1
|
Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 2017; 46:2519-2533. [PMID: 28921719 PMCID: PMC5673553 DOI: 10.1111/ejn.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cations, Divalent/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Inflammation/metabolism
- Inflammation/pathology
- Lipopolysaccharides
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Tissue Culture Techniques
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
Collapse
Affiliation(s)
- Carissa D. Winland
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Nora Welsh
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| | - Alberto Sepulveda-Rodriguez
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Kathleen A. Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| |
Collapse
|
2
|
Jackson PL, Hanson CD, Farrell AK, Butcher RJ, Stables JP, Eddington ND, Scott K. Enaminones 12. An explanation of anticonvulsant activity and toxicity per Linus Pauling’s clathrate hypothesis. Eur J Med Chem 2012; 51:42-51. [DOI: 10.1016/j.ejmech.2012.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
|
3
|
Halonen LM, Sinkkonen ST, Chandra D, Homanics GE, Korpi ER. Brain regional distribution of GABA(A) receptors exhibiting atypical GABA agonism: roles of receptor subunits. Neurochem Int 2009; 55:389-96. [PMID: 19397945 DOI: 10.1016/j.neuint.2009.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 11/19/2022]
Abstract
The major inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABA(A) receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) binding to GABA(A) receptors in brain sections and compared the displacing capacities of 10mM GABA and 1mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABA(A) receptor alpha1, alpha4, delta, and alpha4+delta subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to "GABA-insensitive" (GIS) [(35)S]TBPS binding. THIP displaced more [(35)S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of delta KO and alpha4+delta KO mice, being only slightly diminished in that of alpha1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in alpha4 KO mice. However, it was fully abolished in alpha1 KO mice, indicating that the alpha1 subunit was obligatory for the GIS-binding in the forebrain. Our results suggest that native GABA(A) receptors in brain sections showing reduced displacing capacity of [(35)S]TBPS binding by GABA (partial agonism) minimally require the assembly of alpha1 and beta subunits in the forebrain and of alpha6 and beta subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- Lauri M Halonen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
4
|
Jansen M, Rabe H, Strehle A, Dieler S, Debus F, Dannhardt G, Akabas MH, Lüddens H. Synthesis of GABAA receptor agonists and evaluation of their alpha-subunit selectivity and orientation in the GABA binding site. J Med Chem 2008; 51:4430-48. [PMID: 18651727 DOI: 10.1021/jm701562x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drugs used to treat various disorders target GABA A receptors. To develop alpha subunit selective compounds, we synthesized 5-(4-piperidyl)-3-isoxazolol (4-PIOL) derivatives. The 3-isoxazolol moiety was substituted by 1,3,5-oxadiazol-2-one, 1,3,5-oxadiazol-2-thione, and substituted 1,2,4-triazol-3-ol heterocycles with modifications to the basic piperidine substituent as well as substituents without basic nitrogen. Compounds were screened by [(3)H]muscimol binding and in patch-clamp experiments with heterologously expressed GABA A alpha ibeta 3gamma 2 receptors (i = 1-6). The effects of 5-aminomethyl-3 H-[1,3,4]oxadiazol-2-one 5d were comparable to GABA for all alpha subunit isoforms. 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-one 5a and 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-thione 6a were weak agonists at alpha 2-, alpha 3-, and alpha 5-containing receptors. When coapplied with GABA, they were antagonistic in alpha 2-, alpha 4-, and alpha 6-containing receptors and potentiated alpha 3-containing receptors. 6a protected GABA binding site cysteine-substitution mutants alpha 1F64C and alpha 1S68C from reacting with methanethiosulfonate-ethylsulfonate. 6a specifically covalently modified the alpha 1R66C thiol, in the GABA binding site, through its oxadiazolethione sulfur. These results demonstrate the feasibility of synthesizing alpha subtype selective GABA mimetic drugs.
