1
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
2
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis 2020; 11:308. [PMID: 32366831 PMCID: PMC7198528 DOI: 10.1038/s41419-020-2502-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Caspase-2, -9, and -3 are reported to control myoblast differentiation into myotubes. This had been previously explained by phosphatidylserine exposure on apoptotic myoblasts inducing differentiation in neighboring cells. Here we show for the first time that caspase-3 is activated in the myoblasts undergoing differentiation. Using RNAi, we also demonstrate that differentiation requires both cytochrome c and Apaf-1, and by using a new pharmacological approach, we show that apoptosome formation is required. We also show that Bid, whose cleavage links caspase-2 to the mitochondrial death pathway, was required for differentiation, and that the caspase cleavage product, tBid, was generated during differentiation. Taken together, these data suggest that myoblast differentiation requires caspase-2 activation of the mitochondrial death pathway, and that this occurs in the cells that differentiate. Our data also reveal a hierarchy of caspases in differentiation with caspase-2 upstream of apoptosome activation, and exerting a more profound control of differentiation, while caspases downstream of the apoptosome primarily control cell fusion.
Collapse
|
4
|
Kha CX, Guerin DJ, Tseng KAS. Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms. Front Physiol 2019; 10:502. [PMID: 31139088 PMCID: PMC6518849 DOI: 10.3389/fphys.2019.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
A longstanding challenge in regeneration biology is to understand the role of developmental mechanisms in restoring lost or damaged tissues and organs. As these body structures were built during embryogenesis, it is not surprising that a number of developmental mechanisms are also active during regeneration. However, it remains unclear whether developmental mechanisms act similarly or differently during regeneration as compared to development. Since regeneration is studied in the context of mature, differentiated tissues, it is difficult to evaluate comparative studies with developmental processes due to the latter's highly proliferative environment. We have taken a more direct approach to study regeneration in a developmental context (regrowth). Xenopus laevis, the African clawed frog, is a well-established model for both embryology and regeneration studies, especially for the eye. Xenopus eye development is well-defined. Xenopus is also an established model for retinal and lens regeneration studies. Previously, we demonstrated that Xenopus tailbud embryo can successfully regrow a functional eye that is morphologically indistinguishable from an age-matched control eye. In this study, we assessed the temporal regulation of retinal differentiation and patterning restoration during eye regrowth. Our findings showed that during regrowth, cellular patterning and retinal layer formation was delayed by approximately 1 day but was restored by 3 days when compared to eye development. An assessment of the differentiation of ganglion cells, photoreceptor cells, and Müller glia indicated that the retinal birth order generated during regrowth was consistent with that observed for eye development. Thus, retina differentiation and patterning during regrowth is similar to endogenous eye development. We used this eye regrowth model to assess the role of known mechanisms in development versus regrowth. Loss-of-function studies showed that Pax6 was required for both eye development and regrowth whereas apoptosis was only required for regrowth. Together, these results revealed that the mechanisms required for both development and regrowth can be distinguished from regrowth-specific ones. Our study highlights this developmental model of eye regrowth as a robust platform to systematically and efficiently define the molecular mechanisms that are required for regeneration versus development.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dylan J Guerin
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
5
|
Kha CX, Son PH, Lauper J, Tseng KAS. A model for investigating developmental eye repair in Xenopus laevis. Exp Eye Res 2018; 169:38-47. [PMID: 29357285 DOI: 10.1016/j.exer.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair.
Collapse
Affiliation(s)
- Cindy X Kha
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Philip H Son
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Julia Lauper
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States
| | - Kelly Ai-Sun Tseng
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454004, Las Vegas, NV 89154, United States.
