1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
3
|
Osuntokun OS, Babatunde AA, Olayiwola G, Atere TG, Oladokun OO, Adedokun KI. Assessment of the biomarkers of hepatotoxicity following carbamazepine, levetiracetam, and carbamazepine-levetiracetam adjunctive treatment in male Wistar rats. Toxicol Rep 2021; 8:592-598. [PMID: 33786324 PMCID: PMC7994541 DOI: 10.1016/j.toxrep.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022] Open
Abstract
Objective This study examined some of the biomarkers of hepatotoxicity following chronic treatment with carbamazepine (CBZ), levetiracetam (LEV), and CBZ + LEV adjunctive treatment in male rats. Method Twenty-four male Wistar rats (140-150 g) were randomized into four groups (n = 6) to receive oral dose of normal saline (0.1 mL), CBZ (25 mg/kg), LEV (50 mg/kg) or sub-therapeutic dose of CBZ (12.5 mg/kg) together with LEV (25 mg/kg) for 28 days. Activities of the liver enzymes and oxidative stress markers were determined while liver histomorphology was also carried out. Data were analyzed using descriptive and inferential statistics. The results were presented as mean ± SEM in graphs or tables, while the level of significance was taken at p < 0.05. Results The activities of alkaline-phosphatase and malondialdehyde concentrations increased significantly in all the drug treatment groups, while the activities of superoxide dismutase decreased significantly following CBZ, and CBZ + LEV treatment. Alanine-aminotransferase activities increased significantly in the CBZ and CBZ + LEV treated rats compared with control. The liver section of CBZ treated rats showed mild vascular congestion. Conclusion None of these AEDs treatment is devoid of hepatotoxicity. However, the adverse effects in CBZ were greater than LEV, or CBZ + LEV adjunctive treatment.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Ademola Adeniyi Babatunde
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tope Gafar Atere
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olayemi Olutobi Oladokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| |
Collapse
|
4
|
Bambico FR, Li Z, Creed M, De Gregorio D, Diwan M, Li J, McNeill S, Gobbi G, Raymond R, Nobrega JN. A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response. Cereb Cortex 2019; 30:1559-1572. [DOI: 10.1093/cercor/bhz187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
AbstractThe muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor–SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Zhuoliang Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Meaghan Creed
- Département des Neurosciences Fondamentales & Service de Neurologie, University of Geneva, Geneva, CH-1211, Switzerland
| | - Danilo De Gregorio
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mustansir Diwan
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Jessica Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Sean McNeill
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
5
|
Ayoub A, Aumann D, Hörschelmann A, Kouchekmanesch A, Paul P, Born J, Marshall L. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity. Sleep 2013; 36:905-11. [PMID: 23729934 PMCID: PMC3649833 DOI: 10.5665/sleep.2722] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sleep spindles play an important functional role in sleep-dependent memory consolidation. They are a hallmark of non-rapid eye movement (NREM) sleep and are grouped by the sleep slow oscillation. Spindles are not a unitary phenomenon but are differentiated by oscillatory frequency and topography. Yet, it is still a matter of debate whether these differences relate to different generating mechanisms. As corticothalamic networks are known to be involved in the generation of spindles and the slow oscillation, with Ca2+ and Na+ conductances playing crucial roles, we employed the actions of carbamazepine and flunarizine to reduce the efficacy of Na+ and Ca2+ channels, respectively, for probing in healthy human subjects mechanisms of corticothalamocortical excitability. DESIGN For each pharmacologic substance a within-design study was conducted on 2 experimental nights in young, healthy adults. MEASUREMENTS AND RESULTS Results indicate differential effects for slow frontocortical (approximately 10 Hz) and fast centroparietal (approximately 14 Hz) spindles. Carbamazepine enhanced slow frontal spindle activity conjointly with an increment in slow oscillation power (approximately 0.75 Hz) during deep NREM sleep. In contrast, fast centroparietal spindle activity (approximately 14 Hz) was decreased by carbamazepine. Flunarizine also decreased fast-spindle electroencephalogram power, but affected neither slow frontal spindle nor slow oscillation frequency bands. CONCLUSIONS Our findings indicate a differential pharmacologic response of the two types of sleep spindles and underscore a close linkage of the generating mechanisms underlying the sleep slow oscillation and the slow frontal sleep spindles for the signal transmission processes manipulated in the current study.