Collapse
Affiliation(s)
- Michaela Jansen
- Department of Medicinal Chemistry, Johannes Gutenberg-UniVersity, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Granfeldt D, Sinclair J, Millingen M, Farre C, Lincoln P, Orwar O. Controlling Desensitized States in Ligand−Receptor Interaction Studies with Cyclic Scanning Patch-Clamp Protocols. Anal Chem 2006; 78:7947-53. [PMID: 17134126 DOI: 10.1021/ac060812z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ligand-gated ion channels are important control elements in regulation of cellular activities, and increasing evidence demonstrates their role as therapeutic targets. The receptors display complex desensitization kinetics, occurring on vastly different time scales. This is not only important in biology and pharmacology but might also be of technological significance since populations of receptors under microfluidic control can function analogously to DRAM memory circuits. Using a novel microfluidic method, and computer modeling of the receptor state distributions, we here demonstrate that GABAA receptor populations can be controlled to display high or low EC50 values, depending on input function (i.e., the exact pattern of agonist application). The sensitivity of the receptors can be tuned up to 40-fold (beta-alanine) by the particular agonist exposure pattern. By combining patch-clamp experiments with computer modeling of receptor state distributions, we can control the assembly of receptors in desensitized states. The technique described can be used as an analytical tool to study the effect of desensitization on the activity of ion channel effectors. We describe the differential blocking effect of the competitive antagonist bicuculline on the high- and low-EC50 GABAA receptor preparations and conclude that the inhibition is dramatically dependent on how the different desensitized states are populated. Furthermore, we show that both GABA and beta-alanine, two agonists with different affinity but similar efficacy, induce the same type of desensitization behavior and memory effects in GABAA receptors.
Collapse
Affiliation(s)
- Daniel Granfeldt
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Ranna M, Sinkkonen ST, Möykkynen T, Uusi-Oukari M, Korpi ER. Impact of epsilon and theta subunits on pharmacological properties of alpha3beta1 GABAA receptors expressed in Xenopus oocytes. BMC Pharmacol 2006; 6:1. [PMID: 16412217 PMCID: PMC1363348 DOI: 10.1186/1471-2210-6-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 01/13/2006] [Indexed: 11/29/2022] Open
Abstract
Background γ-Aminobutyric acid type A (GABAA) receptors provide the main inhibitory control in the brain. Their heterogeneity may make it possible to precisely target drug effects to selected neuronal populations. In situ hybridization using rat brain sections has revealed a unique expression of GABAA receptor ε and θ subunit transcripts in the locus coeruleus, where they are accompanied at least by α3, α2, β1 and β3 subunits. Here, we studied the pharmacology of the human α3β1, α3β1ε, α3β1θ and α3β1εθ receptor subtypes expressed in Xenopus oocytes and compared them with the γ2 subunit-containing receptors. Results The GABA sensitivites and effects of several positive modulators of GABAA receptors were studied in the absence and the presence of EC25 GABA using the two-electrode voltage-clamp method. We found 100-fold differences in GABA sensitivity between the receptors, α3β1ε subtype being the most sensitive and α3β1γ2 the least sensitive. Also gaboxadol dose-response curves followed the same sensitivity rank order, with EC50 values being 72 and 411 μM for α3β1ε and α3β1γ2 subtypes, respectively. In the presence of EC25 GABA, introduction of the ε subunit to the receptor complex resulted in diminished modulatory effects by etomidate, propofol, pregnanolone and flurazepam, but not by pentobarbital. Furthermore, the α3β1ε subtype displayed picrotoxin-sensitive spontaneous activity. The θ subunit-containing receptors were efficiently potentiated by the anesthetic etomidate, suggesting that θ subunit could bring the properties of β2 or β3 subunits to the receptor complex. Conclusion The ε and θ subunits bring additional features to α3β1 GABAA receptors. These receptor subtypes may constitute as novel drug targets in selected brain regions, e.g., in the brainstem locus coeruleus nuclei.