| |
Collapse
|
6
|
Dunnill CJ, Al-Tameemi W, Collett A, Haslam IS, Georgopoulos NT. A Clinical and Biological Guide for Understanding Chemotherapy-Induced Alopecia and Its Prevention. Oncologist 2017; 23:84-96. [PMID: 28951499 DOI: 10.1634/theoncologist.2017-0263] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced alopecia (CIA) is the most visibly distressing side effect of commonly administered chemotherapeutic agents. Because psychological health has huge relevance to lifestyle, diet, and self-esteem, it is important for clinicians to fully appreciate the psychological burden that CIA can place on patients. Here, for the first time to our knowledge, we provide a comprehensive review encompassing the molecular characteristics of the human hair follicle (HF), how different anticancer agents damage the HF to cause CIA, and subsequent HF pathophysiology, and we assess known and emerging prevention modalities that have aimed to reduce or prevent CIA. We argue that, at present, scalp cooling is the only safe and U.S. Food and Drug Administration-cleared modality available, and we highlight the extensive available clinical and experimental (biological) evidence for its efficacy. The likelihood of a patient that uses scalp cooling during chemotherapy maintaining enough hair to not require a wig is approximately 50%. This is despite different types of chemotherapy regimens, patient-specific differences, and possible lack of staff experience in effectively delivering scalp cooling. The increased use of scalp cooling and an understanding of how to deliver it most effectively to patients has enormous potential to ease the psychological burden of CIA, until other, more efficacious, equally safe treatments become available. IMPLICATIONS FOR PRACTICE Chemotherapy-induced alopecia (CIA) represents perhaps the most distressing side effect of chemotherapeutic agents and is of huge concern to the majority of patients. Scalp cooling is currently the only safe option to combat CIA. Clinical and biological evidence suggests improvements can be made, including efficacy in delivering adequately low temperature to the scalp and patient-specific cap design. The increased use of scalp cooling, an understanding of how to deliver it most effectively, and biological evidence-based approaches to improve its efficacy have enormous potential to ease the psychological burden of CIA, as this could lead to improvements in treatment and patient quality-of-life.
Collapse
Affiliation(s)
- Christopher John Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Wafaa Al-Tameemi
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Andrew Collett
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Iain Stuart Haslam
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos Theodoros Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
7
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
8
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. An Optimal Medium Supplementation Regimen for Initiation of Hepatocyte Differentiation in Human Induced Pluripotent Stem Cells. J Cell Biochem 2015; 116:1479-1489. [PMID: 25683148 DOI: 10.1002/jcb.25139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
Human induced pluripotent stem (hiPS) cells are an ideal source for hepatocytes. Glucose and arginine are necessary for cells to survive. Hepatocytes have galactokinase (GALK), which metabolizes galactose for gluconeogenesis, and ornithine transcarbamylase (OTC), which converts ornithine to arginine in the urea cycle. Hepatocyte selection medium (HSM) lacks both glucose and arginine, but contains galactose and ornithine. Although human primary hepatocytes survive in HSM, all the hiPS cells die in 3 days. The aim of this study was to modify HSM so as to initiate hepatocyte differentiation in hiPS cells within 2 days. Hepatocyte differentiation initiating medium (HDI) was prepared by adding oncostatin M (10 ng/ml), hepatocyte functional proliferation inducer (10 nM), 2,2'-methylenebis (1,3-cyclohexanedione) (M50054) (100 μg/ml), 1× non-essential amino acid, 1× sodium pyruvate, nicotinamide (1.2 mg/ml), L-proline (30 ng/ml), and L-glutamine (0.3 mg/ml) to HSM. HiPS cells (201B7 cells) were cultured in HDI for 2 days. RNA was isolated, used as template for cDNA, and subjected to real-time quantitative polymerase chain reaction. Alpha-fetoprotein, γ-glutamyl transpeptidase, and delta-like 1 were upregulated. Expression of albumin was not observed. Expression of transcription factors specific to hepatocytes was upregulated. The expression of GALK2, OTC, and CYP3A4 were increased. In conclusion, differentiation of 201B7 cells to hepatoblast-like cells was initiated in HDI. Limitations were small number of cells were obtained, and the cells with HDI were not mature hepatocytes.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Chiba, 284-0003, Japan
