1
|
Holtschulte C, Börgel F, Westphälinger S, Schepmann D, Civenni G, Laurini E, Marson D, Catapano CV, Pricl S, Wünsch B. Synthesis of aminoethyl substituted piperidine derivatives as σ1 receptor ligands with antiproliferative properties. ChemMedChem 2022; 17:e202100735. [PMID: 35077612 PMCID: PMC9303367 DOI: 10.1002/cmdc.202100735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/17/2022] [Indexed: 12/05/2022]
Abstract
A series of novel σ1 receptor ligands with a 4‐(2‐aminoethyl)piperidine scaffold was prepared and biologically evaluated. The underlying concept of our project was the improvement of the lipophilic ligand efficiency of previously synthesized potent σ1 ligands. The key steps of the synthesis comprise the conjugate addition of phenylboronic acid at dihydropyridin‐4(1H)‐ones 7, homologation of the ketones 8 and introduction of diverse amino moieties and piperidine N‐substituents. 1‐Methylpiperidines showed particular high σ1 receptor affinity and selectivity over the σ2 subtype, whilst piperidines with a proton, a tosyl moiety or an ethyl moiety exhibited considerably lower σ1 affinity. Molecular dynamics simulations with per‐residue binding free energy deconvolution demonstrated that different interactions of the basic piperidine‐N‐atom and its substituents (or the cyclohexane ring) with the lipophilic binding pocket consisting of Leu105, Thr181, Leu182, Ala185, Leu186, Thr202 and Tyr206 are responsible for the different σ1 receptor affinities. Recorded logD7.4 and calculated clogP values of 4a and 18a indicate low lipophilicity and thus high lipophilic ligand efficiency. Piperidine 4a inhibited the growth of human non‐small cell lung cancer cells A427 to a similar extent as the σ1 antagonist haloperidol. 1‐Methylpiperidines 20a, 21a and 22a showed stronger antiproliferative effects on androgen negative human prostate cancer cells DU145 than the σ1 ligands NE100 and S1RA.
Collapse
Affiliation(s)
- Catharina Holtschulte
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Stefanie Westphälinger
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Gianluca Civenni
- Institute of Oncology ResearchUniversità della Svizzera Italiana (USI)Via Vincenzo Vela 66500BellinzonaSwitzerland
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEAUniversity of Trieste34127TriesteItaly
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEAUniversity of Trieste34127TriesteItaly
| | - Carlo V. Catapano
- Institute of Oncology ResearchUniversità della Svizzera Italiana (USI)Via Vincenzo Vela 66500BellinzonaSwitzerland
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEAUniversity of Trieste34127TriesteItaly
- Department of General BiophysicsFaculty of Biology and Environmental ProtectionUniversity of Lodz90-237LodzPoland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
- Chemical biology of ion channels (Chembion)Westfälische Wilhelms-Universität MünsterCorrensstraße 4848149MünsterGermany
| |
Collapse
|
2
|
Motawe ZY, Abdelmaboud SS, Cuevas J, Breslin JW. PRE-084 as a tool to uncover potential therapeutic applications for selective sigma-1 receptor activation. Int J Biochem Cell Biol 2020; 126:105803. [PMID: 32668330 PMCID: PMC7484451 DOI: 10.1016/j.biocel.2020.105803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
The discovery of a highly selective putative sigma-1 (σ1) receptor agonist, PRE-084, has revealed the numerous potential uses of this receptor subtype as a therapeutic target. While much work has been devoted to determining the role of σ1 receptors in normal and pathophysiological states in the nervous system, recent work suggests that σ1 receptors may be important for modulating functions of other tissues. These discoveries have provided novel insights into σ1 receptor structure, function, and importance in multiple intracellular signaling mechanisms. These discoveries were made possible by σ1 receptor-selective agonists such as PRE-084. The chemical properties and pharmacological actions of PRE-084 will be reviewed here, along with the expanding list of potential therapeutic applications for selective activation of σ1 receptors.
Collapse
Affiliation(s)
- Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Salma S Abdelmaboud
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
3
|
Bunse P, Schlepphorst C, Glorius F, Kitamura M, Wünsch B. Short and Atom-Economic Enantioselective Synthesis of the σ 1-Receptor Ligands ( S)- and ( R)-Fluspidine-Important Tools for Positron Emission Tomography Studies. J Org Chem 2019; 84:13744-13754. [PMID: 31523971 DOI: 10.1021/acs.joc.9b01882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aryl bromides 2a and 2b bearing an alkynyl substituent in the o-position reacted with n-butyllithium and 1-benzylpiperidin-4-one in a one-pot Domino reaction to form ester 3 and aldehyde 5, respectively. Enantiomeric alcohols (R)-8 and (S)-8 were obtained by conjugate NaBH4 reduction of α,β-unsaturated ester 3 in the presence of chiral cocomplexes (R,R)-10 and (S,S)-10. Starting from orthoester 2a, the precursors (R)-8 and (S)-8 for the synthesis of fluspidine enantiomers (R)-1/[18F](R)-1 and (S)-1/[18F](S)-1 were obtained in only two reaction steps without additional steps for N-protection in an atom-economic manner in 95.6% ee and 97.2% ee, respectively.