Collapse
Affiliation(s)
- Amr Ayoub
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
- Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dominic Aumann
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Anne Hörschelmann
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | | | - Pia Paul
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Jan Born
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Lisa Marshall
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
- Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Ufartes R, Schneider T, Mortensen LS, de Juan Romero C, Hentrich K, Knoetgen H, Beilinson V, Moebius W, Tarabykin V, Alves F, Pardo LA, Rawlins JNP, Stuehmer W. Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Hum Mol Genet 2013; 22:2247-62. [PMID: 23424202 PMCID: PMC3652421 DOI: 10.1093/hmg/ddt076] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kv10.1 (Eag1), member of the Kv10 family of voltage-gated potassium channels, is preferentially expressed in adult brain. The aim of the present study was to unravel the functional role of Kv10.1 in the brain by generating knockout mice, where the voltage sensor and pore region of Kv10.1 were removed to render non-functional proteins through deletion of exon 7 of the KCNH1 gene using the ‘3 Lox P strategy’. Kv10.1-deficient mice show no obvious alterations during embryogenesis and develop normally to adulthood; cortex, hippocampus and cerebellum appear anatomically normal. Other tests, including general health screen, sensorimotor functioning and gating, anxiety, social behaviour, learning and memory did not show any functional aberrations in Kv10.1 null mice. Kv10.1 null mice display mild hyperactivity and longer-lasting haloperidol-induced catalepsy, but there was no difference between genotypes in amphetamine sensitization and withdrawal, reactivity to apomorphine and haloperidol in the prepulse inhibition tests or to antidepressants in the haloperidol-induced catalepsy. Furthermore, electrical properties of Kv10.1 in cerebellar Purkinje cells did not show any difference between genotypes. Bearing in mind that Kv10.1 is overexpressed in over 70% of all human tumours and that its inhibition leads to a reduced tumour cell proliferation, the fact that deletion of Kv10.1 does not show a marked phenotype is a prerequisite for utilizing Kv10.1 blocking and/or reduction techniques, such as siRNA, to treat cancer.
Collapse
Affiliation(s)
- Roser Ufartes
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen 37077, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants. PLoS One 2011; 6:e28208. [PMID: 22164246 PMCID: PMC3229538 DOI: 10.1371/journal.pone.0028208] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/03/2011] [Indexed: 11/19/2022] Open
Abstract
Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Project Programs, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
8
|
Weatherall KL, Goodchild SJ, Jane DE, Marrion NV. Small conductance calcium-activated potassium channels: From structure to function. Prog Neurobiol 2010; 91:242-55. [DOI: 10.1016/j.pneurobio.2010.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/05/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
9
|
Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 2008; 65:3196-217. [PMID: 18597044 PMCID: PMC2798969 DOI: 10.1007/s00018-008-8216-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small conductance calcium-activated potassium (SK or KCa2) channels link intracellular calcium transients to membrane potential changes. SK channel subtypes present different pharmacology and distribution in the nervous system. The selective blocker apamin, SK enhancers and mice lacking specific SK channel subunits have revealed multifaceted functions of these channels in neurons, glia and cerebral blood vessels. SK channels regulate neuronal firing by contributing to the afterhyperpolarization following action potentials and mediating IAHP, and partake in a calcium-mediated feedback loop with NMDA receptors, controlling the threshold for induction of hippocampal long-term potentiation. The function of distinct SK channel subtypes in different neurons often results from their specific coupling to different calcium sources. The prominent role of SK channels in the modulation of excitability and synaptic function of limbic, dopaminergic and cerebellar neurons hints at their possible involvement in neuronal dysfunction, either as part of the causal mechanism or as potential therapeutic targets.
Collapse
|
10
|
Maingret F, Coste B, Hao J, Giamarchi A, Allen D, Crest M, Litchfield DW, Adelman JP, Delmas P. Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron 2008; 59:439-49. [PMID: 18701069 DOI: 10.1016/j.neuron.2008.05.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/21/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
Small-conductance Ca2+-activated K+ (SK) channels are widely expressed in neuronal tissues where they underlie post-spike hyperpolarizations, regulate spike-frequency adaptation, and shape synaptic responses. SK channels constitutively interact with calmodulin (CaM), which serves as Ca2+ sensor, and with protein kinase CK2 and protein phosphatase 2A, which modulate their Ca2+ gating. By recording coupled activities of Ca2+ and SK2 channels, we showed that SK2 channels can be inhibited by neurotransmitters independently of changes in the activity of the priming Ca2+ channels. This inhibition involvesSK2-associated CK2 and results from a 3-fold reduction in the Ca2+ sensitivity of channel gating. CK2phosphorylated SK2-bound CaM but not KCNQ2-bound CaM, thereby selectively regulating SK2 channels. We extended these observations to sensory neurons by showing that noradrenaline inhibits SK current and increases neuronal excitability in aCK2-dependent fashion. Hence, neurotransmitter-initiated signaling cascades can dynamically regulate Ca2+ sensitivity of SK channels and directly influence somatic excitability.