| | - Fuminobu Shinozaki
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Chiba, 284-0003, Japan
| | - Yasufumi Motoyoshi
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Chiba, 284-0003, Japan
| | - Takao Sugiyama
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Chiba, 284-0003, Japan
| | - Shigenori Yamamoto
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Chiba, 284-0003, Japan
| | - Naoki Ishige
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Chiba, 284-0003, Japan
| |
Collapse
|
9
|
Korpis K, Weber F, Brune S, Wünsch B, Bednarski PJ. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands. Bioorg Med Chem 2014; 22:221-33. [DOI: 10.1016/j.bmc.2013.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/08/2013] [Accepted: 11/16/2013] [Indexed: 10/26/2022]
|
10
|
Beane WS, Morokuma J, Lemire JM, Levin M. Bioelectric signaling regulates head and organ size during planarian regeneration. Development 2013; 140:313-22. [PMID: 23250205 DOI: 10.1242/dev.086900] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A main goal of regenerative medicine is to replace lost or damaged tissues and organs with functional parts of the correct size and shape. But the proliferation of new cells is not sufficient; we will also need to understand how the scale and ultimate form of newly produced tissues are determined. Using the planarian model system, we report that membrane voltage-dependent bioelectric signaling determines both head size and organ scaling during regeneration. RNA interference of the H(+),K(+)-ATPase ion pump results in membrane hyperpolarization, which has no effect on the amount of new tissue (blastema) that is regenerated yet produces regenerates with tiny 'shrunken' heads and proportionally oversized pharynges. Our data show that this disproportionality results from a lack of the apoptosis required to adjust head and organ size and placement, highlighting apoptotic remodeling as the link between bioelectric signaling and the establishment of organ size during regeneration.
Collapse
Affiliation(s)
- Wendy Scott Beane
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
11
|
Chon SY, Champion RW, Geddes ER, Rashid RM. Chemotherapy-induced alopecia. J Am Acad Dermatol 2012; 67:e37-47. [DOI: 10.1016/j.jaad.2011.02.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/05/2011] [Accepted: 02/13/2011] [Indexed: 11/15/2022]
|
12
|
|
13
|
Sîrbulescu RF, Zupanc GKH. Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system. Neuroscience 2010; 171:599-612. [PMID: 20837106 DOI: 10.1016/j.neuroscience.2010.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 01/06/2023]
Abstract
Teleost fish exhibit an excellent potential for structural and functional recovery after CNS lesions. The function of apoptosis in the process of regeneration remains controversial. While some studies have identified this type of cell death as essential for successful regeneration, other investigations have suggested some degree of functional improvement after inhibition of apoptosis. In the present study, we examined whether inhibition of apoptosis immediately after injury can improve spinal cord regeneration. As a model system, we used Apteronotus leptorhynchus, a regeneration-competent weakly electric fish. To inhibit apoptosis, we employed 2,2'-methylenebis (1,3-cyclohexanedione) (M50054), a compound that prevents caspase-3 activation. Administration of this apoptosis inhibitor led to a significant reduction in the numbers of apoptotic cells at 24 h, 5 days, and 30 days after the lesion. Using triple immunolabeling, we identified a significant reduction in the level of apoptosis at 5 and 30 days after the lesion among the following cellular categories: cells generated shortly after the lesion, existing neurons, and newly differentiated neurons. This reduced rate of apoptosis led to an increase in the relative number of differentiating and surviving neurons at both 5 and 30 days post-injury, compared to the control groups. Functional regeneration, as indicated by the recovery rate of the amplitude of the electric organ discharge (EOD), was significantly improved within the first 20 days after the lesion in the fish treated with M50054. Our data provide the first evidence that modulation of caspase-3 activation can significantly improve neuroregeneration and functional recovery in a regeneration-competent organism.