Collapse
Affiliation(s)
- Paul Bunse
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Frank Glorius
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Masato Kitamura
- Graduate School of Pharmaceutical Sciences and Research Center for Materials Science , Nagoya University , Chikusa, Nagoya 464-8601 , Japan
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM) , Westfälische Wilhelms-Universität Münster , D-48149 Münster , Germany
| |
Collapse
|
4
|
Kronenberg E, Weber F, Brune S, Schepmann D, Almansa C, Friedland K, Laurini E, Pricl S, Wünsch B. Synthesis and Structure-Affinity Relationships of Spirocyclic Benzopyrans with Exocyclic Amino Moiety. J Med Chem 2019; 62:4204-4217. [PMID: 30939014 DOI: 10.1021/acs.jmedchem.9b00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
σ1 and/or σ2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure-activity relationships studies, the σ1 receptor affinity and σ1:σ2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ1 affinity ( Ki = 1.9 nM) of this series of compounds. In a Ca2+ influx assay, cis-11b behaved as a σ1 antagonist. cis-11b reveals high selectivity over σ2 and opioid receptors. The interactions of the novel σ1 ligands were analyzed on the molecular level using the recently reported X-ray crystal structure of the σ1 receptor protein. The protonated amino moiety forms a persistent salt bridge with E172. The spiro[benzopyran-1,1'-cyclohexane] scaffold and the cyclohexylmethyl moiety occupy two hydrophobic pockets. Exchange of the N-cyclohexylmethyl moiety by a benzyl group led unexpectedly to potent and selective μ-opioid receptor ligands.
Collapse
Affiliation(s)
- Elisabeth Kronenberg
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Frauke Weber
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Stefanie Brune
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
| | - Carmen Almansa
- Esteve Pharmaceuticals S.A. , Baldiri Reixach 4-8 , 08028 Barcelona , Spain
| | - Kristina Friedland
- Pharmakologie und Toxikologie, Institut für Pharmazie und Biochemie , Universität Mainz , Staudinger Weg 5 , D-55128 Mainz , Germany
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany
- Cells-in-motion Cluster of Excellence (EXC 1003-CiM) , University of Münster , D-48149 Münster , Germany
| |
Collapse
|
5
|
Penke B, Fülöp L, Szűcs M, Frecska E. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:97-116. [PMID: 28554311 PMCID: PMC5771390 DOI: 10.2174/1570159x15666170529104323] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/15/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. METHODS Research articles on Sigma-1 receptor were reviewed. RESULTS ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. CONCLUSION Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity.
Collapse
Affiliation(s)
- Botond Penke
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Lívia Fülöp
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Mária Szűcs
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Ede Frecska
- University of Debrecen, Department of Psychiatry, Faculty of Medicine, Debrecen, Hungary
| |
Collapse
|
6
|
Weber F, Wünsch B. Medicinal Chemistry of σ 1 Receptor Ligands: Pharmacophore Models, Synthesis, Structure Affinity Relationships, and Pharmacological Applications. Handb Exp Pharmacol 2017; 244:51-79. [PMID: 28620761 DOI: 10.1007/164_2017_33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In the first part of this chapter, we summarize the various pharmacophore models for σ1 receptor ligands. Common to all of them is a basic amine flanked by two hydrophobic regions, representing the pharmacophoric elements. The development of computer-based models like the 3D homology model is described as well as the first crystal structure of the σ1 receptor. The second part focuses on the synthesis and biological properties of different σ1 receptor ligands, identified as 1-9. Monocyclic piperazines 1 and bicyclic piperazines 2 and 3 were developed as cytotoxic compounds, thus the IC50 values of cell growth and survival inhibition studies are given for all derivatives. The mechanism of cell survival inhibition, induction of time-dependent apoptosis, of compound ent-2a is discussed. Experimentally determined σ1 affinity shows good correlation with the results from molecular dynamics simulations based on a 3D homology model. Spirocyclic compounds 4 and 5 represent well-established σ1 receptor ligands. The homologous fluoroalkyl derivatives 4 have favorable pharmacological properties for use as fluorinated PET tracers. The (S)-configured fluoroethyl substituted compound (S)-4b is under investigation as PET tracer for imaging of σ1 receptors in the brain of patients affected by major depression. 1,3-Dioxanes 6c and 6d display a very potent σ1 antagonist profile and the racemic 1,3-dioxane 6c has high anti-allodynic activity at low doses. The arylpropenylamines 7 are very potent σ1 receptor ligands with high σ1/σ2 selectivity. The top compound 7g acts as an agonist as defined by its ability to potentiate neurite outgrowth at low concentrations. Among the morpholinoethoxypyrazoles 8, 8c (known as S1RA) reveals the most promising pharmacokinetic and physicochemical properties. Due to its good safety profile, 8c is currently being investigated in a phase II clinical trial for the treatment of neuropathic pain. The most potent ligand 9e of 3,4-dihydro-2(1H)-quinolones 9 shows promising anti-nociceptive activity in the formalin test.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, Münster, 48149, Germany.