Collapse
Affiliation(s)
- François Maingret
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), CNRS UMR 6231, Université de la Méditerranée, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wulff H, Zhorov BS. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008; 108:1744-73. [PMID: 18476673 PMCID: PMC2714671 DOI: 10.1021/cr078234p] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
12
|
Abstract
1. SK channels are small-conductance calcium-activated potassium channels that are widely expressed in neurons. The traditional view of the functional role of SK channels is in mediating one component of the after-hyperpolarization that follows action potentials. Calcium influx via voltage-gated calcium channels active during action potentials opens SK channels and the resultant hyperpolarization lowers the firing frequency of action potentials in many neurons. 2. Recent advances have shown that, in addition to controlling action potential firing frequency, SK channels are also important in regulating dendritic excitability, synaptic transmission and synaptic plasticity. 3. In accordance with their role in modulating synaptic plasticity, SK channels are also important in regulating several learning and memory tasks and may also play a role in a number of neurological disorders. 4. The present review discusses recent findings on the role of SK channels in central neurons.
Collapse
Affiliation(s)
- E S Louise Faber
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.
| | | |
Collapse
|
13
|
Hill K, Schaefer M. TRPA1 is differentially modulated by the amphipathic molecules trinitrophenol and chlorpromazine. J Biol Chem 2007; 282:7145-53. [PMID: 17218316 DOI: 10.1074/jbc.m609600200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPA1, a poorly selective Ca(2+)-permeable cation channel, is expressed in peripheral sensory neurons, where it is considered to contribute to a variety of sensory processes such as the detection of painful stimuli. Furthermore, TRPA1 was also identified in hair cells of the inner ear, but its involvement in sensing mechanical forces is still being controversially discussed. Amphipathic molecules such as trinitrophenol and chlorpromazine have been shown to provide useful tools to study mechanosensitive channels. Depending on their charge, they partition in the inner or outer sheets of the lipid bilayer, causing a curvature of the membrane, which has been demonstrated to activate or inhibit mechanosensitive ion channels. In the present study, we investigated the effect of these molecules on TRPA1 gating. TRPA1 was robustly activated by the anionic amphipathic molecule trinitrophenol. The whole-cell and single channel properties resemble those previously described for TRPA1. Moreover, we could show that the toxin GsMTx-4 acts on TRPA1. In addition to its recently described role as an inhibitor of stretch-activated ion channels, it serves as a potent activator of TRPA1 channels. On the other hand, the positively charged drug chlorpromazine modulates activated TRPA1 currents in a voltage-dependent way. The exposure of activated TRPA1 channels to chlorpromazine led to a block at positive potentials and an increased open probability at negative potentials. The variability in the shape of the I-V curve gives a first indication that native mechanically activated TRPA1 currents must not necessarily exhibit the same biophysical properties as ligand-activated TRPA1 currents.
Collapse
Affiliation(s)
- Kerstin Hill
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Thielallee 67-73, 14195 Berlin, Germany
| | | |
Collapse
|
14
|
Wittekindt OH, Schmitz A, Lehmann-Horn F, Hänsel W, Grissmer S. The human Ca2+-activated K+ channel, IK, can be blocked by the tricyclic antihistamine promethazine. Neuropharmacology 2006; 50:458-67. [PMID: 16310228 DOI: 10.1016/j.neuropharm.2005.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/04/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Phenothiazines can be used as psychopharmaceutical agents and are known to cause many side effects during treatment since they interfere with many different cellular systems. Recently, phenothiazines were reported to block Ca(2+)-activated potassium channels of the SK type. Therefore we investigated their effect on the functionally related class of Ca(2+)-activated potassium channels of the IK type. The representative phenothiazine derivative promethazine (PTZ) blocked IK channels almost independently from the extracellular pH(o) with an IC(50) of 49 +/- 0.2 microM (pH(o) 7.4, n = 5) and 32 +/- 0.2 microM (pH(o) 6.2, n = 5) in whole cell experiments. The extracellularly applied membrane impermeable PTZ analogue methyl-promethazine (M-PTZ) had a strongly reduced blocking potency compared to PTZ. In contrast, intracellularly applied PTZ and M-PTZ had the same blocking potency on IK channels in excised inside out patch clamp experiments (K(d) = 9.3 +/- 0.5 microM for PTZ, n = 7 and 6.7 +/- 0.4 microM for M-PTZ, n = 5). The voltage dependency of the PTZ and M-PTZ block was investigated in excised inside out patch clamp experiments at a concentration of 100 microM. For both compounds the block was more pronounced at positive membrane potentials. The steepness of the voltage dependency was found to be 70 +/- 10 mV (for PTZ) and 61 +/- 6 mV (for M-PTZ) indicating that both compounds sensed approximately 40% of the entire membrane spanning electrical field from the inside. We conclude that PTZ and M-PTZ bind to a side in IK channels, which is located within the electrical field and is accessible from the intracellular side.
