1
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
2
|
Bhardwaj A, Mukherjee S, Roy V. Xylometazoline Induced Isolated Left Medial Cerebellar Peduncle Infarct: A Rare Case Report. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221080224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Xylometazoline, a sympathomimetic available as over the counter drug, acts as a nasal decongestant and has been reported as an independent risk factor for hemorrhagic and ischemic stroke. The chronic use of xylometazoline leads to either increased release of more potent vasoconstrictor norepinephrine in the presynaptic region, or acts directly on central adrenoreceptors which leads to dysfunction resulting in chronic progressive vasculopathy that manifests as an ischemic stroke. Sympathomimetics also activate 12-lipoxygenase pathways which induce proliferation and migration of vascular smooth muscle cells. 12-lipoxgenase also plays a significant role in regulating the degree and stability of platelet activation, as its activation significantly strengthens platelet activation and uncontrolled platelet activation, which may lead to myocardial infraction and stroke. The present case reports a rare case of young adult suffering from isolated left medial cerebellar peduncle infarct related to the chronic use of xylometazoline. Acute cerebellar stroke is rare, especially in young adults and represent only 3% of total ischemic and hemorrhagic strokes. Clinical symptoms, patient age at the onset of stroke, and lesion size had no significant effect on the clinical outcome. Symptoms are frequently underestimated and misdiagnosed which further lead to serious complications and poor functional outcomes.
Collapse
Affiliation(s)
- Ankit Bhardwaj
- Department of Pharmacology, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia (RML) Hospital, New Delhi, India
| | - Shoma Mukherjee
- Department of Pharmacology, School of Medical Sciences & Research (SMS&R), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vandana Roy
- Department of Pharmacology, Maulana Azad Medical College (MAMC) and Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| |
Collapse
|
3
|
Kakularam KR, Karst F, Polamarasetty A, Ivanov I, Heydeck D, Kuhn H. Paralog- and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms. Biomed Pharmacother 2021; 145:112434. [PMID: 34801853 DOI: 10.1016/j.biopha.2021.112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023] Open
Abstract
Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences. ALOX inhibitors are frequently employed for deciphering the biological role of these enzymes in mouse models of human diseases but owing to the functional differences between mouse and human ALOX orthologs the uncritical use of such inhibitors is sometimes misleading. In this study we evaluated the paralog- and ortholog-specificity of 13 frequently employed ALOX-inhibitors against four recombinant human and mouse ALOX paralogs (ALOX15, ALOX15B, ALOX12, ALOX5) under different experimental conditions. Our results indicated that except for zileuton, which exhibits a remarkable paralog-specificity for mouse and human ALOX5, no other inhibitor was strictly paralog specific but some compounds exhibit an interesting ortholog-specificity. Because of the variable isoform specificities of the currently available ALOX inhibitors care must be taken when the biological effects of these compounds observed in complex in vitro and in vivo systems are interpreted.
Collapse
Affiliation(s)
- Kumar Reddy Kakularam
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Felix Karst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Aparoy Polamarasetty
- Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
4
|
Somjen D, Kohen F, Limor R, Sharon O, Knoll E, Many A, Stern N. Estradiol-17β increases 12- and 15-lipoxygenase (type2) expression and activity and reactive oxygen species in human umbilical vascular smooth muscle cells. J Steroid Biochem Mol Biol 2016; 163:28-34. [PMID: 27033413 DOI: 10.1016/j.jsbmb.2016.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The net vascular effect of estrogens on the vasculature is still under debate. Here we tested the effects of estradiol- 17β (E2) as well as estrogen-receptor subtype specific and non-specific agonists and antagonists on the expression and eicosanoid production of lipoxygenase (LO) enzymes expressed in culture human umbilical vascular smooth muscle cells (VSMC), the platelet type 12LO and 15LO type 2. E2 increased 12 and 15LO mRNA expression by 2-3 folds and elicited an acute 50% increase 12 and 15 hydroxyeicosatetraenoic acid (HETE) production. Neither estrogen receptor ERα nor ERβ-specific agonists were able to reproduce the induction of LO expression, but E2-induced expression was effectively blocked by ER non-specific and receptor subtype specific antagonists. Because 12 and 15HETE can increase reactive oxygen species in other cell types, we tested the possibility that E2 could raise ROS through LO. Indeed, E2 as well as the LO products 12 and 15HETE increased reactive oxygen species (ROS) in VSMC. E2-dependent and HETE-induced ROS could be blocked by NAD (P) H-oxidase inhibitors and by the ER general antagonist ICI. E2-induced ROS was partially (∼50%) blocked by the LO inhibitor baicalein, but the LO blocker had no effect on 12 or 15HETE- induced ROS formation, thus suggesting that part of E2-dependent ROS generation resulted from E2-induced 12 and 15HETE. Collectively these findings unveil an unrecognized effect of E2 in human VSMC, to induce 12 and 15LO type 2 expression and activity and suggest that E2-dependent ROS formation in VSMC may be partially mediated by the induction of 12 and 15HETE.