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CIM), University Münster, Münster, Germany
| |
Collapse
|
7
|
Hiranita T. Identification of the Sigma-2 Receptor: Distinct from the Progesterone Receptor Membrane Component 1 (PGRMC1). ACTA ACUST UNITED AC 2016; 4. [PMID: 27376101 PMCID: PMC4930110 DOI: 10.4172/2329-6488.1000e130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takato Hiranita
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA
| |
Collapse
|
8
|
Yasui Y, Su TP. Potential Molecular Mechanisms on the Role of the Sigma-1 Receptor in the Action of Cocaine and Methamphetamine. ACTA ACUST UNITED AC 2016; 5. [PMID: 27088037 DOI: 10.4303/jdar/235970] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum membrane protein that involves a wide range of physiological functions. The Sig-1R has been shown to bind psychostimulants including cocaine and methamphetamine (METH) and thus has been implicated in the actions of those psychostimulants. For example, it has been demonstrated that the Sig-1R antagonists mitigate certain behavioral and cellular effects of psychostimulants including hyperactivity and neurotoxicity. Thus, the Sig-1R has become a potential therapeutic target of medication development against drug abuse that differs from traditional monoamine-related strategies. In this review, we will focus on the molecular mechanisms of the Sig-1R and discuss in such a manner with a hope to further understand or unveil unexplored relations between the Sig-1R and the actions of cocaine and METH, particularly in the context of cellular biological relevance.
Collapse
Affiliation(s)
- Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| |
Collapse
|
9
|
Mari Y, Katnik C, Cuevas J. σ-1 Receptor Inhibition of ASIC1a Channels is Dependent on a Pertussis Toxin-Sensitive G-Protein and an AKAP150/Calcineurin Complex. Neurochem Res 2015; 40:2055-67. [PMID: 24925261 DOI: 10.1007/s11064-014-1324-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/17/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
ASIC1a channels play a major role in various pathophysiological conditions including depression, anxiety, epilepsy, and neurodegeneration following ischemic stroke. Sigma-1 (σ-1) receptor stimulation depresses the activity of ASIC1a channels in cortical neurons, but the mechanism(s) by which σ-1 receptors exert their influence on ASIC1a remains unknown. Experiments were undertaken to elucidate the signaling cascade linking σ-1 receptors to ASIC1a channels. Immunohistochemical studies showed that σ-1 receptors, ASIC1a and A-kinase anchoring peptide 150 colocalize in the plasma membrane of the cell body and processes of cortical neurons. Fluorometric Ca(2+) imaging experiments showed that disruption of the macromolecular complexes containing AKAP150 diminished the effects of the σ-1 on ASIC1a, as did application of the calcineurin inhibitors, cyclosporin A and FK-506. Moreover, whole-cell patch clamp experiments showed that σ-1 receptors were less effective at decreasing ASIC1a-mediated currents in the presence of the VIVIT peptide, which binds to calcineurin and prevents cellular effects dependent on AKAP150/calcineurin interaction. The coupling of σ-1 to ASIC1a was also disrupted by preincubation of the neurons in the G-protein inhibitor, pertussis toxin (PTX). Taken together, our data reveal that σ-1 receptor block of ASIC1a function is dependent on activation of a PTX-sensitive G-protein and stimulation of AKAP150 bound calcineurin.
Collapse
Affiliation(s)
- Yelenis Mari
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC-9, Tampa, FL, 33612-4799, USA
| | - Christopher Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC-9, Tampa, FL, 33612-4799, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC-9, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
10
|
Fond G, Micoulaud-Franchi JA, Brunel L, Macgregor A, Miot S, Lopez R, Richieri R, Abbar M, Lancon C, Repantis D. Innovative mechanisms of action for pharmaceutical cognitive enhancement: A systematic review. Psychiatry Res 2015; 229:12-20. [PMID: 26187342 DOI: 10.1016/j.psychres.2015.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 05/31/2015] [Accepted: 07/05/2015] [Indexed: 12/21/2022]
Abstract
Pharmacological cognitive enhancement refers to improvement in cognitive functions after drug use in healthy individuals. This popular topic attracts attention both from the general public and the scientific community. The objective was to explore innovative mechanisms of psychostimulant's action, whose potential effectiveness was assessed in randomized placebo-controlled trials (RCTs). A systematic review was carried out, using the words "attention", "memory", "learning", "executive functions", and "vigilance/wakefulness" combined to "cognitive enhancer" or "smart drug". Methylphenidate, amphetamines, modafinil, nicotine, acetylcholine esterase inhibitors and antidepressants were extensively studied in previous meta-analyses and were not included in the present work. Drugs were classified according to their primary mode of action, namely catecholaminergic drugs (tolcapone, pramipexole, guanfacine), cholinergic drugs (anticholinergics), glutamatergic drugs (ampakines), histaminergic drugs, and non-specified (glucocorticoids). Overall, 50 RCTs were included in the present review. In conclusion, a number of new active drugs were found to improve some cognitive functions, in particular verbal episodic memory. However the number of RCTs was limited, and most of the studies found negative results. Future studies should assess both effectiveness and tolerance of repeated doses administration, and individual variability in dose response (including baseline characteristics and potential genetic polymorphisms). One explanation for the limited number of recent RCTs with new psychostimulants seems to be the ethical debate surrounding pharmaceutical cognitive enhancement in healthy subjects.