Collapse
Affiliation(s)
- R F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, P.O. BOX 750 561, 28725 Bremen, Germany
| | | |
Collapse
|
14
|
Gu X, Masters KS. Role of the MAPK/ERK pathway in valvular interstitial cell calcification. Am J Physiol Heart Circ Physiol 2009; 296:H1748-57. [PMID: 19363136 DOI: 10.1152/ajpheart.00099.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Much remains to be discovered about the etiology of heart valve disease and the molecular level mechanisms that drive it. The MAPK/ERK pathway influences calcification in many cell types and has been linked to the expression of a contractile phenotype in valvular interstitial cells (VICs). However, a direct correlation between MAPK/ERK pathway activity and VIC calcification has not been previously described. Thus the role of the MAPK pathway in the calcification of VIC cultures was investigated by measuring ERK activation in both calcifying and noncalcifying VIC environments and then, conversely, analyzing the effects of ERK pathway inhibition on VIC calcification and phenotype. Prolonged elevation of phosphorylated ERK-1/2 was found in calcifying VIC cultures, whereas directly blocking phosphorylation of ERK-1/2 resulted in a dramatic decrease in nodule number, nodule size, and total calcified area. Application of the ERK pathway inhibitor was also associated with a dramatic decrease in apoptosis, which may have contributed to the decreased nodule formation obtained via ERK inhibition. Real-time PCR analysis revealed that calcified samples exhibited significantly elevated expression of several myofibroblastic and osteoblastic markers, while ERK inhibition substantially reduced the expression of these markers, often to levels comparable to the noncalcifying control. These data suggest that the MAPK pathway plays an important role in regulating the phenotype and calcification of VICs, wherein sustained pathway activation is associated with increased VIC calcification. These findings may be used to further elucidate the mechanisms of valvular disease and identify potential treatment targets.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Abstract
Augmentation of regenerative ability is a powerful strategy being pursued for the biomedical management of traumatic injury, cancer, and degeneration. While considerable attention has been focused on embryonic stem cells, it is clear that much remains to be learned about how somatic cells may be controlled in the adult organism. The tadpole of the frog Xenopus laevis is a powerful model system within which fundamental mechanisms of regeneration are being addressed. The tadpole tail contains spinal cord, muscle, vasculature, and other terminally differentiated cell types and can fully regenerate itself through tissue renewal--a process that is most relevant to mammalian healing. Recent insight into this process has uncovered fascinating molecular details of how a complex appendage senses injury and rapidly repairs the necessary morphology. Here, we review what is known about the chemical and bioelectric signals underlying this process and draw analogies to evolutionarily conserved pathways in other patterning systems. The understanding of this process is not only of fundamental interest for the evolutionary and cell biology of morphogenesis, but will also generate information that is crucial to the development of regenerative therapies for human tissues and organs.
Collapse
Affiliation(s)
- A.-S. Tseng
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - M. Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
16
|
Nakashima-Kamimura N, Nishimaki K, Mori T, Asoh S, Ohta S. Prevention of chemotherapy-induced alopecia by the anti-death FNK protein. Life Sci 2007; 82:218-25. [PMID: 18164732 DOI: 10.1016/j.lfs.2007.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 11/06/2007] [Indexed: 11/27/2022]
Abstract
Many anticancer drugs attack rapidly dividing cells, including not only malignant cells but also hair follicle cells, and induce alopecia. Chemotherapy-induced alopecia (CIA) is an emotionally distressing side effect of cancer chemotherapy. There is currently no useful preventive therapy for CIA. We have previously constructed anti-death rFNK protein from rat Bcl-x(L) by site-directed mutagenesis to strengthen cytoprotective activity. When fused to the protein transduction domain (PTD) of HIV/Tat, the fusion protein PTD (TAT)-rFNK successfully entered cells from the outside in vitro and in vivo to exhibit anti-death activity against apoptosis and necrosis. Here, we show that topical application of FNK protected against CIA in a newborn rat model. The protective activity against hair-loss was observed in 30-1000 nM TAT-rFNK administrative groups in a dose-dependent manner. Furthermore, a human version of FNK (hFNK) fused to other PTD peptides exhibited a protective ability. These results suggest that PTD-FNK possesses protective activity against CIA and is not restricted to a sequence of PTD peptides or species of FNK. Thus, PTD-FNK represents potential to develop a useful method for preventing CIA in cancer patients.
