1
|
Huh SY, Kim SG, Kim JH, Kim HK, Kim YS. FYN Tyrosine Kinase Gene Polymorphisms in Alcohol-Dependent Korean Patients. ALPHA PSYCHIATRY 2025; 26:38752. [PMID: 40110380 PMCID: PMC11916046 DOI: 10.31083/ap38752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 03/22/2025]
Abstract
Background Alcohol use disorder (AUD) is a common disease with a high economic cost. The glutamate cell signaling pathway associated with alcohol has been reported to be one of the main pathologies of AUD. Previous studies have suggested that FYN, which is known to control NMDA glutamate receptor function through phosphorylation, might be associated with AUD. Method The present study included 354 subjects in the alcohol-dependent group and 139 subjects in the control group. The alcohol-dependent group was recruited from five university hospitals and a psychiatric hospital, and the control group was recruited from people who visited the university hospital for routine medical checkups in Korea. FYN gene single nucleotide polymorphism (SNPs) were selected based on SNP databases and previous studies of the FYN gene. Ten SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism techniques. Results GG genotypes and G allele frequencies of rs1058134 in male AUD patients were significantly lower than in controls (p = 0.003). AA genotypes and A allele frequencies of rs12191154 in female AUD patients were significantly lower than in controls (p < 0.001, p = 0.003). In female AUD patients, AA genotypes and A allele frequencies of rs9387025 were significantly higher than in controls (p = 0.003). Conclusion These findings suggest that the FYN gene may be a candidate gene for AUD. This may help for the planning of further studies to determine the function of each SNP and the exact relationship between the FYN gene and AUD.
Collapse
Affiliation(s)
- Sung Young Huh
- Department of Psychiatry, Pusan National University Yangsan Hospital, 50612 Yangsan, Republic of Korea
| | - Sung-Gon Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, 50612 Yangsan, Republic of Korea
- Department of Psychiatry, Pusan National University School of Medicine, 46639 Yangsan, Republic of Korea
| | - Ji-Hoon Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, 50612 Yangsan, Republic of Korea
- Department of Psychiatry, Pusan National University School of Medicine, 46639 Yangsan, Republic of Korea
| | - Hyeon-Kyeong Kim
- Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Yeon-Sue Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, 50612 Yangsan, Republic of Korea
| |
Collapse
|
2
|
Quelch D, Lingford-Hughes A, John B, Nutt D, Bradberry S, Roderique-Davies G. Promising strategies for the prevention of alcohol-related brain damage through optimised management of acute alcohol withdrawal: A focussed literature review. J Psychopharmacol 2024:2698811241294005. [PMID: 39529219 DOI: 10.1177/02698811241294005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There is an increasing awareness of the link between chronic alcohol consumption and the development of cognitive, behavioural and functional deficits. Currently, preventative strategies are limited and require engagement in dedicated long-term rehabilitation and sobriety services, the availability of which is low. The acute alcohol withdrawal syndrome is an episode of neurochemical imbalance leading to autonomic dysregulation, increased seizure risk and cognitive disorientation. In addition to harm from symptoms of alcohol withdrawal (e.g. seizures), the underpinning neurochemical changes may also lead to cytotoxicity through various cellular mechanisms, which long-term, may translate to some of the cognitive impairments observed in Alcohol-Related Brain Damage (ARBD). Here we review some of the pharmacological and neurochemical mechanisms underpinning alcohol withdrawal. We discuss the cellular and pharmacological basis of various potential neuroprotective strategies that warrant further exploration in clinical populations with a view to preventing the development of ARBD. Such strategies, when integrated into the clinical management of acute alcohol withdrawal, may impact large populations of individuals, who currently face limited dedicated service delivery and healthcare resource.
Collapse
Affiliation(s)
- Darren Quelch
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
- Alcohol Care Team and Clinical Toxicology Service, Sandwell and West-Birmingham NHS Trust, City Hospital, Birmingham, UK
| | - Anne Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, Hammersmith Hospital, London, UK
| | - Bev John
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - David Nutt
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, Hammersmith Hospital, London, UK
| | - Sally Bradberry
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
- Alcohol Care Team and Clinical Toxicology Service, Sandwell and West-Birmingham NHS Trust, City Hospital, Birmingham, UK
| | - Gareth Roderique-Davies
- Addictions Research Group, Applied Psychology Research and Innovation Group, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
3
|
Maddern XJ, Ursich LT, Bailey G, Pearl A, Anversa RG, Lawrence AJ, Walker LC. Sex Differences in Alcohol Use: Is It All About Hormones? Endocrinology 2024; 165:bqae088. [PMID: 39018449 DOI: 10.1210/endocr/bqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Risky alcohol use and alcohol use disorders (AUD) are a rising problem in women, yet a major disparity in our understanding of what drives alcohol consumption in women remains. Historically biomedical research has focused on male subjects; however, recent increases in reporting of females, have highlighted major differences between the sexes. Here we review the current literature of the effect of gonadal steroid hormones (estrogens, androgens, and progestins), neurosteriods, and neurobiological factors on alcohol use in clinical and preclinical studies of both sexes. Further, we briefly discuss how fundamental sex differences in genetics, metabolism, neuroimmune, and stress responses may influence sex differences in alcohol intake. Comparing the sexes could aid in the discovery of novel therapeutics to treat AUD, and implementation of current treatment options in women.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grace Bailey
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
4
|
Szumlinski KK, Herbert JN, Mejia Espinoza B, Madory LE, Scudder SL. Alcohol-drinking during later life by C57BL/6J mice induces sex- and age-dependent changes in hippocampal and prefrontal cortex expression of glutamate receptors and neuropathology markers. ADDICTION NEUROSCIENCE 2023; 7:100099. [PMID: 37396410 PMCID: PMC10310297 DOI: 10.1016/j.addicn.2023.100099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heavy drinking can induce early-onset dementia and increase the likelihood of the progression and severity of Alzheimer's Disease and related dementias (ADRD). Recently, we showed that alcohol-drinking by mature adult C57BL/6J mice induces more signs of cognitive impairment in females versus males without worsening age-related cognitive decline in aged mice. Here, we immunoblotted for glutamate receptors and protein markers of ADRD-related neuropathology within the hippocampus and prefrontal cortex (PFC) of these mice after three weeks of alcohol withdrawal to determine protein correlates of alcohol-induced cognitive decline. Irrespective of alcohol history, age-related changes in protein expression included a male-specific decline in hippocampal glutamate receptors and an increase in the expression of a beta-site amyloid precursor protein cleaving enzyme (BACE) isoform in the PFC as well as a sex-independent increase in hippocampal amyloid precursor protein. Alcohol-drinking was associated with altered expression of glutamate receptors in the hippocampus in a sex-dependent manner, while all glutamate receptor proteins exhibited significant alcohol-related increases in the PFC of both sexes. Expression of BACE isoforms and phosphorylated tau varied in the PFC and hippocampus based on age, sex, and drinking history. The results of this study indicate that withdrawal from a history of alcohol-drinking during later life induces sex- and age-selective effects on glutamate receptor expression and protein markers of ADRD-related neuropathology within the hippocampus and PFC of potential relevance to the etiology, treatment and prevention of alcohol-induced dementia and Alzheimer's Disease.
