions of GSK3 are evolutionarily conserved and unique to multicellular animals, a conclusion which is additionally supported by the presence of specific regulatory domains in the HyGSK3 protein.
Collapse
|
43
|
McCall K. Eggs over easy: cell death in the Drosophila ovary. Dev Biol 2004; 274:3-14. [PMID: 15355784 DOI: 10.1016/j.ydbio.2004.07.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 07/07/2004] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
Programmed cell death is the most common fate of female germ cells in Drosophila and many animals. In Drosophila, oocytes form in individual egg chambers that are supported by germline nurse cells and surrounded by somatic follicle cells. As oogenesis proceeds, 15 nurse cells die for every oocyte that is produced. In addition to this developmentally regulated cell death, groups of germ cells or entire egg chambers may be induced to undergo apoptosis in response to starvation or other insults. Recent findings suggest that these different types of cell death involve distinct genetic pathways. This review focuses on progress towards elucidating the molecular mechanisms acting during programmed cell death in Drosophila oogenesis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|