Collapse
|
15
|
Quintero JL, Arenas MI, García DE. The antidepressant imipramine inhibits M current by activating a phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent pathway in rat sympathetic neurones. Br J Pharmacol 2005; 145:837-43. [PMID: 15852030 PMCID: PMC1576193 DOI: 10.1038/sj.bjp.0706239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Little is known about the intracellular actions of imipramine (IMI) in the regulation of ion channels. We tested the action of IMI on the intracellular cascade that regulates M current (I(M)) in superior cervical ganglion neurones (SCGs). Dialysis of the cells with GDPbetaS, a G protein signaling blocker, did not disrupt the inhibition of I(M). When we incubated the cells with the phospholipase C (PLC) inhibitor U73122, it prevented the I(M) inhibition by IMI. Also, when we dialyzed the cells with an intracellular Ca2+ chelator, it did not disrupt I(M) inhibition by IMI, as occurs in the M1 cascade. When we incubated the cells with the generic kinase inhibitor wortmannin, it prevented the recovery of I(M) from the inhibition by IMI. Also, when we applied phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, it diminished the inhibition of I(M) by IMI. Our findings suggest that PLC is the target for IMI, that recovery of I(M) needs lipid phosphorylation for PIP2 resynthesis, and that IMI inhibits I(M) by activating a PLC-dependent pathway, likely by decreasing the concentration of PIP2.
Collapse
Affiliation(s)
- Jania L Quintero
- Department of Physiology, Faculty of Medicine, UNAM, Apdo. Post. 70250, CP 04510 México, DF, México
| | - Maria Isabel Arenas
- Department of Physiology, Faculty of Medicine, UNAM, Apdo. Post. 70250, CP 04510 México, DF, México
| | - David E García
- Department of Physiology, Faculty of Medicine, UNAM, Apdo. Post. 70250, CP 04510 México, DF, México
- Author for correspondence:
| |
Collapse
|
16
|
Ebel H, Hollstein M, Günther T. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1667:132-40. [PMID: 15581848 DOI: 10.1016/j.bbamem.2004.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/13/2004] [Accepted: 09/15/2004] [Indexed: 11/25/2022]
Abstract
The effect of imipramine on Mg2+ efflux in NaCl medium (Na+/Mg2+ antiport), on Mg2+ efflux in choline.Cl medium (choline/Mg2+ antiport) and on Mg2+ efflux in sucrose medium (Cl- -coupled Mg2+ efflux) was investigated in rat erythrocytes. In non-Mg2+-loaded rat erythrocytes, imipramine stimulated Na+/Mg2+ antiport but inhibited choline/Mg2+ antiport and Cl- -coupled Mg2+ efflux. The same effect could be obtained by several other compounds structurally related to imipramine. These drugs contain a cyclic hydrophobic ring structure to which a four-membered secondary or tertiary amine side chain is attached. At a physiological pH, the amine side chain expresses a cationic choline-like structure. The inhibitory effect on choline/Mg2+ antiport is lost when the amine side chain is modified or abandoned, pointing to competition of the choline-like side chain with choline or another cation at the unspecific choline antiporter or at the Cl- -coupled Mg2+ efflux. Other related drugs either stimulated Na+/Mg2+ antiport and choline/Mg2+ antiport, or they were ineffective. For stimulation of Na+/Mg2+ antiport and choline/Mg2+ antiport, there is no specific common structural motif of the drugs tested. The effects of imipramine on Na+/Mg2+ antiport and choline/Mg2+ antiport are not mediated by PKCalpha but are caused by a direct reaction of imipramine with these transporters. By increasing the intracellular Mg2+ concentration, the stimulation of Na+/Mg2+ antiport at a physiological intracellular Mg2+ concentration changed to an inhibition of Na+/Mg2+ antiport. This effect can be explained by the hypothesis that Mg2+ loading induced an allosteric transition of the Mg2+/Mg2+ exchanger with low Na+/Mg2+ antiport capacity to the Na+/Mg2+ antiporter with high Na+/Mg2+ antiport capacity. Both forms of the Mg2+ exchanger may be differently affected by imipramine.