Collapse
Affiliation(s)
- Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Brenda Mejia Espinoza
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Samantha L. Scudder
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Psychology, California State University Dominguez Hills, Carson, CA 90747, USA
| |
Collapse
|
5
|
Ghosh A, Muthuraju S, Badal S, Wooden J, Leasure JL, Roman G, Das J. Differential Expression of Presynaptic Munc13-1 and Munc13-2 in Mouse Hippocampus Following Ethanol Drinking. Neuroscience 2022; 487:166-183. [PMID: 35167938 PMCID: PMC8930510 DOI: 10.1016/j.neuroscience.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
The Munc13 family of proteins is critically involved in synaptic vesicle priming and release in glutamatergic neurons in the brain. Munc13-1 binds to alcohol and, in Drosophila, modulates sedation sensitivity and self-administration. We examined the effect of alcohol consumption on the expression of Munc13-1 and Munc13-2, NMDA receptor subunits GluN1, GluN2A and GluN2B in the hippocampus-derived HT22 cells, hippocampal primary neuron culture, and wild-type and Munc13-1+/- male mouse hippocampus after ethanol consumption (Drinking in the Dark (DID) paradigm). In HT22 cells, Munc13-1 was upregulated following 25 mM ethanol treatment for 24 h. In the primary neuronal culture, however, the expression of both Munc13-1 and Munc13-2 increased after ethanol exposure. While Munc13-1 was upregulated in the hippocampus, Munc13-2 was downregulated following DID. This differential effect was found in the CA1 subfield of the hippocampus. Although Munc13-1+/- mice had approximately 50% Munc13-1 expression compared to wild-type, it was nonetheless significantly increased following DID. Munc13-1 and Munc13-2 were expressed in vesicular glutamate transporter1 (VGLUT1) immunoreactive neurons in the hippocampus, but ethanol did not alter the expression of VGLUT1. The NMDA receptor subunits, GluN1, GluN2A and GluN2B were upregulated in the hippocampal primary culture and in the CA1. Ethanol exerts a differential effect on the expression of Munc13-1 and Munc13-2 in the CA1 in male mice. Our study also found that ethanol's effect on Munc13 expression is dependent on the experimental paradigm, and both Munc13-1 and Munc13-2 could contribute to the ethanol-induced augmentation of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States
| | - Sangu Muthuraju
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States
| | - Sean Badal
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States
| | - Jessica Wooden
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Gregg Roman
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
6
|
Sex- and subtype-specific adaptations in excitatory signaling onto deep-layer prelimbic cortical pyramidal neurons after chronic alcohol exposure. Neuropsychopharmacology 2021; 46:1927-1936. [PMID: 34035471 PMCID: PMC8429546 DOI: 10.1038/s41386-021-01034-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
Long-term alcohol use results in behavioral deficits including impaired working memory, elevated anxiety, and blunted inhibitory control that is associated with prefrontal cortical (PFC) dysfunction. Preclinical observations demonstrate multiple impairments in GABAergic neurotransmission onto deep-layer principal cells (PCs) in the prelimbic cortex that suggest dependence-related cortical dysfunction is the product of elevated excitability in these cells. Despite accumulating evidence showing alcohol-induced changes in interneuron signaling onto PCs differ between sexes, there is limited data explicitly evaluating sex-specific ethanol effects on excitatory signaling onto deep-layer PCs that may further contribute to deficits in PFC-dependent behaviors. To address this, we conducted electrophysiological and behavioral tests in both male and female Sprague-Dawley rats to evaluate the effects of chronic ethanol exposure. Among our observations, we report a marked enhancement in glutamatergic signaling onto deep-layer PCs in male, but not female, rats after alcohol exposure. This phenomenon was furthermore specific to a sub-class of PC, sub-cortically projecting Type-A cells, and coincided with enhanced anxiety-like behavior, but no observable deficit in working memory. In contrast, female rats displayed alcohol-induced facilitation in working memory performance with no change in expression of anxiety-like behavior. Together, these results suggest fundamental differences in alcohol effects on cell activity, cortical sub-circuits, and PFC-dependent behaviors across male and female rats.
Collapse
|
7
|
Cortez I, Rodgers SP, Kosten TA, Leasure JL. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast 2020; 6:5-25. [PMID: 33680843 PMCID: PMC7902983 DOI: 10.3233/bpl-190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
8
|
Brandt N, Löffler T, Fester L, Rune GM. Sex-specific features of spine densities in the hippocampus. Sci Rep 2020; 10:11405. [PMID: 32647191 PMCID: PMC7347548 DOI: 10.1038/s41598-020-68371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 μm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Department of Human Medicine, Division of Anatomy, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Tobias Löffler
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Fester
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
9
|
Giacometti LL, Barker JM. Sex differences in the glutamate system: Implications for addiction. Neurosci Biobehav Rev 2020; 113:157-168. [PMID: 32173404 DOI: 10.1016/j.neubiorev.2020.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical research have identified sex differences in substance use and addiction-related behaviors. Historically, substance use disorders are more prevalent in men than women, though this gap is closing. Despite this difference, women appear to be more susceptible to the effects of many drugs and progress to substance abuse treatment more quickly than men. While the glutamate system is a key regulator of addiction-related behaviors, much of the work implicating glutamate signaling and glutamatergic circuits has been conducted in men and male rodents. An increasing number of studies have identified sex differences in drug-induced glutamate alterations as well as sex and estrous cycle differences in drug seeking behaviors. This review will describe sex differences in the glutamate system with an emphasis on implications for substance use disorders, highlighting the gaps in our current understanding of how innate and drug-induced alterations in the glutamate system may contribute to sex differences in addiction-related behaviors.
Collapse
Affiliation(s)
- L L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| | - J M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
10
|
Abstract
The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences.
Collapse
Affiliation(s)
- Jill B Becker
- Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)
| | - George F Koob
- Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)
| |
Collapse
|
11
|
Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 2016; 68:142-67. [PMID: 26721702 PMCID: PMC4709508 DOI: 10.1124/pr.114.010090] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 2014; 125:315-27. [PMID: 25051426 DOI: 10.3109/00207454.2014.940941] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.
Collapse
Affiliation(s)
- Janneth Gonzalez
- 1Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | | | | | |
Collapse
|
13
|
Vaquero-Lorenzo C, López-Castromán J, Bermudo-Soriano CR, Saiz-Ruiz J, Fernández-Piqueras J, Baca-García E. Putative association between the -1415 T/C polymorphism of spermidine/spermine N1-acetyltransferase (SSAT1) gene and alcohol use disorders in women and men. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 40:240-3. [PMID: 24735382 DOI: 10.3109/00952990.2014.891039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The activity of N-methyl-D-aspartate (NMDA) glutamate receptor, which responds to the levels of polyamines, modifies the neurotoxicity caused by ethanol. We aimed to investigate if the functionality of the spermidine/spermine N1-acetyltransferase (SSAT1) gene could be associated with a differential risk for alcoholism. METHODS We studied a sample of 586 subjects: 104 alcohol-dependent patients, 273 patients with psychiatric disorders but without substance dependence, and 209 healthy controls. After gender stratification, the allele frequency distribution of the SSAT1 gene was compared between these three groups. RESULTS In females, the TC genotype was significantly more frequent in alcohol-dependent patients than in non-alcohol-dependent psychiatric controls (χ(2 )= 7.509 df = 2, p = 0.023). A trend was found when alcohol-dependent females were compared with the healthy control group (χ(2 )= 4.897 df = 2, p = 0.086). No statistical differences were found among the males. DISCUSSION AND CONCLUSION Gender differences in the regulation of SSAT1 gene expression may possibly be due to gender-specific effects of stress, ethanol toxicity, and/or polyamines levels. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Concepción Vaquero-Lorenzo
- Department of Psychiatry, Jimenez Diaz Foundation, IIS, Madrid Autonoma University , CIBERSAM, Madrid , Spain
| | | | | | | | | | | |
Collapse
|
14
|
Walls SA, Rosenwasser AM, Devaud LL. Sex and regional differences in effects of chronic intermittent ethanol exposure on subsequent excitotoxic challenges in hippocampal slice cultures. Neurosci Lett 2013; 550:6-11. [PMID: 23680460 DOI: 10.1016/j.neulet.2013.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 01/07/2023]
Abstract
The organotypic hippocampal slice culture technique was used to study how the effects of repeated ethanol withdrawal might differ between males and females at the cellular level, including potential modulation of subsequent insults. A chronic intermittent ethanol (CIE) exposure paradigm was employed, with 3 days of exposure followed by 24 h withdrawal for 3 cycles. Slices were next exposed to corticosterone (CORT) or pentylenetetrazol (PTZ) for 24 h then imaged for propidium iodide (PI) signal intensities. There were sex-selective responses in the CA1 region and dentate gyrus of the hippocampal slice cultures to treatment with CIE and/or CORT or PTZ. The 50 mM CIE alone generally did not increase the PI signal, but enhanced sensitivity to the toxic effects of CORT (particularly for females) and PTZ (particularly for males). In contrast, 100 mM CIE elicited a toxic response that was greater in females than males, and was exacerbated by exposure to PTZ. These data showed that hippocampal sexual dimorphism influences sensitivity to ethanol and other toxic chemicals even in an immature state. Low-dose CIE may attenuate harm from additional challenges in a hippocampal sex- and region-selective manner. These findings add to the growing evidence of important neurobiological sex differences in responses to chronic ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Shawn A Walls
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States.