Collapse
Affiliation(s)
- Guillaume Fond
- Université Paris EST-Créteil, AP-HP, Pôle de Psychiatrie ET d'addictologie des Hopitaux Universitaires Henri Mondor, INSERM U955, Eq 15 Psychiatrie Génétique, DHU PE-psy, Fondation Fondamental Fondation de Coopération Scientifique en Santé Mentale, F-94000 France.
| | | | - Lore Brunel
- Université Paris EST-Créteil, AP-HP, Pôle de Psychiatrie ET d'addictologie des Hopitaux Universitaires Henri Mondor, INSERM U955, Eq 15 Psychiatrie Génétique, DHU PE-psy, Fondation Fondamental Fondation de Coopération Scientifique en Santé Mentale, F-94000 France
| | - Alexandra Macgregor
- Université Montpellier 1, INSERM 1061, Service Universitaire de Psychiatrie, CHU Montpellier F-34000, France
| | - Stéphanie Miot
- INSERM U952, CNRS UMR 7224, UMPC Univ Paris 06, F-75000 Paris, France
| | - Régis Lopez
- Université Montpellier 1, INSERM 1061, Centre de Référence National Narcolepsie Hypersomnie Idiopathique, Unité des Troubles du Sommeil, CHU Montpellier F-34000, France
| | - Raphaëlle Richieri
- Pôle Psychiatrie Universitaire, CHU Sainte-marguerite, F-13274 Marseille Cedex 09, France; Faculté de Médecine, EA 3279, Laboratoire de Santé Publique, F-13385 Marseille Cedex 05, France
| | - Mocrane Abbar
- CHU Carémeau, Université de Nîmes, Nîmes F-31000, France
| | - Christophe Lancon
- Pôle Psychiatrie Universitaire, CHU Sainte-marguerite, F-13274 Marseille Cedex 09, France
| | - Dimitris Repantis
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin franklin, Eschenallee 3, 14050 Berlin, Germany
| |
Collapse
|
11
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
12
|
Zampieri D, Laurini E, Vio L, Fermeglia M, Pricl S, Wünsch B, Schepmann D, Mamolo MG. Improving selectivity preserving affinity: new piperidine-4-carboxamide derivatives as effective sigma-1-ligands. Eur J Med Chem 2015; 90:797-808. [PMID: 25528334 DOI: 10.1016/j.ejmech.2014.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
We report the design, synthesis and binding evaluation against σ1 and σ2 receptors of a series of new piperidine-4-carboxamide derivatives variously substituted on the amide nitrogen atom. Specifically, we assessed the effects exerted on σ receptor affinity by substituting the N-benzylcarboxamide group present on a series of compounds previously synthesized in our laboratory with different cyclic or linear moieties. The synthesized compounds 2a-o were tested to estimate their affinity and selectivity toward σ1 and σ2 receptors. Very high σ1 affinity (Ki = 3.7 nM) and Kiσ2/Kiσ1 selectivity ratio (351) were found for the tetrahydroquinoline derivative 2k, featuring a 4-chlorobenzyl moiety linked to the piperidine nitrogen atom.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy.
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Luciano Vio
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DI3, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy; National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy.
| | - Bernhard Wünsch
- Department of Pharmaceutical and Medicinal Chemistry, Corrensstrasse 48, 48149 Münster, Germany
| | - Dirk Schepmann
- Department of Pharmaceutical and Medicinal Chemistry, Corrensstrasse 48, 48149 Münster, Germany
| | - Maria Grazia Mamolo
- Department of Chemistry & Pharmaceutical Sciences, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
13
|
Weber F, Brune S, Korpis K, Bednarski PJ, Laurini E, Dal Col V, Pricl S, Schepmann D, Wünsch B. Synthesis, Pharmacological Evaluation, and σ1 Receptor Interaction Analysis of Hydroxyethyl Substituted Piperazines. J Med Chem 2014; 57:2884-94. [DOI: 10.1021/jm401707t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Frauke Weber
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Katharina Korpis
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J. Bednarski
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Valentina Dal Col
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
- National
Interuniversity Consortium for Material Science and Technology (INSTM),
Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
14
|
Brimson JM, Brown CA, Safrany ST. Antagonists show GTP-sensitive high-affinity binding to the sigma-1 receptor. Br J Pharmacol 2011; 164:772-80. [PMID: 21486275 PMCID: PMC3188898 DOI: 10.1111/j.1476-5381.2011.01417.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/06/2011] [Accepted: 03/29/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Sigma-1 receptors are atypical receptors with potentially two transmembrane domains. Antagonists require doses significantly higher than their published affinities to have biological effects. We have reassessed the binding characteristics of these ligands and found antagonists bind to high- and low-affinity states not distinguished by agonists. EXPERIMENTAL APPROACH The affinities of sigma-1 receptor ligands was assessed using radioligand saturation and competition binding of [³H]-(+)-pentazocine to permeabilized MDA-MB-468 cells. This was compared with the effect of ligands on metabolic activity using an MTS-based assay and calcium signalling using cells loaded with the calcium dye, Fura-2. KEY RESULTS Sigma-1 receptor antagonists, but not agonists, show GTP- and suramin-sensitive high-affinity binding. Functional responses (calcium signalling and metabolic activity), while associated with sigma-1 receptor binding, required binding to an unidentified, low-affinity target. CONCLUSIONS AND IMPLICATIONS Sigma-1 receptors are coupled to G proteins. This interaction is only observed when analysing antagonist binding. The identity of the G protein remains to be resolved. The concept of agonist and antagonist at the sigma-1 receptor needs to be revisited.