Collapse
Affiliation(s)
- H Ebel
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Institut für Klinische Physiologie, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | |
Collapse
|
17
|
Stocker M. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 2004; 5:758-70. [PMID: 15378036 DOI: 10.1038/nrn1516] [Citation(s) in RCA: 407] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ca(2+)-activated K(+) (K(Ca)) channels of small (SK) and intermediate (IK) conductance are present in a wide range of excitable and non-excitable cells. On activation by low concentrations of Ca(2+), they open, which results in hyperpolarization of the membrane potential and changes in cellular excitability. K(Ca)-channel activation also counteracts further increases in intracellular Ca(2+), thereby regulating the concentration of this ubiquitous intracellular messenger in space and time. K(Ca) channels have various functions, including the regulation of neuronal firing properties, blood flow and cell proliferation. The cloning of SK and IK channels has prompted investigations into their gating, pharmacology and organization into calcium-signalling domains, and has provided a framework that can be used to correlate molecularly identified K(Ca) channels with their native currents.
Collapse
Affiliation(s)
- Martin Stocker
- Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 2004; 29:1841-51. [PMID: 15150531 DOI: 10.1038/sj.npp.1300484] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
G protein-activated inwardly rectifying K+ channels (GIRK, also known as Kir3) are activated by various G protein-coupled receptors. GIRK channels play an important role in the inhibitory regulation of neuronal excitability in most brain regions and the heart rate. Modulation of GIRK channel activity may affect many brain functions. Here, we report the inhibitory effects of various antidepressants: imipramine, desipramine, amitriptyline, nortriptyline, clomipramine, maprotiline, and citalopram, on GIRK channels. In Xenopus oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, the various antidepressants tested, except fluvoxamine, zimelidine, and bupropion, reversibly reduced inward currents through the basal GIRK activity at micromolar concentrations. The inhibitions were concentration-dependent with various degrees of potency and effectiveness, but voltage- and time-independent. In contrast, Kir1.1 and Kir2.1 channels in other Kir channel subfamilies were insensitive to all of the drugs. Furthermore, GIRK current responses activated by the cloned A1 adenosine receptor were similarly inhibited by the tricyclic antidepressant desipramine. The inhibitory effects of desipramine were not observed when desipramine was applied intracellularly, and were not affected by extracellular pH, which changed the proportion of the uncharged to protonated desipramine, suggesting its action from the extracellular side. The GIRK currents induced by ethanol were also attenuated in the presence of desipramine. Our results suggest that inhibition of GIRK channels by the tricyclic antidepressants and maprotiline may contribute to some of the therapeutic effects and adverse side effects, especially seizures and atrial arrhythmias in overdose, observed in clinical practice.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
19
|
García-Ferreiro RE, Kerschensteiner D, Major F, Monje F, Stühmer W, Pardo LA. Mechanism of block of hEag1 K+ channels by imipramine and astemizole. ACTA ACUST UNITED AC 2004; 124:301-17. [PMID: 15365094 PMCID: PMC2233905 DOI: 10.1085/jgp.200409041] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ether à go-go (Eag; KV10.1) voltage-gated K+ channels have been detected in cancer cell lines of diverse origin and shown to influence their rate of proliferation. The tricyclic antidepressant imipramine and the antihistamine astemizole inhibit the current through Eag1 channels and reduce the proliferation of cancer cells. Here we describe the mechanism by which both drugs block human Eag1 (hEag1) channels. Even if both drugs differ in their affinity for hEag1 channels (IC50s are approximately 2 microM for imipramine and approximately 200 nM for astemizole) and in their blocking kinetics, both drugs permeate the membrane and inhibit the hEag1 current by selectively binding to open channels. Furthermore, both drugs are weak bases and the IC50s depend on both internal an external pH, suggesting that both substances cross the membrane in their uncharged form and act from inside the cell in their charged forms. Accordingly, the block by imipramine is voltage dependent and antagonized by intracellular TEA, consistent with imipramine binding in its charged form to a site located close to the inner end of the selectivity filter. Using inside- and outside-out patch recordings, we found that a permanently charged, quaternary derivative of imipramine (N-methyl-imipramine) only blocks channels from the intracellular side of the membrane. In contrast, the block by astemizole is voltage independent. However, as astemizole competes with imipramine and intracellular TEA for binding to the channel, it is proposed to interact with an overlapping intracellular binding site. The significance of these findings, in the context of structure-function of channels of the eag family is discussed.