Collapse
Affiliation(s)
- Martin Ranna
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Saku T Sinkkonen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Tommi Möykkynen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| | - Mikko Uusi-Oukari
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520 Turku, Finland
| | - Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, POB 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland
| |
Collapse
|
7
|
Krogsgaard-Larsen P, Frølund B, Liljefors T. GABAA Agonists and Partial Agonists: THIP (Gaboxadol) as a Non‐Opioid Analgesic and a Novel Type of Hypnotic1. GABA 2006; 54:53-71. [PMID: 17175810 DOI: 10.1016/s1054-3589(06)54003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Korpi ER, Sinkkonen ST. GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 2005; 109:12-32. [PMID: 15996746 DOI: 10.1016/j.pharmthera.2005.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 12/30/2022]
Abstract
The main inhibitory neurotransmitter system in the brain, the gamma-aminobutyric acid (GABA) system, is the target for many clinically used drugs to treat, for example, anxiety disorders and epilepsy and to induce sedation and anesthesia. These drugs facilitate the function of pentameric A-type GABA (GABA(A)) receptors that are extremely widespread in the brain and composed from the repertoire of 19 subunit variants. Modern genetic studies have found associations of various subunit gene polymorphisms with neuropsychiatric disorders, including alcoholism, schizophrenia, anxiety, and bipolar affective disorder, but these studies are still at their early phase because they still have failed to lead to validated drug development targets. Recent neurobiological studies on new animal models and receptor subunit mutations have revealed novel aspects of the GABA(A) receptors, which might allow selective targeting of the drug action in receptor subtype-selective fashion, either on the synaptic or extrasynaptic receptor populations. More precisely, the greatest advances have occurred in the clarification of the molecular and behavioral mechanisms of action of the GABA(A) receptor agonists already in the clinical use, such as benzodiazepines and anesthetics, rather than in the introduction of novel compounds to clinical practice. It is likely that these new developments will help to overcome the present problems of the chronic treatment with nonselective GABA(A) agonists, that is, the development of tolerance and dependence, and to focus the drug action on the neurobiologically and neuropathologically relevant substrates.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
9
|
Krogsgaard-Larsen P, Frølund B, Liljefors T, Ebert B. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 2005; 68:1573-80. [PMID: 15451401 DOI: 10.1016/j.bcp.2004.06.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/30/2004] [Indexed: 01/07/2023]
Abstract
The GABA(A) receptor system is implicated in a number of central nervous system (CNS) disorders, making GABA(A) receptor ligands interesting as potential therapeutic agents. Only a few different classes of structures are currently known as ligands for the GABA recognition site on the hetero-pentameric GABA(A) receptor complex, reflecting the very strict structural requirements for GABA(A) receptor recognition and activation. A large number of the compounds showing agonist activity at the GABA(A) receptor site are structurally derived from the GABA(A) agonists muscimol, THIP (Gaboxadol), or isoguvacine, which we developed at the initial stage of the project. Using recombinant GABA(A) receptors, functional selectivity has been shown for a number of compounds, including THIP, showing subunit-dependent potency and maximal response. The pharmacological and clinical activities of THIP probably reflect its potent effects at extrasynaptic GABA(A) receptors insensitive to benzodiazepines and containing alpha(4)beta(3)delta subunits. The results of ongoing clinical studies on the effect of the partial GABA(A) agonist THIP on human sleep pattern show that the functional consequences of a directly acting agonist are distinctly different from those seen after administration of GABA(A) receptor modulators, such as benzodiazepines. In the light of the interest in partial GABA(A) receptor agonists as potential therapeutics, structure-activity studies of a number of analogues of 4-PIOL, a low-efficacy partial GABA(A) agonist derived from THIP, have been performed. In this connection, a series of GABA(A) ligands has been developed showing pharmacological profiles ranging from low-efficacy partial GABA(A) agonist activity to selective antagonist effect.
Collapse
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
10
|
Abstract
The GABA(A) receptor system is implicated in a number of neurological and psychiatric diseases, making GABA(A) receptor ligands interesting as potential therapeutic agents. Only a few different classes of structures are currently known as ligands for the GABA recognition site on the hetero-pentameric GABA(A) receptor complex, reflecting the very strict structural requirements for GABA(A) receptor recognition and activation. Within the series of compounds showing agonist activity at the GABA(A) receptor site that have been developed, most of the ligands are structurally derived from the GABA(A) agonists muscimol, THIP, or isoguvacine, which we developed in the initial stages of the project. Using recombinant GABA(A) receptors, functional selectivity was demonstrated for a number of compounds, including THIP, showing highly subunit-dependent potency and maximal response. In light of the interest in partial GABA(A) receptor agonists as potential therapeutics, structure-activity studies of a number of analogs of 4-PIOL, a low-efficacy partial GABA(A) agonist derived from THIP, have been performed. In this connection, a series of GABA(A) ligands has been developed that exhibit pharmacological profiles from moderately potent low-efficacy partial GABA(A) agonist activity to potent and selective antagonist effects. Very little information is available on direct-acting GABA(A) receptor agonists in clinical studies. However, the results of clinical studies on the effect of the partial GABA(A) agonist THIP on human sleep patterns show that the functional consequences of a direct-acting agonist are different from those seen after the administration of GABA(A) receptor modulators, such as benzodiazepines and barbiturates.