Collapse
Affiliation(s)
- JM Brimson
- Department of Pharmacy and Pharmacology, University of BathBath, UK
| | - CA Brown
- Department of Pharmacy, University of WolverhamptonWolverhampton, UK
| | - ST Safrany
- Department of Pharmacy and Pharmacology, University of BathBath, UK
- Department of Pharmacy, University of WolverhamptonWolverhampton, UK
| |
Collapse
|
15
|
Rack E, Fröhlich R, Schepmann D, Wünsch B. Design, synthesis and pharmacological evaluation of spirocyclic σ(1) receptor ligands with exocyclic amino moiety (increased distance 1). Bioorg Med Chem 2011; 19:3141-51. [PMID: 21531141 DOI: 10.1016/j.bmc.2011.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Various pharmacophore models for potent σ(1) ligands specify a basic amino group flanked by two different hydrophobic regions in defined distances to the basic amine (distance 1 and distance 2, respectively). According to these models distance 1 of the potent spirocyclic σ(1) ligand 1 is too short. In order to find a new class of more potent σ(1) ligands and to verify the distance hypothesis of the pharmacophore models spirocyclic compounds 2 with an exocyclic amino group were designed and synthesized. The secondary amines 8 and 9 with N-benzyl residues are >100-fold less potent than the spirocyclic piperidine 1. However, the tertiary methylamines trans-11 and cis-11 represent potent σ(1) ligands with K(i)-values of 43 and 24 nM, respectively. Whereas one large benzyl moiety is required for high σ(1) receptor binding, a second large N-substituent is not tolerated by the σ(1) receptor protein. As a rule, cis-configured diastereomers with a longer distance 1 (predominantly 7.16-7.23 Å) show higher σ(1) affinities than their trans-configured counterparts (distance 1 is predominantly 5.88-6.26 Å).
Collapse
Affiliation(s)
- Elisabeth Rack
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Germany
| | | | | | | |
Collapse
|
16
|
Piergentili A, Amantini C, Del Bello F, Giannella M, Mattioli L, Palmery M, Perfumi M, Pigini M, Santoni G, Tucci P, Zotti M, Quaglia W. Novel highly potent and selective sigma 1 receptor antagonists related to spipethiane. J Med Chem 2010; 53:1261-9. [PMID: 20067271 DOI: 10.1021/jm901542q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conservative chemical modifications of the core structure of the lead spipethiane (1) afforded novel potent sigma(1) ligands. sigma(1) affinity and sigma(1/)sigma(2) selectivity proved to be favored by the introduction of polar functions (oxygen atom or carbonyl group) in position 3 or 4 (4-6) or by the elongation of the distance between the two hydrophobic portions of the molecule with the simultaneous presence of a carbonyl group in position 4 (8 and 9). The observed cytostatic effect against the human breast cancer cell line MCF-7/ADR, highly expressing sigma(1) receptors, and not against MCF-7, as well as the enhancement of morphine analgesia highlighted the sigma(1) antagonist profile of this series of compounds. In particular, due to its high sigma(1) affinity (pK(i) = 10.28) and sigma(1)/sigma(2) selectivity ratio (29510), compound 9 might be a novel valuable tool for sigma receptor characterization and a suitable template for the rational design of potential therapeutically useful sigma(1) antagonists.
Collapse
Affiliation(s)
- Alessandro Piergentili
- Dipartimento di Scienze Chimiche, Università di Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Werling LL, Keller A, Frank JG, Nuwayhid SJ. A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: Treatment of involuntary emotional expression disorder. Exp Neurol 2007; 207:248-57. [PMID: 17689532 DOI: 10.1016/j.expneurol.2007.06.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
We compared the binding profiles of medications potentially useful in the treatment of involuntary emotional expression disorder at twenty-six binding sites in rat brain tissue membranes. Sites were chosen based on likelihood of being target sites for the mechanism of action of the agents in treating the disorder or their likelihood in producing side effects experienced by patients treated with psychoactive agents. We used radioligand binding assays employing the most selective labeled ligands available for sites of interest. Concentrations of labeled ligand were used at or below the K(i) value of the ligand for the target site. Compounds were initially screened at 1 muM. For compounds that competed for greater than 20-30% of specific binding at target sites of interest, full concentration curves were constructed. Dextromethorphan, amitriptyline and fluoxetine competed for binding to sigma(1) receptors and to serotonin transporters with high to moderate affinity. Of the target sites tested, these are the most likely to contribute to the therapeutic benefit of the various agents. In addition, all three drugs showed some activity at alpha(2) and 5-HT(1B/D) sites. Of the drugs tested, dextromethorphan bound to the fewest sites unlikely to be target sites. Although the mechanism of action of dextromethorphan or any drug that has been used in the treatment of involuntary emotional expression disorder is currently unknown, our data support that the affinity of the drug for sigma(1) receptors is consistent with its possible action through this receptor type in controlling symptoms of the disorder.