Collapse
Affiliation(s)
- Rafael E García-Ferreiro
- Abteilung Molekulare Biologie Neuronaler Signale, Max-Planck Institut für Experimentelle Medizin, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Stocker M, Hirzel K, D'hoedt D, Pedarzani P. Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 2004; 43:933-49. [PMID: 15208027 DOI: 10.1016/j.toxicon.2003.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 12/06/2003] [Indexed: 11/21/2022]
Abstract
Potassium channels regulate the membrane excitability of neurons, play a major role in shaping action potentials, determining firing patterns and regulating neurotransmitter release, and thus significantly contribute to neuronal signal encoding and integration. This review focuses on the molecular and cellular basis for the specific function of small-conductance calcium-activated potassium channels (SK channels) in the nervous system. SK channels are activated by an intracellular increase of free calcium during action potentials. They mediate currents that modulate the firing frequency of neurons. Three SK channel subunits have been cloned and form channels, which are voltage-insensitive, activated by submicromolar intracellular calcium concentrations, and are blocked, with different affinities, by a number of toxins and organic compounds. Different neurons in the central and peripheral nervous system express distinct subsets of SK channel subunits. Recent progress has been made in relating cloned SK channels to their native counterparts. These findings argue in favour of regulatory mechanisms conferring to native SK channels with specific subunit compositions distinct and specific functional profiles in different neurons.
Collapse
Affiliation(s)
- Martin Stocker
- Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
21
|
Yue C, Yaari Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 2004; 24:4614-24. [PMID: 15140933 PMCID: PMC6729392 DOI: 10.1523/jneurosci.0765-04.2004] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 04/07/2004] [Accepted: 04/07/2004] [Indexed: 11/21/2022] Open
Abstract
KCNQ channel subunits are widely expressed in peripheral and central neurons, where they give rise to a muscarinic-sensitive, subthreshold, and noninactivating K+ current (M-current). It is generally agreed that activation of KCNQ/M channels contributes to spike frequency adaptation during sustained depolarizations but is too slow to influence the repolarization of solitary spikes. This concept, however, is based mainly on experiments with muscarinic agonists, the multiple effects on membrane conductances of which may overshadow the distinctive effects of KCNQ/M channel block. Here, we have used selective modulators of KCNQ/M channels to investigate their role in spike electrogenesis in CA1 pyramidal cells. Solitary spikes were evoked by brief depolarizing current pulses injected into the neurons. The KCNQ/M channel blockers linopirdine and XE991 markedly enhanced the spike afterdepolarization (ADP) and, in most neurons, converted solitary ("simple") spikes to high-frequency bursts of three to seven spikes ("complex" spikes). Conversely, the KCNQ/M channel opener retigabine reduced the spike ADP and induced regular firing in bursting neurons. Selective block of BK or SK channels had no effect on the spike ADP or firing mode in these neurons. We conclude that KCNQ/M channels activate during the spike ADP and limit its duration, thereby precluding its escalation to a burst. Consequently, down-modulation of KCNQ/M channels converts the neuronal firing pattern from simple to complex spiking, whereas up-modulation of these channels exerts the opposite effect.
Collapse
Affiliation(s)
- Cuiyong Yue
- Department of Physiology, Institute of Medical Sciences, Hebrew University-Hadassah Faculty of Medicine, Jerusalem 91120, Israel
| | | |
Collapse
|
22
|
Pena F, Neaga E, Amuzescu B, Nitu A, Flonta ML. Amitriptyline has a dual effect on the conductive properties of the epithelial Na channel. J Pharm Pharmacol 2002; 54:1393-8. [PMID: 12396302 DOI: 10.1211/002235702760345482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was undertaken with the aim of testing the action of amitriptyline on the epithelial Na channel (ENaC), which belongs to the same family (Deg/ENaC) as ASICs (acid-sensing ion channels) and many other putative members in the brain. We assumed that, having a common protein structure, characterization of the amitriptyline-ENaC interaction could help to elucidate the analgesic mechanism of this tricyclic antidepressant. Na-channel characteristics were derived from the analysis of blocker-induced lorentzian noise produced by amiloride. The effect of amitriptyline, present in the mucosal bathing solution, on the transepithelial short-circuit current (I(sc)) and conductance (G(t)), and on the blocker-induced noise of apical Na channels, was studied on isolated ventral skin of the frog Rana ridibunda. Amitriptyline exerted a dual effect on the macroscopic short-circuit current and conductance of the epithelia, increasing these two parameters in the concentration range 0.1-50 microM, while at higher concentrations (100-1000 microM) it showed an inhibitory action. The decrease in the association rate (k(01)) of amiloride to the apical Na channels from 15.6+/-4.2 microM(-1) s(-1) in control Cl-Ringer to 7.4+/-1.7 microM(-1) s(-1) at 200 microM amitriptyline in a concentration-dependent manner suggests a competitive binding of amitriptyline to the pyrazine ring binding site for amiloride.