| | | | | |
Collapse
|
15
|
Ali SF, Onaivi ES, Dodd PR, Cadet JL, Schenk S, Kuhar MJ, Koob GF. Understanding the Global Problem of Drug Addiction is a Challenge for IDARS Scientists. Curr Neuropharmacol 2011; 9:2-7. [PMID: 21886551 PMCID: PMC3137181 DOI: 10.2174/157015911795017245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
IDARS is an acronym for the International Drug Abuse Research Society. Apart from our scientific and educational purposes, we communicate information to the general and scientific community about substance abuse and addiction science and treatment potential. Members of IDARS are research scientists and clinicians from around the world, with scheduled meetings across the globe. IDARS is developing a vibrant and exciting international mechanism not only for scientific interactions in the domain of addiction between countries but also ultimately as a resource for informing public policy across nations. Nonetheless, a lot more research needs to be done to better understand the neurobiological basis of drug addiction - A challenge for IDARS scientists.
Collapse
Affiliation(s)
- S F Ali
- Neurochemistry Laboratory, NCTR/FDA, Jefferson, AR, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
McCulley WD, Walls SA, Khurana RC, Rosenwasser AM, Devaud LL. Running wheel activity protects against increased seizure susceptibility in ethanol withdrawn male rats. Pharmacol Biochem Behav 2011; 100:485-9. [PMID: 22037408 DOI: 10.1016/j.pbb.2011.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/26/2011] [Accepted: 10/09/2011] [Indexed: 01/07/2023]
Abstract
Ethanol withdrawal is a dysphoric condition that arises from termination of ethanol intake by dependent individuals. Common withdrawal symptoms include anxiety, increased reactivity to stimuli and increased seizure susceptibility as well as the risk of increased seizure severity. We use an animal model of dependence and withdrawal to study withdrawal behaviors and potential underlying neurobiological mechanisms. For a number of years, we have quantified pentylenetetrazol seizure thresholds as an assessment of ethanol withdrawal at both one day and three days of withdrawal. Typically, we see a significant decrease in seizure threshold (increased sensitivity to seizure induction) that persists through three days of withdrawal for male rats. Increasing evidence indicates that voluntary exercise affords protection against various challenges to physical and psychological health, including ethanol-related challenges. Therefore, the current study investigated the effect of voluntary wheel running on seizure susceptibility following chronic ethanol administration and withdrawal. We found that voluntary wheel running attenuated the increased sensitivity to pentylenetetrazol-induced seizures observed with ethanol withdrawal, at both the one-day and three-day time points. This result was especially interesting as animals with access to the running wheels consumed more of the ethanol-containing diet. These findings showed that chronic voluntary wheel running reduces the severity of ethanol withdrawal in our animal model and suggest that exercise-based interventions may have some utility in the clinical management of heavy drinking and alcohol withdrawal.
Collapse
|
17
|
Walls SA, Macklin ZL, Devaud LL. Ethanol-induced loss-of-righting response during ethanol withdrawal in male and female rats: associations with alterations in Arc labeling. Alcohol Clin Exp Res 2011; 36:234-41. [PMID: 21895716 DOI: 10.1111/j.1530-0277.2011.01613.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND There is increasing evidence for relevant sex differences in responses to ethanol. Several investigations have found differences in expression and recovery from ethanol withdrawal (EW) in people and across various animal models. We have found that female rats recover more quickly than male rats and show differential responses to various behavioral assessments and pharmacological challenges during withdrawal. The purpose of this study was to determine whether sex differences in EW behaviors extend to the hypnotic effects of acute ethanol administration. METHODS We used a repeated measures design to assess duration and latency for loss-of-righting reflex following an acute injection of ethanol (4.2 g/kg; 20% w/v) to pair-fed control or ethanol-withdrawn animals at 1 and 3 days EW in male, female, and ovariectomized female (OVX) rats. We determined protein levels of the activity-regulated cytoskeletal protein (Arc), used as a marker for synaptic activity in glutamatergic synapses, in the motor cortex and prefrontal cortex across these same treatment conditions. RESULTS Ethanol-withdrawn animals had a reduced ethanol-induced sleep time compared to controls at 1 day EW. Sleep time remained shortened at 3 days EW for males and OVX, but not females. Arc protein levels in motor cortex and preoptic nuclei significantly increased at 1 day EW across all sex conditions, suggestive of an association with the reduced ethanol-induced sleep times during EW. Arc levels increased further for males and OVX, but not females, at the 3 days EW time point. CONCLUSIONS These findings add further support to sex differences in effects of and responses to ethanol. They suggest that the more rapid recovery from EW for females than males also includes expression of tolerance to the hypnotic effects of ethanol. These sex differences may involve some differential neuroadaptations in glutamatergic signaling.
Collapse
Affiliation(s)
- Shawn A Walls
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | | | | |
Collapse
|
18
|
Ceylan-Isik AF, McBride SM, Ren J. Sex difference in alcoholism: who is at a greater risk for development of alcoholic complication? Life Sci 2010; 87:133-8. [PMID: 20598716 PMCID: PMC2913110 DOI: 10.1016/j.lfs.2010.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/18/2010] [Accepted: 06/05/2010] [Indexed: 12/16/2022]
Abstract
AIMS Alcohol abuse and alcoholism are among the major medical problems afflicting both men and women. While men display a higher prevalence for alcoholism, it is women who suffer a much greater risk for alcoholism-associated bodily damage. Although women generally consume less alcohol compared to men, females usually suffer more severe brain and other organ damage following binge or chronic alcohol abuse. MAIN METHODS AND KEY FINDINGS Although many biological (i.e., genetic risk and neurological abnormalities) and psychosocial (i.e., impact of positive drinking expectancies, personality characteristics and deviance proneness) factors appear to impact men and women equally. These factors especially social and environmental, physiological, genetic and neurobiological ones have been demonstrated to contribute to the sex difference in response to alcohol intake, as well as the development of alcoholic complications. A number of neurotransmitters and growth factors may be partially involved in these differences between men and women. The mesolimbic dopamine system is implicated in the development of addictive behaviors. Differences in dopamine receptor density are found between sexes where gonadal steroid hormones may play a role. Inhibitory GABAergic and stimulatory glutamatergic systems also act as neuromodulators in the brain and differences in their specific receptors have been identified between men and women (particularly GABA(A) receptors and NMDA receptors). SIGNIFICANCE Given the variety of factors contributing to the sex difference in response to alcohol intake, alcoholism treatment should take sex dimorphism into consideration. Furthermore, future research needs to be directed towards a better understanding of the mechanism of action of alcohol in both men and women.