Collapse
Affiliation(s)
- Naomi Nakashima-Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki-City, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
17
|
Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 2006; 301:62-9. [PMID: 17150209 PMCID: PMC3136124 DOI: 10.1016/j.ydbio.2006.10.048] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 10/27/2006] [Accepted: 10/31/2006] [Indexed: 01/16/2023]
Abstract
The Xenopus tadpole is able to regenerate its tail, including skin, muscle, notochord, spinal cord and neurons and blood vessels. This process requires rapid tissue growth and morphogenesis. Here we show that a focus of apoptotic cells appears in the regeneration bud within 12 h of amputation. Surprisingly, when caspase-3 activity is specifically inhibited, regeneration is abolished. This is true of tails both before and after the refractory period. Programmed cell death is only required during the first 24 h after amputation, as later inhibition has no effect on regeneration. Inhibition of caspase-dependent apoptosis results in a failure to induce proliferation in the growth zone, a mispatterning of axons in the regenerate, and the appearance of ectopic otoliths in the neural tube, in the context of otherwise normal continued development of the larva. Larvae amputated during the refractory stage exhibit a much broader domain of caspase-3-positive cells, suggesting a window for the amount of apoptosis that is compatible with normal regeneration. These data reveal novel roles for apoptosis in development and indicate that a degree of apoptosis is an early and obligate component of normal tail regeneration, suggesting the possibility of the existence of endogenous inhibitory cells that must be destroyed by programmed cell death for regeneration to occur.
Collapse
Affiliation(s)
| | | | | | | | - Michael Levin
- Corresponding author. Fax: +1 617 892 8597. (M. Levin)
| |
Collapse
|
18
|
Wang J, Lu Z, Au JLS. Protection Against Chemotherapy-Induced Alopecia. Pharm Res 2006; 23:2505-14. [PMID: 16972183 DOI: 10.1007/s11095-006-9105-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The goal is to provide an overview on the advances in protection against chemotherapy-induced alopecia (CIA). MATERIALS AND METHODS The four major parts of this review are (a) overview of the hair follicle biology, (b) characteristics of CIA, (c) state-of-the-art animal models of CIA, and (d) experimental approaches on protection against CIA. RESULTS The hair follicle represents an unintended target of cancer chemotherapy. CIA is a significant side effect that compromises the quality of life of patients. Overcoming CIA represents an area of unmet needs, especially for females and children. Significant progresses have been made in the last decade on the pathobiology of CIA. The pharmacological agents under evaluation include drug-specific antibodies, hair growth cycle modifiers, cytokines and growth factors, antioxidants, cell cycle or proliferation modifiers, and inhibitors of apoptosis. Their potential applications and limitations are discussed. CONCLUSION Multiple classes of agents with different action mechanisms have been evaluated in animal CIA models. Most of these protective agents have activity limited to a single chemotherapeutic agent. In comparison, calcitriol and cyclosporine A have broader spectrum of activity and can prevent against CIA by multiple chemotherapeutic agents. Among the three agents that have been evaluated in humans, AS101 and Minoxidil were able to reduce the severity or shorten the duration of CIA but could not prevent CIA.
Collapse
Affiliation(s)
- Jie Wang
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
19
|
Abstract
Androgenetic alopecia (hereditary thinning) is the most common cause of hair loss in both men and women. Chemotherapy-induced alopecia is another distressing cause of hair loss. With a better understanding of follicular biology and the signals responsible for hair growth and regression, targeted therapies for hair loss are being investigated. This review summarises investigational medications for androgenetic and chemotherapy-induced alopecia that are in preclinical stages or later.
Collapse
|
20
|
Wang W, Duan W, Igarashi S, Morita H, Nakamura M, Ross CA. Compounds blocking mutant huntingtin toxicity identified using a Huntington's disease neuronal cell model. Neurobiol Dis 2006; 20:500-8. [PMID: 15908226 DOI: 10.1016/j.nbd.2005.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/27/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022] Open
Abstract
Neuronal cell death in HD is believed to be largely a dominant cell-autonomous effect of the mutant huntingtin protein. We previously developed an inducible PC12 cell model which expresses an N-terminal huntingtin fragment with an expanded poly Q repeat (N63-148Q) under the control of the tet-off system. In order to evaluate the ability of compounds to protect against mutant huntingtin toxicity in our model, we measured LDH released by dead cells into the medium. We have now screened the library of 1040 compounds from the NINDS Custom Collection as part of a National Institute of Neurological Disorders and Stroke (NINDS) collaborative project. Each positive compound was tested at 3-8 concentrations. Five compounds significantly attenuated mutant huntingtin (htt)-induced LDH release without affecting the expression level of huntingtin and independent of effect on aggregates. We also tested a broad spectrum caspase inhibitor Z-VAD-fmk and previously proposed candidate compounds. This cell model can provide a method to screen potential therapeutic compounds for treating Huntington's disease.