Collapse
Affiliation(s)
- Florentina Pena
- Department of Animal Physiology and Biophysics, University of Bucharest, Faculty of Biology, Splaiul Independentei 91-95, Bucharest R-76201, Romania
| | | | | | | | | |
Collapse
|
23
|
Prince RJ, Pennington RA, Sine SM. Mechanism of tacrine block at adult human muscle nicotinic acetylcholine receptors. J Gen Physiol 2002; 120:369-93. [PMID: 12198092 PMCID: PMC2229521 DOI: 10.1085/jgp.20028583] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC(50) 4.6 microM at -70 mV, 1.6 microM at -150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.
Collapse
Affiliation(s)
- Richard J Prince
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
24
|
Cao YJ, Dreixler JC, Couey JJ, Houamed KM. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur J Pharmacol 2002; 449:47-54. [PMID: 12163105 DOI: 10.1016/s0014-2999(02)01987-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small conductance, Ca(2+)-activated K(+) channels (SK channels) regulate neuronal excitability. We used patch clamp to study the actions of the neuroprotective drug riluzole on recombinant SK2 channels expressed in HEK293 cells and native SK channels underlying the afterhyperpolarization current (I(AHP)) in cultured hippocampal neurons. External riluzole activated whole-cell SK2 channel currents in HEK293 cells dialyzed with a Ca(2+)-free intracellular solution. When applied to the intracellular aspect of the membrane of giant inside-out patches, riluzole enhanced the membrane current activated by 100 nM Ca(2+) in a reversible and concentration-dependent manner; 30 microM riluzole applied to the intracellular aspect of the patches sensitized the channels to activation by Ca(2+), resulting in a leftward shift of the Ca(2+) activation curve. Riluzole also enhanced the I(AHP) and reduced the spontaneous action potential frequency in chemically stimulated neurons. Modulation of SK channel activity by riluzole may contribute to its cellular, behavioral, and clinical effects.
Collapse
Affiliation(s)
- Ying-Jun Cao
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, MC4028, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
25
|
Carignani C, Corsi M. Inhibition of SK3 channels in the TE671 human medulloblastoma cell line by desipramine and imipramine. Eur J Pharmacol 2002; 448:139-42. [PMID: 12144933 DOI: 10.1016/s0014-2999(02)01971-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The TE671 human medulloblastoma cell line endogenously expresses SK3 channels. Using patch clamp, we tested the effects on this current of desipramine and imipramine. In both cases, we observed a complete, reversible and concentration-dependent block. The interaction of desipramine with the selective SK3 blocker, apamin, was studied in more detail. Co-application of desipramine and apamin at concentrations close to their IC(50) produced an additive effect that was significantly higher than that of each compound alone. This effect was also observed at IC(25) concentrations. Collectively, these data provide evidence against a common site of action for desipramine and apamin.
Collapse
Affiliation(s)
- Corrado Carignani
- Psychiatry CEDD, GlaxoSmithKline, Medicines Research Centre, Via Fleming, 4, 37100 Verona, Italy.
| | | |
Collapse
|
26
|
Abstract
K(+) channels play critical roles in a wide variety of physiological processes, including the regulation of heart rate, muscle contraction, neurotransmitter release, neuronal excitability, insulin secretion, epithelial electrolyte transport, cell volume regulation, and cell proliferation. As such, K(+) channels have been recognized as potential therapeutic drug targets for many years. Unfortunately, progress toward identifying selective K(+) channel modulators has been severely hampered by the need to use native currents and primary cells in the drug-screening process. Today, however, more than 80 K(+) channel and K(+) channel-related genes have been identified, and an understanding of the molecular composition of many important native K(+) currents has begun to emerge. The identification of these molecular K(+) channel drug targets should lead to the discovery of novel drug candidates. A summary of progress is presented.