Collapse
Affiliation(s)
- Linda L Werling
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
18
|
Ramachandran S, Lu H, Prabhu U, Ruoho AE. Purification and characterization of the guinea pig sigma-1 receptor functionally expressed in Escherichia coli. Protein Expr Purif 2007; 51:283-92. [PMID: 16962337 PMCID: PMC2953794 DOI: 10.1016/j.pep.2006.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/22/2006] [Accepted: 07/25/2006] [Indexed: 11/16/2022]
Abstract
Sigma receptors once considered as a class of opioid receptors are now regarded as unique orphan receptors, distinguished by the ability to bind various pharmacological agents such as the progesterone (steroid), haloperidol (anti-psychotic), and drugs of abuse such as cocaine and methamphetamine. The sigma-1 receptor is a 223 amino acid protein, proposed to have two transmembrane segments. We have developed a scheme for the purification of the guinea pig sigma-1 receptor following overexpression in Escherichia coli as a maltose binding protein (MBP) fusion and extraction with Triton X-100. Affinity chromatography using an amylose column and Ni2+ affinity column was used to purify the sigma-1 receptor. The sigma-1 receptor purified by this method is a 26 kDa polypeptide as assessed by SDS-PAGE, binds sigma ligands with high affinity and can be specifically photoaffinity labeled with the sigma-1 receptor photoprobe, [125I]-iodoazidococaine. Ligand binding using [3H]-(+)-pentazocine indicated that approximately half of the purified protein in Triton X-100 bound to radioligand. The MBP-sigma-1 receptor and the sigma-1 receptor in 0.5% triton were maximally stable for approximately two weeks at -20 degrees C in buffer containing 30% glycerol.
Collapse
|
19
|
Pallanti S, Sandner C. Treatment of depression with selective serotonin inhibitors: the role of fluvoxamine. Int J Psychiatry Clin Pract 2007; 11:233-8. [PMID: 24941363 DOI: 10.1080/13651500701419685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The advent of the selective serotonin reuptake inhibitors (SSRIs) is generally considered to have improved the treatment of depression. Head-to-head trials comparing SSRIs to each other have shown little difference in efficacy among agents. The main differences between the SSRIs relate to safety and tolerability profiles, reflecting the fact that the SSRIs possess significant and variable secondary pharmacological properties. This heterogeneity contributes to clinically relevant differences that clinicians are increasingly using to select antidepressant treatment more closely appropriate to specific patient populations and circumstances. This review assesses the place of fluvoxamine amongst the SSRIs in the context of current issues and concerns with drug therapy. Fluvoxamine has a proven efficacy and safety profile in treating elderly patients with depression. The beneficial effects of fluvoxamine in obsessive-compulsive disorder (OCD) are also well documented. On the other hand, its σ1-receptor binding profile may account for the observed high level of efficacy in psychotic depression and may explain the benefit of fluvoxamine in treating depression comorbid with anxiety/stress. There is no definitive evidence that suicide risk is higher with SSRIs than with other antidepressants or nonpharmacological treatments and postmarketing surveillance indicates that fluvoxamine is not associated with a higher level of suicidality.
Collapse
Affiliation(s)
- Stefano Pallanti
- Centro de Neurologia, Psichiatria e Psicologia Clinica, Firenze, Italy
| | | |
Collapse
|
20
|
Daniels A, Ayala E, Chen W, Coop A, Matsumoto RR. N-[2-(m-methoxyphenyl)ethyl]-N-ethyl-2-(1-pyrrolidinyl)ethylamine (UMB 116) is a novel antagonist for cocaine-induced effects. Eur J Pharmacol 2006; 542:61-8. [PMID: 16797004 DOI: 10.1016/j.ejphar.2006.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 03/20/2006] [Accepted: 03/27/2006] [Indexed: 11/27/2022]
Abstract
Previous research has shown that sigma receptors participate in the actions of cocaine in the body. This has led to investigations of the use of novel agents such as BD1008, BD1067 and YZ-011 as cocaine antagonists. In the present study, three novel analogs (UMB115, UMB116, UMB117), representing composites of these earlier compounds, were evaluated in receptor binding and behavioral studies. In the receptor binding studies, the compounds were shown to have high affinity for sigma receptors and much lower affinities for non-sigma sites. For the behavioral experiments, Swiss Webster mice were pre-treated with saline or one of the novel compounds (0.1-10 mg/kg), followed 15 min later by a convulsive (60 mg/kg), lethal (125 mg/kg), or locomotor stimulatory (10 mg/kg) dose of cocaine. The results showed that UMB115, UMB116 and UMB117 significantly (P<0.05) inhibited cocaine-induced convulsions when administered as a pre-treatment to cocaine. Cocaine-induced lethality was significantly attenuated by UMB116 (P<0.05), but not by UMB115 and UMB117. All three compounds significantly (P<0.05) altered the locomotor stimulatory effects of cocaine, with UMB115 and UMB116 exhibiting attenuating actions. Together, the studies suggest UMB116 as a novel cocaine antagonist.
Collapse
Affiliation(s)
- AnTawan Daniels
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | | | |
Collapse
|
21
|
Carrasco JL, Sandner C. Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview. Int J Clin Pract 2005; 59:1428-34. [PMID: 16351675 DOI: 10.1111/j.1368-5031.2005.00681.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although the selective serotonin reuptake inhibitor (SSRI) class of antidepressants shares a common primary pharmacology, namely the inhibition of serotonin reuptake, their secondary pharmacology is remarkably heterogeneous. Inhibition of serotonin reuptake and the consequent increase in serotonin availability are responsible for the relief of depressive symptoms and for some of the adverse effects of this class of drugs. Transsynaptic effects such as modulation of signalling cascades, gene expression processes and neuroplasticity are also important in the mechanism of action of antidepressants. However, this review shows that secondary properties of the SSRIs may contribute to the differences in efficacy and tolerability between members of the class. For example, fluvoxamine has affinity for sigma(1)-receptors -- a property likely to be responsible for its particular efficacy in delusional depression. By understanding the properties of SSRIs and employing careful selection of agents for individual patients, physicians are more able to tailor antidepressant treatments to their patients' particular circumstances.