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Flavanones/pharmacology
- Gene Expression Regulation
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitriles/pharmacology
- Phenols/pharmacology
- Piperidines/pharmacology
- Primary Cell Culture
- Propionates/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Raloxifene Hydrochloride/pharmacology
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Umbilical Veins/metabolism
Collapse
Affiliation(s)
- Dalia Somjen
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Fortune Kohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Limor
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orli Sharon
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Esther Knoll
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Many
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naftali Stern
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
12S-Lipoxygenase is necessary for human vascular smooth muscle cell survival. Exp Cell Res 2013; 319:1586-93. [DOI: 10.1016/j.yexcr.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 11/19/2022]
|
6
|
Ishizuka T, Watanabe Y. α₁-Adrenoceptor stimulation enhances leukemia inhibitory factor-induced proliferation of mouse-induced pluripotent stem cells. Eur J Pharmacol 2011; 668:42-56. [PMID: 21745467 DOI: 10.1016/j.ejphar.2011.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/26/2022]
Abstract
Since the clinical use of induced pluripotent stem (iPS) cells may overcome the current obstacles in stem cell-based therapy, the molecular mechanisms that regulate iPS cell proliferation are of great interest. Therefore, in the present study, we determined the involvement of α(1)-adrenoceptor in the proliferation of mouse iPS cells. The selective α(1)-adrenoceptor agonist l-phenylephrine dose-dependently increased the proliferation of mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment with either selective α(1)-adrenoceptor antagonists or protein kinase C (PKC) inhibitors significantly inhibited l-phenylephrine-induced DNA synthesis. The treatment with an IP(3) receptor agonist significantly enhanced LIF-induced DNA synthesis. On the other hand, we confirmed that the intracellular calcium level was increased by the treatment with l-phenylephrine. Thus, intracellular calcium release or PKC activation induced by α(1)-adrenoceptor activation may lead to the enhancement of DNA synthesis. In addition, pretreatment with mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 or phosphatidylinositol-3 phosphate kinase (PI3K) inhibitor LY294002 significantly inhibited l-phenylephrine-induced DNA synthesis. Treatment with l-phenylephrine significantly increased Akt or p44/42 MAPK phosphorylation. α(1)-Adrenoceptor expression in mouse iPS cells was confirmed by immunofluorescence staining and western blotting analysis. In mouse iPS cells cultured with LIF, stimulation with l-phenylephrine significantly increased the proportion of cells in the S and G(2)/M phases and decreased that in the G(1) phase. These results suggest that stimulation with α(1)-adrenoceptor may enhance DNA synthesis and proliferation of mouse iPS cells cultured with LIF via augmentation of both the MEK/MAPK and the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | |
Collapse
|
7
|
Baicalein attenuates intimal hyperplasia after rat carotid balloon injury through arresting cell-cycle progression and inhibiting ERK, Akt, and NF-κB activity in vascular smooth-muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:579-88. [DOI: 10.1007/s00210-008-0328-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/25/2008] [Indexed: 02/01/2023]
|
8
|