Collapse
Affiliation(s)
- Alan Wickenden
- Icagen Inc., Suite 460, 4222 Emperor Boulevard, Durham, NC 27703, USA.
| |
Collapse
|
27
|
Ambrósio AF, Soares-Da-Silva P, Carvalho CM, Carvalho AP. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res 2002; 27:121-30. [PMID: 11926264 DOI: 10.1023/a:1014814924965] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Carbamazepine (CBZ) has been extensively used in the treatment of epilepsy, as well as in the treatment of neuropathic pain and affective disorders. However, the mechanisms of action of this drug are not completely elucidated and are still a matter of debate. Since CBZ is not very effective in some epileptic patients and may cause several adverse effects, several antiepileptic drugs have been developed by structural variation of CBZ, such as oxcarbazepine (OXC), which is used in the treatment of epilepsy since 1990. (S)-(-)-10-acetoxy-10,11-dihydro-5H-dibenz [b,f]azepine-5-carboxamide (BIA 2-093) and 10,11-dihydro-10-hydroxyimino-5H-dibenz[b,f] azepine-5-carboxamide (BIA 2-024), which were recently developed by BIAL, are new putative antiepileptic drugs, with some improved properties. In this review, we will focus on the mechanisms of action of CBZ and its derivatives, OXC, BIA 2-093 and BIA 2-024. The available data indicate that the anticonvulsant efficacy of these AEDs is mainly due to the inhibition of sodium channel activity.
Collapse
Affiliation(s)
- António F Ambrósio
- Department of Cell Biology, Center for Neuroscience of Coimbra, Portugal
| | | | | | | |
Collapse
|
28
|
Finlayson K, McLuckie J, Hern J, Aramori I, Olverman HJ, Kelly JS. Characterisation of [(125)I]-apamin binding sites in rat brain membranes with HE293 cells transfected with SK channel subtypes. Neuropharmacology 2001; 41:341-50. [PMID: 11522325 DOI: 10.1016/s0028-3908(01)00067-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pharmacology of [(125)I]-apamin binding sites was examined in rat cortical and hippocampal tissue and compared with membranes prepared from human embryonic kidney (HEK293) cells transfected with SK channel subtypes hSK1, rSK2 and rSK3. The K(D) of [(125)I]-apamin in rat cortex and hippocampus was similar to the apamin-sensitive subtypes, rSK2 and rSK3 (K(D) (pM): 6.4, 7.08, 6.56 and 8.94, respectively). In addition, [(125)I]-apamin had a K(D)=270.4pM for the putatively 'apamin-insensitive' hSK1. Apamin had about a three-fold higher affinity than [(125)I]-apamin in brain tissue and in the cells expressing the different SK channel subtypes. Pancuronium, bicuculline and d-tubocurarine displayed micromolar affinity for all five-membrane preparations, whereas dequalinium and gallamine appear to show some subtype selectivity. Tetraethylammonium (TEA) and 4-aminopyridine (4-AP) had millimolar affinity and linopirdine had no effect. In conclusion, the pharmacology of [(125)I]-apamin binding in the cortex and hippocampus was similar to that in the apamin-sensitive clones, rSK2 and rSK3. In addition, we demonstrated low affinity [(125)I]-apamin binding for hSK1 and identified compounds that show subtype selectivity. These data cast further doubt on the identification of SK1 as encoding for the K(+) channel responsible for the apamin-insensitive sAHP.
Collapse
Affiliation(s)
- K Finlayson
- Fujisawa Institute of Neuroscience, Department of Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Terstappen GC, Pula G, Carignani C, Chen MX, Roncarati R. Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology 2001; 40:772-83. [PMID: 11369031 DOI: 10.1016/s0028-3908(01)00007-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A stable CHO-K1 cell line was developed which expresses the human small conductance calcium-activated potassium channel hSK3. Immunofluorescence microscopy using an anti-SK3 antibody and radioligand binding using [(125)I]-apamin demonstrated the presence of hSK3 channel in the recombinant cell line. This cell line was utilised in a fluorescence assay using the membrane potential-sensitive dye DiBAC(4)(3) to functionally analyse and pharmacologically characterise this potassium channel. The analysis of known blockers of calcium-activated potassium channels revealed the highest potency for apamin (IC(50)=13.2 nM). This result was confirmed by direct recordings of SK3 currents using the whole-cell patch-clamp technique. Tricyclic antidepressants such as desipramine, imipramine and nortriptyline as well as phenothiazines such as fluphenazine, promethazine, chlorpromazine and trifluoperazine blocked the hSK3 channel with micromolar potencies. These compounds also displaced [(125)I]-apamin binding to the hSK3 channel thus suggesting direct and competitive channel blocking activity. Since these compounds share a common three-ring molecular core structure, this feature seems to be important for channel blocking activity. The serine/threonine protein phosphatase inhibitors okadaic acid and calyculin A were able to abolish channel activation with nanomolar potencies, but did not displace [(125)I]-apamin binding. Thus, phosphorylation of hSK3 or an accessory channel subunit seems to be involved in its modulation.
Collapse
Affiliation(s)
- G C Terstappen
- Molecular Biology and Biochemistry Unit, GlaxoWellcome Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy.
| | | | | | | | | |
Collapse
|