Collapse
Affiliation(s)
- Asli F. Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Shawna M. McBride
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
19
|
Sedaghati M, Vousooghi N, Goodarzi A, Yaghmaei P, Mokri A, Zarrindast MR. Expression of NR3B but not NR2D subunit of NMDA receptor in human blood lymphocytes can serve as a suitable peripheral marker for opioid addiction studies. Eur J Pharmacol 2010; 633:50-4. [PMID: 20153313 DOI: 10.1016/j.ejphar.2010.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/17/2009] [Accepted: 02/02/2010] [Indexed: 11/18/2022]
Abstract
Glutamate is critically involved in opioid addiction. It has been suggested that neurotransmitter receptors expression in peripheral blood lymphocytes may reflect brain status. In the present study, using Real-time PCR, the mRNA expression of NR2D and NR3B subunits of NMDA glutamate receptor has been investigated in peripheral blood lymphocytes of four groups each comprising of 25 male individuals: opioid addicts, methadone maintained patients, long-term abstinent former opioid addicts, and non-addicted control subjects. We found that NR2D subunit mRNA expression was not changed in all three test groups in comparison to control subjects. However, the NR3B mRNA expression was significantly up-regulated by the factors 9.11 (P<0.001), 10.07 (P<0.001) and 4.08 (P<0.05) in abstinent, addicted and methadone maintained subjects, respectively relative to control group. As a conclusion, our data indicate that the transcriptional level of the NR2D subunit of NMDA receptor is not regulated by chronic opioid addiction. However, it seems that the over-expression of NR3B subunit of NMDA receptor is a long lasting result of opioid abuse. In addition, considerable decrease in the up-regulated state of the NR3B subunit by methadone may represent another benefit of methadone therapy for opioid addicts and may serve as a suitable marker to evaluate the successfulness of therapy.
Collapse
Affiliation(s)
- Mahmoud Sedaghati
- Science and Research Branch of Islamic Azad University, Tehran, Iran; Sina Cellular and Molecular Research Center, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
20
|
Ridge JP, Ho AMC, Dodd PR. Sex differences in NMDA receptor expression in human alcoholics. Alcohol Alcohol 2009; 44:594-601. [PMID: 19736238 DOI: 10.1093/alcalc/agp052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIM The aim of this study was to assess whether chronic alcohol misuse affects N-methyl-d-aspartate (NMDA) receptor subunit concentrations in human cases, and whether male and female subjects respond differently. METHODS Real-time RT-PCR normalized to GAPDH was used to assay NR1, NR2A and NR2B subunit mRNA in superior frontal (SFC) and primary motor (PMC) cortex tissue obtained at autopsy from chronic alcoholics with and without comorbid cirrhosis of the liver, and from matched controls. RESULTS The expression of all three subunits was significantly lower in both areas of cirrhotic alcoholics than in either controls or alcoholics without comorbid disease, who did not differ significantly. Values were also influenced by the subject's sex and genotype. The mu-opiate receptor C1031G polymorphism selectively modulated NMDA transcript expression in cirrhotic-alcoholic SFC, an effect that was more marked for NR1 and NR2A than for NR2B subunit transcripts. Contrasting 5HT1B genotypes affected NMDA mRNA expression differently in male and female SFC, but not PMC, in cirrhotic alcoholics. CONCLUSION NMDA receptor subunit expression may differentially influence male and female cirrhotic alcoholics' susceptibility to brain damage.
Collapse
Affiliation(s)
- Justin P Ridge
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | | | | |
Collapse
|
21
|
Stepanyan TD, Farook JM, Kowalski A, Kaplan E, Barron S, Littleton JM. Alcohol withdrawal-induced hippocampal neurotoxicity in vitro and seizures in vivo are both reduced by memantine. Alcohol Clin Exp Res 2008; 32:2128-35. [PMID: 18828800 DOI: 10.1111/j.1530-0277.2008.00801.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ethanol withdrawal (EWD) syndrome is typically treated using benzodiazepines such as diazepam. However there is concern that benzodiazepines may not prevent neurotoxicity associated with EWD. Antagonists of glutamate/N-Methyl-D-Aspartate receptors (NMDARs) such as MK801 have been shown to be effective against both EWD-induced neurotoxicity in vitro and seizures in vivo. However, most of these agents have adverse side effects. An exception is the moderate affinity NMDAR channel blocker memantine, used in Alzheimer's dementia. The present studies examined the ability of memantine to protect against EWD-related toxicity in vitro and seizures in vivo. METHODS Organotypic hippocampal slice cultures from neonatal rat pups were treated starting at 15 days in vitro with 100 mM ethanol for 10 days followed by a 24-hour EWD period. During the 24-hour EWD period cultures were treated with memantine (15 or 30 microM). MK801 (10 microM) was utilized as a positive control. For the in vivo studies, the ability of memantine (2, 5, 10, and 15 mg/kg) to reduce convulsions was analyzed in Swiss-Webster mice using the handling induced convulsion test paradigm. RESULTS In vitro studies demonstrated that memantine is effective at blocking EWD-induced neurotoxicity. In vivo experiments showed that memantine also significantly reduced convulsions induced by EWD in mice. CONCLUSIONS Memantine may be of therapeutic value during alcohol detoxification by virtue of its having neuroprotective effects in addition to anti-seizure activity. The potential role of memantine in treatment of alcoholism is deserving of further study.
Collapse
Affiliation(s)
- Tracy D Stepanyan
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
22
|
SOMMER NATASCHA, ROMANO CARMELO, JEVTOVIC-TODOROVIC VESNA. Chronic Exposure to Nitrous Oxide Increases [3H]MK801 Binding in the Cerebral Cortex, but Not in the Hippocampus of Adult Mice. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00037.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
24
|
Veatch LM, Wright TM, Randall CL. Only male mice show sensitization of handling-induced convulsions across repeated ethanol withdrawal cycles. Alcohol Clin Exp Res 2007; 31:477-85. [PMID: 17295733 DOI: 10.1111/j.1530-0277.2006.00328.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse, especially when experienced in multiple cycles of chronic abuse and withdrawal, leads to a sensitization of central nervous system hyperexcitability that may culminate in overt expression of seizures. In spite of the growing prevalence of alcohol abuse and dependence in females shown in recent epidemiologic studies, evidence of sexual dimorphism in the expression of alcohol withdrawal-induced seizures and the development of seizure sensitization following multiple cycles of ethanol (EtOH) exposure and withdrawal has not been examined in either animal models or in clinical reports. METHODS Subjects in these experiments were male and female C3H/Hecr mice. The female mice were intact or ovariectomized, with ovariectomized mice receiving 17-beta-estradiol or placebo pellets. All mice were exposed to 4 cycles of exposure to 16-hour EtOH vapor, separated by 8-hour withdrawal periods. During each 8-hour withdrawal, hourly assessment of seizure propensity was assessed as handling-induced convulsions. Additional assessments were taken up to 72 hours after the final EtOH withdrawal cycle. RESULTS Male and female mice showed similar seizure propensity during an initial withdrawal from chronic EtOH. Across subsequent withdrawal cycles, however, male mice exhibited a robust increase in seizure severity beginning with the third withdrawal cycle. In marked contrast, female mice failed to demonstrate sensitization of seizure severity. The lack of seizure sensitization following up to 4 cycles of alcohol exposure and withdrawal could not be explained by hormonal status (presence or absence of estrogen) or by sex differences in blood alcohol levels. CONCLUSIONS Male and female mice exposed to the same number of cycles of EtOH withdrawal demonstrate differences in expression of seizures. Males show the typical sensitization of seizures, or kindling response, which has been reported clinically as well as in animal models, but females do not. The reason for the lack of seizure sensitization in female mice remains to be elucidated, but may be related to sex differences in alcohol effects on excitatory/inhibitory neurotransmission, rather than to hormonal or blood alcohol level differences.