Collapse
Affiliation(s)
- Povl Krogsgaard-Larsen
- Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
11
|
Root DE, Flaherty SP, Kelley BP, Stockwell BR. Biological mechanism profiling using an annotated compound library. ACTA ACUST UNITED AC 2004; 10:881-92. [PMID: 14522058 DOI: 10.1016/j.chembiol.2003.08.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a method for testing many biological mechanisms in cellular assays using an annotated library of 2036 small organic molecules. This annotated compound library represents a large-scale collection of compounds with diverse, experimentally confirmed biological mechanisms and effects. We found that this chemical library is (1) more structurally diverse than conventional, commercially available libraries, (2) enriched in active compounds in a tumor cell viability assay, and (3) capable of generating hypotheses regarding biological mechanisms underlying cellular processes. We elucidated biological mechanisms relevant to the antiproliferative activity of 85 compounds from this library that were selected using a high-throughput cell viability screen. We developed a novel automated scoring system for identifying statistically enriched mechanisms among such a subset of compounds. This scoring system can identify both previously known and potentially novel antiproliferative mechanisms.
Collapse
Affiliation(s)
- David E Root
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, Finland.
| | | | | |
Collapse
|
13
|
Hansen SL, Ebert B, Fjalland B, Kristiansen U. Effects of GABA(A) receptor partial agonists in primary cultures of cerebellar granule neurons and cerebral cortical neurons reflect different receptor subunit compositions. Br J Pharmacol 2001; 133:539-49. [PMID: 11399671 PMCID: PMC1572819 DOI: 10.1038/sj.bjp.0704121] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Based on an unexpected high maximum response to piperidine-4-sulphonic acid (P4S) at human alpha1alpha6beta2gamma2 GABA(A) receptors expressed in Xenopus oocytes attempts to correlate this finding with the pharmacological profile of P4S and other GABA(A) receptor ligands in neuronal cultures from rat cerebellar granule cells and rat cerebral cortex were carried out. GABA and isoguvacine acted as full and piperidine-4-sulphonic acid (P4S) as partial agonists, respectively, at alpha1beta2gamma2, alpha6beta2gamma2 and alpha1alpha6beta2gamma2 GABA receptors expressed in Xenopus oocytes with differences in potency. Whole-cell patch-clamp recordings were used to investigate the pharmacological profile of the partial GABA(A) receptor agonists 4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP), P4S, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), and 3-(4-piperidyl)isoxazol-5-ol (iso-4-PIOL), and the competitive GABA(A) receptor antagonists Bicuculline Methbromide (BMB) and 2-(3-carboxypropyl)-3-amino-6-methoxyphenyl-pyridazinium bromide (SR95531) on cerebral cortical and cerebellar granule neurons. In agreement with findings in oocytes, GABA, isoguvacine and P4S showed similar pharmacological profiles in cultured cortical and cerebellar neurones, which are known to express mainly alpha1, alpha2, alpha3, and alpha5 containing receptors and alpha1, alpha6 and alpha1alpha6 containing receptors, respectively. 4-PIOL and iso-4-PIOL, which at GABA(A) receptors expressed in oocytes were weak antagonists, showed cell type dependent potency as inhibitors of GABA mediated responses. Thus, 4-PIOL was slightly more potent at cortical neurones than at granule neurones and iso-4-PIOL was more potent in inhibiting isoguvacine-evoked currents at cortical than at granule neurons. Furthermore the maximum response to 4-PIOL corresponded to that of a partial agonist, whereas that of iso-4-PIOL gave a maximum response close to zero. It is concluded that the pharmacological profile of partial agonists is highly dependent on the receptor composition, and that small structural changes of a ligand can alter the selectivity towards different subunit compositions. Moreover, this study shows that pharmacological actions determined in oocytes are generally in agreement with data obtained from cultured neurons.
Collapse
Affiliation(s)
- S L Hansen
- Department of Pharmacology, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|