Collapse
Affiliation(s)
- J L Carrasco
- Servicio de Psiquiatria, Hospital Clínico San Carlos, Madrid, Spain
| | | |
Collapse
|
22
|
Abstract
Behavioral models used to test potential antidepressants have shown that ligands that bind to sigma receptors possess "antidepressant-like" properties. The focus of this review is to discuss the literature concerning sigma receptors and their ligands, with respect to their antidepressants properties. In addition to the behavioral data, we discuss electrophysiological and biochemical models demonstrating sigma receptors' ability to modulate important factors in the pathophysiology of depression and/or the mechanisms of action of antidepressants such as the serotonergic neurotransmission in the dorsal raphe nucleus (DRN) and the glutamatergic transmission in the hippocampus. We also discuss the significance of these two systems in the mechanism of action of antidepressants. Sigma ligands have potential as antidepressant medications with a fast onset of action as they produce a rapid modulation of the serotonergic system in the DRN and the glutamatergic transmission in the hippocampus. As these effects of sigma ligands may produce antidepressant properties by completely novel mechanisms of action, they may provide an alternative to the antidepressants currently available and may prove to be beneficial for treatment-resistant depressed patients.
Collapse
|
23
|
Balakin KV, Lang SA, Skorenko AV, Tkachenko SE, Ivashchenko AA, Savchuk NP. Structure-Based versus Property-Based Approaches in the Design of G-Protein-Coupled Receptor-Targeted Libraries. ACTA ACUST UNITED AC 2003; 43:1553-62. [PMID: 14502489 DOI: 10.1021/ci034114g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, two alternative approaches to the design of small-molecule libraries targeted for several G-protein-coupled receptor (GPCR) classes were explored. The first approach relies on the selection of structural analogues of known active compounds using a substructural similarity method. The second approach, based on an artificial neural network classification procedure, searches for compounds that possess physicochemical properties typical of the GPCR-specific agents. As a reference base, 3365 GPCR-active agents belonging to nine different GPCR classes were used. General rules were developed which enabled us to assess possible areas where both approaches would be useful. The predictability of the neural network algorithm based on 14 physicochemical descriptors was found to exceed the predictability of the similarity-based approach. The structural diversity of high-scored subsets obtained with the neural network-based method exceeded the diversity obtained with the similarity-based approach. In addition, the descriptor distributions of the compounds selected by the neural network algorithm more closely approximate the corresponding distributions of the real, active compounds than did those selected using the alternative method.
Collapse
Affiliation(s)
- Konstantin V Balakin
- Chemical Diversity Labs Inc, 11558 Sorrento Valley Road, San Diego, California 92121, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
25
|
Campana G, Bucolo C, Murari G, Spampinato S. Ocular hypotensive action of topical flunarizine in the rabbit: role of sigma 1 recognition sites. J Pharmacol Exp Ther 2002; 303:1086-94. [PMID: 12438531 DOI: 10.1124/jpet.102.040584] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a previous study we ascertained the presence of sigma1 and sigma2 recognition sites in the rabbit iris-ciliary body, an ocular structure involved in aqueous humor production and drainage. We characterized the sigma1 sites using the preferential ligand (+)-pentazocine, which caused a significant reduction of intraocular pressure (IOP). In the present study, flunarizine, a calcium channel blocker with a complex pharmacological profile, bound to sigma1 sites expressed in the iris-ciliary body with moderate affinity (K(i) = 68 nM). Unilateral topical flunarizine (0.01-0.1%) caused a dose-related reduction of IOP in ocular normotensive rabbits and in the alpha-chymotrypsin model of ocular hypertension, without altering the IOP of the contralateral eye. This activity was blocked by the sigma1 site antagonist NE-100 [N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine HCl] which, by itself, had no effect on IOP. Detection of flunarizine in rabbit iris-ciliary body homogenates, after topical instillation, showed that it adequately penetrates the rabbit eye. To investigate mechanisms that may contribute to ocular hypotension induced by sigma1 agonists, we carried out in vitro studies on the isolated rabbit iris-ciliary body. Flunarizine (IC50 = 5. 96 nM) and (+)-pentazocine (IC50 = 3. 81 nM) inhibited [3H]norepinephrine release. Moreover, flunarizine (IC50 = 6.34 nM) and (+)-pentazocine (IC50 = 27.26 nM) also antagonized isoproterenol-induced cAMP accumulation. The action of flunarizine and (+)-pentazocine was sensitive to NE-100 antagonism; however, this latter compound partially prevented their effect on [3H]norepinephrine and cAMP accumulation. These findings indicate that flunarizine and (+)-pentazocine interact with ocular sigma1 sites and may prove effective in the control of ocular hypertension.