Collapse
Affiliation(s)
- L M Veatch
- Research Service, Department of Veterans Affairs Medical Center, Charleston, South Carolina 29401-5799, USA.
| | | | | |
Collapse
|
25
|
Self RL, Smith KJ, Mulholland PJ, Prendergast MA. Ethanol exposure and withdrawal sensitizes the rat hippocampal CA1 pyramidal cell region to beta-amyloid (25-35)-induced cytotoxicity: NMDA receptor involvement. Alcohol Clin Exp Res 2006; 29:2063-9. [PMID: 16340465 DOI: 10.1097/01.alc.0000187591.82039.b2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Millions of Americans suffer from Alzheimer's Disease (AD), which is characterized by significant neurological impairment and an accumulation in brain tissue of senile plaques consisting of beta amyloid (Abeta) peptide. The hippocampus, a region primarily responsible for learning and memory, appears to be particularly susceptible to AD-related injury and chronic alcohol abuse. Although certain risk factors for AD are known, it is unclear if alcohol abuse or dependence may contribute to neuropathology in AD. Recent research suggests that low-to-moderate consumption of alcohol may protect against development of AD, while alcohol dependence may increase risk of developing AD. Therefore, the current studies aimed to investigate the effects of exposure to 50 or 100 mM ethanol (EtOH) and withdrawal on hippocampal injury induced by Abeta peptide treatment. METHODS The present studies exposed organotypic hippocampal slice cultures to 50 or 100 mM ethanol (EtOH) for 10 days, after which the slices underwent ethanol withdrawal (EWD) in the presence of varying concentrations of Abeta 25-35 (0.1, 1, 10 microM), or 35-25 (200 microM), a negative control reverse sequence peptide. Cellular injury, as evidenced by uptake of propidium iodide (PI), was assessed for each subregion of the hippocampal complex (CA1, CA3, and dentate gyrus). RESULTS Cellular injury in the CA1 pyramidal cell layer was significantly increased during withdrawal from exposure to 100 mM, but not 50 mM, EtOH. Exposure to Abeta in ethanol-naïve cultures did not produce significant cytotoxicity. However, exposure to Abeta during EWD from 100 mM produced marked increases in CA1 pyramidal cell region cytotoxicity, effects reversed by cotreatment with a nontoxic concentration of the NMDA receptor channel blocker MK-801 (20 microM). CONCLUSIONS These data suggest that withdrawal from exposure to a high concentration of EtOH produces marked cellular injury in the hippocampus, particularly the CA1 subregion. Further, this EtOH exposure and withdrawal regimen sensitizes the hippocampus to the toxic effects of Abeta treatment in a manner reflecting over activity of NMDA receptor function.
Collapse
Affiliation(s)
- Rachel L Self
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA
| | | | | | | |
Collapse
|
26
|
Devaud LL, Risinger FO, Selvage D. Impact of the Hormonal Milieu on the Neurobiology of Alcohol Dependence and Withdrawal. The Journal of General Psychology 2006; 133:337-56. [PMID: 17128955 DOI: 10.3200/genp.133.4.337-356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alcoholism, or alcohol dependence, is a complex disorder with withdrawal symptoms that are often problematic for those trying to recover from their dependence. As researchers attempt to elucidate the neurobiological underpinnings of alcohol dependence and withdrawal, it is becoming clear that numerous factors, including the hormonal environment, impact the manifestations of this disorder. Of particular interest is the observation that women have fewer and less severe withdrawal symptoms than do men even though they tend to suffer greater physiological harm from excessive alcohol consumption. In this article, the authors present an overview of their understanding of how gonadal and stress hormones interact with alcohol, which results in differential neurobiological responses between males and females. Thus far, data generated from representative animal models have shown significant differences between the sexes in behavioral responses and neuroadaptations to chronic alcohol consumption and withdrawal. Accumulating evidence suggests that treatment of alcoholism, including withdrawal, should be tailored to the patient's gender and hormonal status.
Collapse
Affiliation(s)
- Leslie L Devaud
- Department of Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | | | | |
Collapse
|
27
|
Prendergast MA, Little HJ. Adolescence, glucocorticoids and alcohol. Pharmacol Biochem Behav 2006; 86:234-45. [PMID: 16930684 DOI: 10.1016/j.pbb.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/05/2006] [Accepted: 07/06/2006] [Indexed: 11/22/2022]
Abstract
This review examines the evidence that glucocorticoids are involved, during both adolescence and adulthood, in the cognitive deficits caused by long-term alcohol consumption and in the mechanism(s) of alcohol dependence. During adolescence, the hypothalamopituitary-adrenal (HPA) axis undergoes well-characterized changes in basal activity and many of these are influenced by alcohol consumption. While the former have been fairly well studied, there is little information about whether alcohol effects on the HPA in adolescents differ from those in adults. The means by which glucocorticoids may influence alcohol-related neurotoxicity are presented, and potential differences between adolescence and adults in this regard noted. The substantial evidence for involvement of glucocorticoids in alcohol-induced cognitive deficits is described, with particular reference to the consequences of alcohol withdrawal. The use of immature organotypic cultures of rodent brain in the study of alcohol neurotoxicity is considered in detail, and the information obtained from this methodology concerning the role of glucocorticoid receptors and excitable membrane proteins in this neurotoxicity. The influence of glucocorticoids on alcohol consumption and possible contributions to alcohol dependence are then considered. In conclusion, more information concerning the effects of glucocorticoids on plasticity and alcohol neurotoxicity during the adolescent period is needed.
Collapse
Affiliation(s)
- Mark A Prendergast
- Department of Psychology, University of Kentucky, B363 BBSRB, 741 S. Limestone, University of Kentucky, Lexington, KY 40536-0509, USA
| | | |
Collapse
|
28
|
Wiren KM, Hashimoto JG, Alele PE, Devaud LL, Price KL, Middaugh LD, Grant KA, Finn DA. Impact of sex: determination of alcohol neuroadaptation and reinforcement. Alcohol Clin Exp Res 2006; 30:233-42. [PMID: 16441272 DOI: 10.1111/j.1530-0277.2006.00032.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This article represents the proceedings of a symposium at the Research Society on Alcoholism meeting in Santa Barbara, California. The organizers/chairs were Kristine M. Wiren and Deborah A. Finn. Following a brief introduction by Deborah Finn, the presentations were (1) The Importance of Gender in Determining Expression Differences in Mouse Lines Selected for Chronic Ethanol Withdrawal Severity, by Kristine M. Wiren and Joel G. Hashimoto; (2) Sex Differences in Ethanol Withdrawal Involve GABAergic and Stress Systems, by Paul E. Alele and Leslie L. Devaud; (3) The Influence of Sex on Ethanol Consumption and Reward in C57BL/6 Mice, by Kimber L. Price and Lawrence D. Middaugh; and (4) Sex Differences in Alcohol Self-administration in Cynomolgus Monkeys, by Kathleen A. Grant.