Collapse
Affiliation(s)
- Wenfei Wang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2109, USA
| | | | | | | | | | | |
Collapse
|
21
|
Sun J, Pons J, Craik CS. Potent and selective inhibition of membrane-type serine protease 1 by human single-chain antibodies. Biochemistry 2003; 42:892-900. [PMID: 12549907 DOI: 10.1021/bi026878f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific human antibodies targeting proteases expressed on cancer cells can be valuable reagents for diagnosis, prognosis, and therapy of cancer. To this end, a phage-displayed antibody library was screened against a cancer-associated serine protease, MT-SP1. A protein inhibitor of serine proteases that binds to a defined surface of MT-SP1 was used in an affinity-based washing procedure. Six antibodies were selected on the basis of their ELISA profiles and ability to serve as useful immunological reagents. The apparent K(i), indicative of the potency of the antibodies at inhibiting human MT-SP1 activity, ranged from 50 pM to 129 nM. Two of the antibodies had approximately 800-fold and 1500-fold selectivity when tested against the most homologous serine protease family member, mouse MT-SP1, that exhibits 86.6% sequence identity. Surface plasmon resonance was used as an independent means of determining the binding constants of the six antibodies. Association rates were as high as 1.15 x 10(7) s(-)(1) M(-)(1), and dissociation rates were as low as 3.8 x 10(-)(4) s(-)(1). One antibody was shown to detect denatured MT-SP1 with no cross reactivity to other family members in HeLa or PC3 cells. Another antibody recognized the enzyme in human prostate tissue samples for immunohistochemistry analysis. The mode of binding among the six antibodies and the protease was analyzed by competition ELISA using three distinctly different inhibitors that mapped the enzyme surface. These antibodies constitute a new class of highly selective protease inhibitors that can be used to dissect the biological roles of proteolytic enzymes as well as to develop diagnostic and therapeutic reagents.
Collapse
Affiliation(s)
- Jeonghoon Sun
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 513 Parnassus, San Francisco, California 94143, USA
| | | | | |
Collapse
|
22
|
Abstract
Apoptosis and necrosis represent two distinct types of cell death. Apoptosis possesses unique morphologic and biochemical features which distinguish this mechanism of programmed cell death from necrosis. Extrinsic apoptotic cell death is receptor-linked and initiates apoptosis by activating caspase 8. Intrinsic apoptotic cell death is mediated by the release of cytochrome c from mitochondrial and initiates apoptosis by activating caspase 3. Cancer chemotherapy utilizes apoptosis to eliminate tumor cells. Agents which bind to the minor groove of DNA, like camptothecin and Hoechst 33342, inhibit topoisomerase I, RNA polymerase II, DNA polymerase and initiate intrinsic apoptotic cell death. Hoechst 33342-induced apoptosis is associated with disruption of TATA box binding protein/TATA box complexes, replication protein A/single-stranded DNA complexes, topoisomerase I/DNA cleavable complexes and with an increased intracellular concentration of E2F-1 transcription factor and nitric oxide concentration. Nitric oxide and transcription factor activation or respression also regulate the two apoptotic pathways. Some human diseases are associated with excess or deficient rates of apoptosis, and therapeutic strategies to regulate the rate of apoptosis include inhibition or activation of caspases, mRNA antisense to reduce anti-apoptotic factors like Bcl-2 and survivin and recombinant TRAIL to activate pro-apoptotic receptors, DR4 and DR5.
Collapse
Affiliation(s)
- Frederick L Kiechle
- Department of Clinical Pathology, William Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI 48073-6769, USA.
| | | |
Collapse
|