Hsieh YCS, Hsieh SJ, Chang YS, Hsueh CM, Hsu SL. The lipoxygenase inhibitor, baicalein, modulates cell adhesion and migration by up-regulation of integrins and vinculin in rat heart endothelial cells. Br J Pharmacol 2007; 151:1235-45. [PMID: 17592510 PMCID: PMC2189825 DOI: 10.1038/sj.bjp.0707345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelial cell proliferation, migration and adhesion are necessary for the formation of new blood vessels. We reported previously that baicalein strongly inhibited proliferation of rat heart endothelial cells and here we assess effects on migration and adhesion of these cells. EXPERIMENTAL APPROACH Effects of baicalein on endothelial migration and adhesion were determined by in vitro wound assays and in modified Boyden chambers. Protein expression and subcellular distribution in rat heart endothelial cells were analysed by immunoblots and immunofluorescence staining. RESULTS Pretreatment with baicalein for 48 h resulted in a concentration-dependent inhibition of endothelial migration, with an IC(50) of approximately 20 microM. Adhesion assays revealed that baicalein stimulated endothelial cell adhesion to fibronectin and vitronectin, effects blocked by the synthetic peptide Arg-Gly-Asp (RGD). Moreover, treatment with a blocking antibody against integrin alpha5beta1 drastically attenuated baicalein-mediated endothelial adhesion to fibronectin, but not to vitronectin. Furthermore, baicalein-mediated anti-migration effect and adhesion promotion could be partially reversed by the addition of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE). Western blot analysis indicated that baicalein increased expression levels of integrin-alpha5beta1, -alphavbeta3 and vinculin proteins. Immunofluorescence staining showed that baicalein induced a marked reorganization of actin stress fibres and the recruitment of vinculin and integrins to focal adhesion plaques, with consequently increased formation of focal adhesion contacts. CONCLUSIONS AND IMPLICATIONS Baicalein markedly inhibited the migration and enhanced the adhesion of rat heart endothelial cells, possibly by up-regulation of the integrins (alpha5beta1 and alphavbeta3) and vinculin and by promotion of actin reorganization and focal adhesion contact formation.
Collapse
Affiliation(s)
- Y-C S Hsieh
- Graduate Institute of Chinese Pharmaceutical Sciences China Medical University, Taichung, Taiwan, ROC
| | - S-J Hsieh
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan, ROC
| | - Y-S Chang
- Graduate Institute of Chinese Pharmaceutical Sciences China Medical University, Taichung, Taiwan, ROC
| | - C-M Hsueh
- China Medical University, Department of Life Sciences, Natural Chung-Hsing University Taichung, Taiwan, ROC
| | - S-L Hsu
- Graduate Institute of Chinese Pharmaceutical Sciences China Medical University, Taichung, Taiwan, ROC
- China Medical University, Department of Life Sciences, Natural Chung-Hsing University Taichung, Taiwan, ROC
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University Taichung, Taiwan, ROC
- Author for correspondence:
| |
Collapse
|
9
|
Machha A, Achike FI, Mohd MA, Mustafa MR. Baicalein impairs vascular tone in normal rat aortas: role of superoxide anions. Eur J Pharmacol 2007; 565:144-50. [PMID: 17442302 DOI: 10.1016/j.ejphar.2007.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 02/21/2007] [Accepted: 03/06/2007] [Indexed: 11/28/2022]
Abstract
Acute exposure to the flavonoid baicalein inhibited endothelium-dependent relaxation in physiological arteries, although the mechanisms are not fully understood. We investigated the effect of baicalein on vascular tone in Wistar-Kyoto (WKY) rat isolated aortic rings in the presence and absence of oxidative stress to further determine the underlying mechanisms. Exposure to baicalein (10 microM) completely abolished endothelium-dependent relaxation induced by acetylcholine and attenuated significantly the endothelium-independent relaxation induced by sodium nitroprusside. Baicalein, similar to Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microM), potentiated significantly the contractile response of aortic rings to alpha1-adrenoceptor agonist phenylephrine. In the presence of L-NAME the baicalein effect on phenylphrine contraction or acetylcholine relaxation was unaltered, suggesting that these effects of baicalein are (like L-NAME effect) endothelial nitric oxide synthase (eNOS)/endothelium-derived nitric oxide-dependent. Inhibition of cyclooxygenase activity with indomethacin (10 microM) or scavenging of superoxide anions with superoxide dismutase (150 units/ml), but not scavenging of hydrogen peroxide with catalase (800 units/ml), enhanced significantly by an essentially similar extent the relaxation to acetylcholine in baicalein-pretreated aortic rings. Relaxant effect to acetylcholine was significantly attenuated in control aortic rings, but was completely abolished in baicalein-pretreated aortic rings in the presence of reduced form of beta-nicotinamide adenine di-nucleotide (beta-NADH, 300 microM). Baicalein blocked beta-NADH (300 microM)-induced transient contractions, suggesting that baicalein may have inhibited activity of NADH/NADPH-oxidase. Baicalein did not alter the failure of acetylcholine to induce relaxation in the presence of pyrogallol (300 microM). In summary, acute exposure to baicalein impairs eNOS/endothelium-derived nitric oxide-mediated vascular tone in rat aortas through the inhibition of endothelium-derived nitric oxide bioavailability coupled to reduced bioactivity of endothelium-derived nitric oxide and to cyclooxygenase-mediated release of superoxide anions.