Collapse
Affiliation(s)
- Kristine M Wiren
- Oregon Health & Science University, VA Medical Center, Portland, Oregon 97239-2964, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Alele PE, Devaud LL. Differential adaptations in GABAergic and glutamatergic systems during ethanol withdrawal in male and female rats. Alcohol Clin Exp Res 2005; 29:1027-34. [PMID: 15976529 DOI: 10.1097/01.alc.0000167743.96121.40] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND There are significant and consistent sex differences in recovery from ethanol withdrawal in our animal model of ethanol dependence. We have also observed significant and varied sex differences in subunit protein levels of gamma-aminobutyric acid A (GABAA) and the N-metheyl-D-aspartate subtype of glutamate receptors occurring with ethanol dependence and withdrawal. Considering the major role of these two systems as targets of ethanol, we wanted to explore additional possible mechanisms underlying changes in GABAergic and glutamatergic responses after chronic ethanol exposure. Therefore, the objective of the present study was to examine GABAergic- and glutamatergic-associated proteins at three days of ethanol withdrawal, when female rats appear to have largely recovered but male rats still display robust signs of withdrawal. METHODS Male and female rats were fed 6% ethanol in a nutritionally complete liquid diet for 14 days according to a pair-fed design; withdrawal was initiated by replacement of the diet with chow. At three days of withdrawal, the cerebral cortex and hippocampus were dissected for use in Western blot analysis. The paired design was maintained throughout all experimental procedures. RESULTS At three days of ethanol withdrawal, we found region-specific and sex-selective alterations in levels of GAD (glutamic acid decarboxylase, GABA synthetic enzyme), GABA and glutamate transporters, and the synapse-associated proteins HSP70, PSD-95, and synaptophysin. There were also several significant differences in transporter function at this time that varied between males and females. CONCLUSIONS Taken together, these findings show differential adaptations of GABAergic and glutamatergic neurotransmission between female and male rats that are associated with withdrawal recovery. This suggests that selective withdrawal-induced neuroadaptations in regulation of these systems' activities underlie, at least in part, sex differences in withdrawal recovery between male and female rats.
Collapse
Affiliation(s)
- P E Alele
- Department of Pharmaceutical Sciences, Idaho State University, Pocatello, Idaho 83209, USA
| | | |
Collapse
|
30
|
de Gortari P, Cisneros M, Joseph-Bravo P. Chronic ethanol or glucose consumption alter TRH content and pyroglutamyl aminopeptidase II activity in rat limbic regions. ACTA ACUST UNITED AC 2005; 127:141-50. [PMID: 15680480 DOI: 10.1016/j.regpep.2004.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 10/29/2004] [Accepted: 11/13/2004] [Indexed: 11/22/2022]
Abstract
Thyrotropin-releasing hormone (TRH), its receptors and inactivating enzyme (PPII) are present in limbic regions. Nutritional changes or acute ethanol administration in male rats differentially modulate TRH or PPII expression. Chronic ethanol effect was studied in male (3, 6 and 8 weeks) and female rats (6 weeks) including naive and pair-fed (glucose) groups. Daily solid food and liquid intake, serum TSH and corticosterone, TRH content and PPII activity in limbic regions, were quantified. Gender differences were found in ethanol and total caloric intake and body weight gain, TSH and corticosterone levels. Ethanol consumption decreased TRH content and PPII activity in frontal cortex of male rats after 3-6 weeks. In contrast, glucose ingestion altered, by the third week, TRH content in amygdala, hippocampus, hypothalamus and nucleus accumbens, PPII activity in hippocampus and frontal cortex; by the sixth week, TRH content in amygdala and n. accumbens of male and females. Withdrawal at 24 h after 3-week ethanol ingestion decreased TRH content in amygdala and PPII activity in n. accumbens, while withdrawal from glucose reverted some of the effects produced by chronic glucose ingestion. Variations in TRH content or PPII activity support a region specific involvement of TRH neurons that depend on the treatment.
Collapse
Affiliation(s)
- P de Gortari
- División de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México D.F., México.
| | | | | |
Collapse
|
31
|
Nelson TE, Ur CL, Gruol DL. Chronic intermittent ethanol exposure enhances NMDA-receptor-mediated synaptic responses and NMDA receptor expression in hippocampal CA1 region. Brain Res 2005; 1048:69-79. [PMID: 15919065 DOI: 10.1016/j.brainres.2005.04.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/14/2005] [Accepted: 04/15/2005] [Indexed: 11/21/2022]
Abstract
In previous studies, we found that chronic intermittent ethanol (CIE) treatment-a model of ethanol consumption in which animals are exposed to and withdrawn from intoxicating levels of ethanol on a daily basis-produces neuroadaptive changes in hippocampal area CA1 excitatory synaptic transmission and plasticity. Synaptic responses mediated by N-methyl-D-aspartate (NMDA) receptors are known to be sensitive to ethanol and could play an important role in the neuroadaptive changes induced by CIE treatment. To address this issue, we compared electrophysiological recordings of pharmacologically isolated NMDA-receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 region of hippocampal slices prepared from control rats and rats exposed to 2 weeks of CIE treatment administered by vapor inhalation. We found that fEPSPs induced by NMDA receptor activation were unaltered in slices prepared shortly after cessation of CIE treatment (i.e., < or = 1 day of withdrawal from CIE). However, following 7 days of withdrawal from CIE treatment, NMDA-receptor-mediated fEPSPs were augmented relative to age-matched controls. Western blot analysis of NMDA receptor subunit expression showed that, at 7 days of withdrawal, the level of protein for NR2A and NR2B subunits was elevated in the CA1 region of hippocampal slices from CIE-treated animals compared with slices from age-matched controls. These results are consistent with an involvement of NMDA-receptor-mediated synaptic responses in the neuroadaptive effects of CIE on hippocampal physiology and suggest that such changes may contribute to ethanol-induced changes in processes dependent on NMDA-receptor-mediated synaptic responses such as learning and memory, neural development, hyperexcitability and seizures, and neurotoxicity.
Collapse
Affiliation(s)
- T E Nelson
- Department of Neuropharmacology, CVN-11, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
32
|
Self RL, Mulholland PJ, Harris BR, Nath A, Prendergast MA. Cytotoxic effects of exposure to the human immunodeficiency virus type 1 protein Tat in the hippocampus are enhanced by prior ethanol treatment. Alcohol Clin Exp Res 2005; 28:1916-24. [PMID: 15608609 DOI: 10.1097/01.alc.0000148108.93782.05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Long-term ethanol exposure leads to increases in the expression and/or sensitivity of NMDA-type glutamate receptors, effects that may contribute to the development of cytotoxicity in the brain. The human immunodeficiency virus 1 (HIV-1) transcription factor Tat is one of many viral proteins that may contribute to the development of HIV-associated dementia (HAD) by indirectly or directly promoting excess function of NMDA receptors. Thus, these studies examined the hypothesis that long-term ethanol pre-exposure would sensitize the hippocampus to Tat-induced cytotoxicity in an NMDA receptor-dependent manner. METHODS Organotypic slice cultures of rat hippocampus were exposed to a recombinant 86-amino acid form of Tat (Tat1-86) or a Tat deletion mutant devoid of amino acids 31 to 61 (TatDelta31-61; 0.1-100 nM) for 24 hr alone or during withdrawal from 10 days of ethanol exposure (50 mM in culture medium). Additional cultures were exposed to NMDA (5 microM) or the NMDA receptor channel blocker MK-801 (1 microM) during these treatments. Cellular injury in the CA1, CA3, and dentate gyrus regions of slice cultures was assessed by microscopy of propidium iodide fluorescence. RESULTS Twenty-four hours of withdrawal from ethanol exposure did not produce overt cellular injury in any region of slice cultures. However, NMDA-induced toxicity was markedly increased in ethanol-pre-exposed cultures, an effect prevented by MK-801 (1 microM) coexposure. Treatment of cultures with Tat1-86 alone (> or = 0.1 nM) produced modest toxicity in each region of hippocampal cultures that was also blocked by MK-801 coexposure. In contrast, exposure to TatDelta31-61 did not alter propidium iodide fluorescence. Exposure of cultures to Tat1-86 (> or = 0.1 nM) during ethanol withdrawal resulted in a marked potentiation of Tat's toxic effects in each region of slice cultures, particularly the CA1 region. This potentiation of Tat neurotoxicity was significantly attenuated by coexposure of cultures to MK-801 (1 microM). CONCLUSIONS These results indicate that long-term ethanol exposure sensitizes the hippocampus to the cytotoxic effects of Tat in an NMDA receptor-dependent manner. This may suggest that HIV-1-positive individuals who are alcohol dependent possess a heightened risk for the development of HAD. Furthermore, the NMDA receptor, particularly allosteric modulatory sites such as polyamine-sensitive sites, may be a therapeutic target to be investigated in the treatment of HAD.