Collapse
Affiliation(s)
- Gabriele Campana
- Department of Pharmacology, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
26
|
Derbez AE, Mody RM, Werling LL. Sigma(2)-receptor regulation of dopamine transporter via activation of protein kinase C. J Pharmacol Exp Ther 2002; 301:306-14. [PMID: 11907188 DOI: 10.1124/jpet.301.1.306] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The elucidation of the mechanisms underlying sigma(2)-receptor activation and signal transduction is crucial to the understanding of sigma(2)-receptor function. Previous studies in our laboratory have demonstrated sigma(2)-receptor-mediated regulation of the dopamine transporter (DAT) as measured by amphetamine-stimulated release of [(3)H]dopamine (DA) from both rat striatal slices and PC12 cells. The regulation of the DAT in the PC12 cell model was dependent upon activation of Ca(2+)/calmodulin-dependent kinase II. We have now studied the second messenger systems involved in sigma(2)-receptor-mediated regulation of amphetamine-stimulated [(3)H]DA release in rat striatal slices, including Ca(2+)/calmodulin-dependent kinase II, protein kinase C, and sources of calcium required for the enhancement of release produced by sigma(2)-receptor activation. The Ca(2+)/calmodulin-dependent kinase II inhibitors 1-[N,O-bis-(5-isoquionolinesulfonyl)]-N-methyl-L-tyrosyl-4-phenylpiperazine and N-[2-[[[3-(4'-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-benzenesulfonamide phosphate did not significantly affect the (+)-pentazocine-mediated enhancement of amphetamine-stimulated [(3)H]DA release. However, we found that an inhibitor of protein kinase C, 3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl)-1H-pyrrole-2,5-dione, blocks the (+)-pentazocine-mediated enhancement in rat striatal slices. The protein kinase C activator phorbol 12-myristate 13-acetate, but not the inactive isophorbol 4 alpha,9 alpha,12 alpha,13 alpha,20-pentahydroxytiglia-1,6-dien-3-one, enhanced the amphetamine-stimulated [(3)H]DA release comparable to the enhancement seen by (+)-pentazocine alone. Additionally, the L-type voltage-dependent calcium channel inhibitor nitrendipine or prior treatment with thapsigargin, but not the N-type voltage-dependent calcium channel omega-conotoxin MVIIA, attenuated the (+)-pentazocine-mediated enhancement. Together, these data suggest that activation of sigma(2)-receptors results in the regulation of DAT activity via a calcium- and protein kinase C-dependent signaling mechanism.
Collapse
Affiliation(s)
- Alicia E Derbez
- Department of Pharmacology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
27
|
Hong W, Werling LL. Binding of sigma receptor ligands and their effects on muscarine-induced Ca(2+) changes in SH-SY5Y cells. Eur J Pharmacol 2002; 436:35-45. [PMID: 11834244 DOI: 10.1016/s0014-2999(01)01606-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In human neuroblastoma SH-SY5Y cell preparations, sigma(1) receptor agonists (+)-pentazocine and 1S,2R-(-)-cis-N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)cyclohexylamine (BD737) competed for [3H]haloperidol binding with K(i) values of 67+/-10 and 14+/-10 nM, respectively. (+)-Pentazocine or BD737 up to 10 microM did not affect basal levels of intracellular Ca(2+) concentration ([Ca(2+)](i)) in these cells, but they significantly reduced muscarine-induced [Ca(2+)](i) changes in a dose-related manner. However, the reduction by (+)-pentazocine was not reversed by the sigma(1) receptor antagonist haloperidol. Further studies showed (+)-pentazocine, BD737 and haloperidol could compete for [3H]quinuclidinyl benzilate binding in SH-SY5Y cells with K(i) values of 0.51+/-0.06, 0.32+/-0.07 and 4.4+/-2.3 microM, respectively. Thus, the inhibitory effects on muscarine-induced [Ca(2+)](i) changes by (+)-pentazocine and BD737 in SH-SY5Y cells were likely due to blockade of muscarinic receptors, not due to sigma(1) receptor activation by these ligands.
Collapse
Affiliation(s)
- Weimin Hong
- Neuroscience Program, George Washington University Medical Center, 2300 I St., NW Washington, DC 20037, USA
| | | |
Collapse
|
28
|
Hong W, Werling L. Lack of effects by sigma ligands on neuropeptide Y-induced G-protein activation in rat hippocampus and cerebellum. Brain Res 2001; 901:208-18. [PMID: 11368969 DOI: 10.1016/s0006-8993(01)02348-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been suggested that neuropeptide Y (NPY) and sigma (sigma) receptor ligands may share a putative NPY/sigma receptor in rat brain. To study whether NPY and sigma receptor ligands have an inverse agonism at this putative NPY/sigma receptor, we measured their effects on G-protein activity in rat brain. Using [35S]GTPgammaS autoradiography, we found that NPY-induced G-protein activation exhibited a discrete distribution pattern in rat brain. G-protein activation in superficial cortical layers and hippocampal CA1-3 region was mainly attributed to Y1 and Y2 receptors, respectively. In the presence of 10 microM sigma-receptor agonist BD737 or 10 microM sigma-receptor antagonist haloperidol, the distribution and density of [35S]GTPgammaS binding stimulated by 10 nM NPY was not significantly altered. In rat cerebellar membranes, NPY stimulated high-affinity GTPase activity in a dose-related manner, with maximal effects of 29% increase over basal level seen at 500 nM. This NPY-elicited GTPase activity was not significantly affected by micromolar concentrations of the sigma-receptor antagonists Dup734 or haloperidol. Since no significant effects by sigma-receptor ligands on NPY-induced G-protein activation were observed, we did not see an inverse agonism of NPY and sigma-receptor ligands at the putative NPY/sigma receptor measured at the level of G-protein activation, suggesting that sigma receptors and NPY receptors do not represent a common population in rat hippocampus and cerebellum. It is also suggested that G-protein activation is not a convergent point for the signal transduction mechanisms of NPY receptors and sigma receptors.
Collapse
Affiliation(s)
- W Hong
- Neuroscience Program, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|