Collapse
Affiliation(s)
- Ajay Machha
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | | | | | | |
Collapse
|
10
|
Deschamps JD, Kenyon VA, Holman TR. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem 2006; 14:4295-301. [PMID: 16500106 DOI: 10.1016/j.bmc.2006.01.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 02/03/2023]
Abstract
Lipoxygenases (LO) have been implicated in asthma, immune disorders, and various cancers and as a consequence, there is great interest in isolating selective LO isozyme inhibitors. Currently, there is much use of baicalein as a selective human platelet 12-LO (12-hLO) inhibitor, however, our current steady-state inhibition data indicate that baicalein is not selective against 12-hLO versus human reticulocyte 15-LO-1 (15-hLO-1) (15/12=1.3), in vitro. However, in the presence of detergents baicalein is slightly more selective (15/12=7) as seen by the steady-state inhibition kinetics, which may imply greater selectivity in a cell-based assay but has yet to be proven. The mechanism of baicalein inhibition of 15-hLO-1 is reductive, which molecular modeling suggests is through direct binding of the catecholic moiety of baicalein to the iron. A structurally related flavonoid, apigenin, is not reductive, however, molecular modeling suggests a hydrogen bond with Thr591 may account for its inhibitor potency.
Collapse
Affiliation(s)
- Joshua D Deschamps
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
11
|
Kalyankrishna S, Malik KU. Norepinephrine-induced stimulation of p38 mitogen-activated protein kinase is mediated by arachidonic acid metabolites generated by activation of cytosolic phospholipase A(2) in vascular smooth muscle cells. J Pharmacol Exp Ther 2003; 304:761-72. [PMID: 12538832 DOI: 10.1124/jpet.102.040949] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) is activated by norepinephrine (NE) in the vasculature and is implicated in vascular smooth muscle hypertrophy, contraction, and cell migration. NE promotes influx of Ca(2+) and activates cytosolic phospholipase A(2) (cPLA(2)) in vascular smooth muscle cells (VSMC). The purpose of this study was to determine the contribution of cPLA(2)-generated arachidonic acid (AA) and its metabolites to the activation of p38 MAPK measured by its phosphorylation, in response to NE in rabbit VSMC. NE-induced p38 MAPK activation was found to be mediated through the stimulation of alpha-1 and alpha-2 adrenergic receptors, was dependent on extracellular Ca(2+), and was attenuated by an inhibitor of cPLA(2) (pyrrolidine-1). Moreover, the cPLA(2) product, AA, activated p38 MAPK in VSMC. p38 MAPK activation elicited by NE was decreased significantly by the lipoxygenase (LO) inhibitor baicalein, and to a lesser extent by the cytochrome P450 inhibitor 17-octadecynoic acid, but was not affected by the cyclooxygenase inhibitor indomethacin. The LO metabolites of AA, namely 5(S)-hydroxyeicosatetraenoic acid (HETE), 12(S)-HETE, and 15(S)-HETE and the cytochrome P450 metabolite 20-HETE, activated p38 MAPK. NE-induced p38 MAPK stimulation was found to be independent of phospholipase D (PLD) activation in rabbit VSMC. Transactivation of the epidermal growth factor receptor (EGFR) by NE also did not contribute to p38 MAPK activation. These data suggest that cPLA(2)-generated AA and its LO metabolites mediate NE-induced p38 MAPK stimulation in rabbit VSMC by a mechanism that is independent of PLD and EGFR activation.