Collapse
Affiliation(s)
- Rachel L Self
- University of Kentucky, Department of Psychology, 115 Kastle Hall, Lexington, KY 40505-0044, USA
| | | | | | | | | |
Collapse
|
33
|
Devaud LL, Alele P. Differential effects of chronic ethanol administration and withdrawal on gamma-aminobutyric acid type A and NMDA receptor subunit proteins in male and female rat brain. Alcohol Clin Exp Res 2004; 28:957-65. [PMID: 15201639 DOI: 10.1097/01.alc.0000128225.83916.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Investigations have shown that chronic ethanol exposure results in selective alterations in levels of gamma-aminobutyric acid (GABA)A and NMDA receptor subunits. We previously reported significant sex differences in these chronic ethanol-induced adaptations. Because we have more recently found important sex differences in timing for the development of and recovery from ethanol dependence, we wanted to ascertain whether there were associations between overt expression of withdrawal and neuroadaptations at the level of GABAA and NMDA receptors. METHODS Western blot analysis was used to assay protein levels for several GABAA and NMDA receptor subunits in rat cerebral cortex and hippocampus by using subunit-selective antibodies. Rats were fed 6% ethanol in a liquid diet with pair-fed controls. Feeding, harvesting of tissue, and Western blot experiments were all conducted while maintaining the paired design. Tissue was harvested after 3 days of ethanol exposure, 9 days of ethanol exposure, or 3 days of ethanol withdrawal after 14 days of liquid diet administration. RESULTS We again found sex-, subunit-, and brain region-selective effects of ethanol administration and withdrawal for GABAA and NMDA receptors. There was a strong association between increased GABAA receptor alpha4 subunit levels and previously determined withdrawal-induced changes in seizure susceptibility, highlighted by the sex differences in ethanol exposure length required to cause withdrawal signs. In addition, results obtained after 9 days of ethanol administration were in general agreement with previous findings after 14 days of ethanol administration. CONCLUSIONS These data further support the suggestion that alterations in subunit assembly of GABAA and NMDA receptors may have some mechanistic role in neuroadaptations underlying ethanol dependence and withdrawal. Furthermore, significant sex differences in these adaptations suggest that multiple types of adaptations may be elicited, depending on innate differences in the actions/effects of ethanol.
Collapse
Affiliation(s)
- Leslie L Devaud
- Department of Pharmaceutical Sciences, Idaho State University, Pocatello, Idaho 83209-8334, USA.
| | | |
Collapse
|
34
|
Prendergast MA, Harris BR, Mullholland PJ, Blanchard JA, Gibson DA, Holley RC, Littleton JM. Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors. Neuroscience 2004; 124:869-77. [PMID: 15026127 DOI: 10.1016/j.neuroscience.2003.12.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Long-term intake of ethanol produces adaptive alterations in multiple transmitter systems in the hippocampal formation that likely contribute to ethanol withdrawal-induced seizure and excitotoxicity. The present studies were designed to examine the role of N-methyl-d-aspartate receptor activation and cytosolic Ca(2+) accumulation in the neurotoxic effects of ethanol withdrawal. Further, these studies investigated the role of hippocampal network excitation in promoting both Ca(2+) accumulation and neurotoxicity during ethanol withdrawal. Chronic, continuous (11 day) exposure to ethanol (91 mM starting concentration) did not produce neurotoxicity in any region of organotypic hippocampal explants, as measured by uptake of the non-vital fluorescent marker propidium iodide. Withdrawal from chronic (10 day) ethanol exposure was associated with rapid (30 min) and significant increases in intracellular Ca(2+), assessed by visualization of Calcium-Orange fluorescence, in each region of hippocampal explants. However, neurotoxicity was observed 24 h after initiation of withdrawal and was only seen in the cornu ammonis 1 (CA1) region. Exposure to MK-801 (20 microM) at the start of ethanol withdrawal markedly attenuated Ca(2+) entry in all regions, as well as, CA1 region neurodegeneration. Further, treatment of explants with tetrodotoxin (500 nM) as well as surgical transection of mossy fiber or Schaffer collateral projections immediately prior to ethanol withdrawal blocked both regional increases in Ca(2+) accumulation and CA1 neurotoxicity. These data suggest that neurodegeneration observed during ethanol withdrawal is dependent upon polysynaptic propagation of action potentials ("network excitation") and whole-hippocampal excitation of glutamatergic systems.
Collapse
Affiliation(s)
- M A Prendergast
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Nixon K, Hughes PD, Amsel A, Leslie SW. NMDA receptor subunit expression after combined prenatal and postnatal exposure to ethanol. Alcohol Clin Exp Res 2004; 28:105-12. [PMID: 14745308 DOI: 10.1097/01.alc.0000106311.88523.7b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The N-methyl-D-aspartate receptor (NMDAR), a subtype of glutamate receptor, is essential for normal neurodevelopment. The brain growth spurt, which is both prenatal and postnatal in the rat, is a time when the brain is especially sensitive to the effects of a teratogen, such as alcohol. Changes in NMDAR function after early perinatal exposure to ethanol (EtOH) may be related to alterations in the expression of secondary subunits. Thus, we investigated the expression of the NR1, NR2A, and NR2B subunits after combined prenatal and postnatal exposure to EtOH. METHODS A binge model was used to administer EtOH (5 g/kg) or isocaloric vehicle to pregnant female rats followed by EtOH (6.2 g/kg) or isocaloric control diet from postnatal days 4 through 9 via an artificial rearing method. Proteins from crude membrane homogenates isolated from cortex and hippocampus at postnatal day 10, 14, or 21 were separated in a standard Western blot procedure. RESULTS The expression of the NR2A subunit of EtOH-exposed pups showed a significant increase at postnatal day 10 in hippocampus compared with diet controls. No significant changes were seen for any other subunit in either region. CONCLUSIONS The up-regulation of NR2A during EtOH withdrawal is consistent with compensatory changes to prolonged inhibition of the NMDAR. These results indicate that postnatal exposure to ethanol produces distinct effects on the NMDAR, which may underlie deficits associated with alcohol-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Kimberly Nixon
- Department of Psychology, Waggoner Center for Alcohol and Addiciton Research, University of Texas, Austin, Texas, USA.
| | | | | | | |
Collapse
|
36
|
Harris BR, Gibson DA, Prendergast MA, Blanchard JA, Holley RC, Hart SR, Scotland RL, Foster TC, Pedigo NW, Littleton JM. The Neurotoxicity Induced by Ethanol Withdrawal in Mature Organotypic Hippocampal Slices Might Involve Cross-Talk Between Metabotropic Glutamate Type 5 Receptors and N-Methyl-d-Aspartate Receptors. Alcohol Clin Exp Res 2003; 27:1724-35. [PMID: 14634487 DOI: 10.1097/01.alc.0000093601.33119.e3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We recently reported that the sodium salt of acamprosate (Na-acamprosate) demonstrates the characteristics of an antagonist at metabotropic glutamate type 5 receptors (mGluR5s) rather than at N-methyl-d-aspartate receptors (NMDARs). Because mGluR5s are able to enhance the function of NMDARs, this interplay may be involved in the dysregulation of glutamatergic transmission during ethanol withdrawal. The following studies use organotypic hippocampal slice cultures at a mature age to investigate the potential for this interplay in the neurotoxicity associated with withdrawal from long-term ethanol exposure. METHODS At 25 days in vitro, organotypic hippocampal slice cultures prepared from male and female 8-day-old rats were exposed to an initial concentration of 100 mM ethanol for 10 days before undergoing a 24-hr period of withdrawal. The effects of Na-acamprosate; 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893), a noncompetitive antagonist at mGluR5s; 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester, a noncompetitive antagonist at mGluR1s; dizocilpine (MK-801), a noncompetitive NMDAR antagonist; and staurosporine on the neurotoxicity induced by ethanol withdrawal were assessed by determining differences in propidium iodide uptake. Polypeptide levels of mGluR5s and the NR1 and NR2B subunits of NMDARs were also determined via Western blot analyses after 10 days of ethanol exposure. RESULTS Significant neurotoxicity was always evident in the CA1 hippocampal region after a 24-hr withdrawal period. This spontaneous neurotoxicity resulted from intrinsic changes induced by the long-term presence of ethanol. Na-acamprosate (200-1000 microM), SIB-1893 (200-500 microM), MK-801 (20 microM), and staurosporine (200 nM) were all neuroprotective. The polypeptide levels of mGluR5s and NR1 and NR2B subunits of NMDARs were all increased after ethanol exposure; however, the increase in mGluR5s did not achieve statistical significance. CONCLUSIONS From this model of long-term ethanol exposure and withdrawal, the functional interplay between mGluR5s and NMDARs might represent a novel target for the prevention of neurotoxicity associated with ethanol withdrawal.