Collapse
Affiliation(s)
- Shailaja Kalyankrishna
- Department of Pharmacology and Centers for Vascular Biology and Connective Tissue Diseases, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
12
|
McCarty MF. Current prospects for controlling cancer growth with non-cytotoxic agents--nutrients, phytochemicals, herbal extracts, and available drugs. Med Hypotheses 2001; 56:137-54. [PMID: 11425277 DOI: 10.1054/mehy.2000.1126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In animal or cell culture studies, the growth and spread of cancer can be slowed by many nutrients, food factors, herbal extracts, and well-tolerated, available drugs that are still rarely used in the clinical management of cancer, in part because they seem unlikely to constitute definitive therapies in themselves. However, it is reasonable to expect that mechanistically complementary combinations of these measures could have a worthwhile impact on survival times and, when used as adjuvants, could improve the cure rates achievable with standard therapies. The therapeutic options available in this regard include measures that: down-regulate serum free IGF-I; suppress the synthesis of mevalonic acid and/or certain derivatives thereof; modulate arachidonate metabolism by inhibiting 5-lipoxygenase, 12-lipoxygenase, or COX-2; antagonize the activation of AP-1 transcription factors; promote the activation of PPAR-gamma transcription factors; and that suppress angiogenesis by additional mechanisms. Many of these measures appear suitable for use in cancer prevention.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA
| |
Collapse
|
13
|
|
14
|
Li D, Belusa R, Nowicki S, Aperia A. Arachidonic acid metabolic pathways regulating activity of renal Na(+)-K(+)-ATPase are age dependent. Am J Physiol Renal Physiol 2000; 278:F823-9. [PMID: 10807595 DOI: 10.1152/ajprenal.2000.278.5.f823] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locally formed arachidonic acid (AA) metabolites are important as modulators of many aspects of renal tubular function, including regulation of the activity of tubular Na(+)-K(+)-ATPase. Here we examined the ontogeny of the AA metabolic pathways regulating proximal convoluted tubular (PCT) Na(+)-K(+)-ATPase activity in infant and adult rats. Eicosatetraynoic acid, an inhibitor of all AA-metabolizing pathways, abolished this effect. AA inhibition of PCT Na(+)-K(+)-ATPase was blocked by the 12-lipoxygenase inhibitor baicalein in infant but not in adult rats and by the specific cytochrome P-450 fatty acid omega-hydroxylase inhibitor 17-octadecynoic acid in adult but not in infant rats. The lipoxygenase metabolite 12(S)-hydroxyeicosatetraenoic acid (HETE) and the cytochrome P-450 metabolite 20-HETE both inhibited PCT Na(+)-K(+)-ATPase in a protein kinase C-dependent manner, but the effect was significantly more pronounced in infant PCT. Lipoxygenase mRNA was only detected in infant cortex. Expression of renal isoforms of cytochrome P-450 mRNA was more prominent in adult cortex. In summary, the AA metabolic pathways that modulated the activity of rat renal proximal tubular Na(+)-K(+)-ATPase are age dependent.
Collapse
Affiliation(s)
- D Li
- Department of Woman and Child Health, Pediatric Unit, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Augé N, Santanam N, Mori N, Keshava C, Parthasarathy S. Uptake of 13-hydroperoxylinoleic acid by cultured cells. Arterioscler Thromb Vasc Biol 1999; 19:925-31. [PMID: 10195919 DOI: 10.1161/01.atv.19.4.925] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidized free fatty acids have profound effects on cultured cells. However, little is known about whether these effects depend on their uptake and metabolism by cells or primarily involve their interaction with cell-surface components. We determined the uptake and metabolism of unoxidized (linoleic or oleic acid) and oxidized linoleic acid (13-hydroperoxyoctadecadienoic acid, 13-HPODE) by endothelial cells, smooth muscle cells, and macrophages. We show that 13-HPODE is poorly taken up by cells. The levels of uptake were dependent on the cell type but were independent of the expression of CD36. 13-HPODE was also poorly used by microsomal lysophosphatidylcholine acyltransferase that is involved in the formation of phosphatidylcholine. Based on these results, we suggest that most of the biological effects of 13-HPODE and other oxidized free fatty acids on cells might involve a direct interaction with cell-surface components. Alternatively, very small amounts of oxidized free fatty acids that enter the cell may have effects, analogous to those of hormones or prostanoids.
Collapse
Affiliation(s)
- N Augé
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|