Collapse
Affiliation(s)
- Barton R Harris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Chandler Medical Center, Lexington 40546, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mulholland PJ, Harris BR, Wilkins LH, Self RL, Blanchard JA, Holley RC, Littleton JM, Prendergast MA. Opposing effects of ethanol and nicotine on hippocampal calbindin-D28k expression. Alcohol 2003; 31:1-10. [PMID: 14615005 DOI: 10.1016/j.alcohol.2003.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term ethanol exposure produces multiple neuroadaptations that likely contribute to dysregulation of Ca(2+) balance and neurotoxicity during ethanol withdrawal. Conversely, nicotine exposure may reduce the neurotoxic consequences of Ca(2+) dysregulation, putatively through up-regulation of the Ca(2+)-buffering protein calbindin-D(28k). The current studies were designed to examine the extent to which 10-day ethanol exposure and withdrawal altered calbindin-D(28k) expression in rat hippocampus. Further, in these studies, we examined the ability of nicotine, through action at alpha(7)(*)-bearing nicotinic acetylcholine receptors (nAChRs), to antagonize the effects of ethanol exposure on calbindin-D(28k) expression. Organotypic cultures of rat hippocampus were exposed to ethanol (50-100 mM) for 10 days. Additional cultures were exposed to 500 nM (-)-nicotine with or without the addition of 50 mM ethanol, 100 nM methyllycaconitine (an alpha(7)*-bearing nAChR antagonist), or both. Prolonged exposure to ethanol (>/=50 mM) produced significant reductions of calbindin-D(28k) immunolabeling in all regions of the hippocampal formation, even at nontoxic concentrations of ethanol. Calbindin-D(28k) expression levels returned to near-control levels after 72 h of withdrawal from 10-day ethanol exposure. Extended (-)-nicotine exposure produced significant elevations in calbindin-D(28k) expression levels that were prevented by methyllycaconitine co-exposure. Co-exposure of cultures to (-)-nicotine with ethanol resulted in an attenuation of ethanol-induced reductions in calbindin-D(28k) expression levels. These findings support the suggestion that long-term ethanol exposure reduces the neuronal capacity to buffer accumulated Ca(2+) in a reversible manner, an effect that likely contributes to withdrawal-induced neurotoxicity. Further, long-term exposure to (-)-nicotine enhances calbindin-D(28k) expression in an alpha(7)* nAChR-dependent manner and antagonizes the effects of ethanol on calbindin-D(28k) expression.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gibson DA, Harris BR, Prendergast MA, Hart SR, Blanchard JA, Holley RC, Pedigo NW, Littleton JM. Polyamines contribute to ethanol withdrawal-induced neurotoxicity in rat hippocampal slice cultures through interactions with the NMDA receptor. Alcohol Clin Exp Res 2003; 27:1099-106. [PMID: 12878916 DOI: 10.1097/01.alc.0000075824.10502.dd] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N-methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity. METHODS Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1-100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 microM) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured. RESULTS Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC(50) = 14.9 nM), arcaine (IC(50) = 37.9 nM), agmatine (IC(50) = 41.5 nM), and DFMO (IC(50) = 0.6 nM). NMDA (5 microM) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity. CONCLUSIONS These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions.
Collapse
Affiliation(s)
- D Alex Gibson
- Department of Pharmacology, University of Kentucky, Tobacco and Health Research Institute, Lexington 40546-0236, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Henniger MSH, Wotjak CT, Hölter SM. Long-term voluntary ethanol drinking increases expression of NMDA receptor 2B subunits in rat frontal cortex. Eur J Pharmacol 2003; 470:33-6. [PMID: 12787828 DOI: 10.1016/s0014-2999(03)01787-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Forced ethanol drinking for several days and application of ethanol to cell cultures changes expression levels of various NMDA receptor subunits in rodents. Therefore, we investigated the influence of long-term voluntary ethanol consumption on the expression of NMDA receptor 2B (NR2B) subunits in several forebrain regions of rats [corrected]. This result is in accordance with and extends findings from studies using high doses of ethanol for a short period and suggests that the NR2B might be a potential target for an effective treatment of alcoholic patients.
Collapse
Affiliation(s)
- Markus S H Henniger
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, D-80804 Munich, Germany.
| | | | | |
Collapse
|
40
|
Boulouard M, Lelong V, Daoust M, Naassila M. Chronic ethanol consumption induces tolerance to the spatial memory impairing effects of acute ethanol administration in rats. Behav Brain Res 2002; 136:239-46. [PMID: 12385810 DOI: 10.1016/s0166-4328(02)00134-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A large number of studies in rats have investigated the effects of acute and chronic ethanol administration on performance on many spatial learning and memory tasks. However, no study has addressed the problem of whether chronic ethanol consumption induces tolerance to acute ethanol-induced spatial memory deficits. In this study, we analyzed the behavioral effects of acute ethanol administration on spatial memory and locomotor activity in rats chronically intoxicated by ethanol. Male Sprague-Dawley rats were given as their only available liquid source a 10% (v/v) aqueous ethanol solution for 2 weeks before behavioral testing and during the 1-week behavioral testing period. They were treated intraperitoneally with 1.5 g/kg of ethanol 30 min before daily training in the Morris water maze, a spatial memory task sensitive to hippocampal damage. Our results demonstrate that learning and spatial memory of ethanol-consuming animals were not altered compared with control rats. Chronic ethanol consumption had no effect on spatial reference memory in terms of either the distance traveled to find the hidden platform during the acquisition phase of the experiment, or the time spent in the training quadrant during the retention trial. Acute ethanol administration impaired spatial memory in control rats and this impairment was reversed in chronic ethanol-consuming animals, revealing that chronic ethanol consumption did induce tolerance to the spatial memory deficits induced by acute ethanol injection, although plasma ethanol levels did not differ between the two groups. In contrast, chronic ethanol consumption did not induce tolerance to the acute ethanol-induced stimulatory locomotor activity measured in the same animals. Our results, therefore, indicate that chronic ethanol consumption induces tolerance to the cognitive impairing effects, but not to the locomotor stimulatory effects of acute ethanol administration in rats, suggesting that these two behavioral effects of ethanol do not share a common mechanism in the CNS.
Collapse
Affiliation(s)
- Michel Boulouard
- Laboratoire de Pharmacologie, CERMN, UPRESS EA 2126, Université de Caen, UFR des Sciences Pharmaceutiques, 1, rue Vaubénard, France.
| | | | | | | |
Collapse
|
41
|
Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M, Cass W, Turchan JT. Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 2002; 31 Suppl 2:S62-9. [PMID: 12394784 DOI: 10.1097/00126334-200210012-00006] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In certain populations around the world, the HIV pandemic is being driven by drug-abusing populations. Mounting evidence suggests that these patient populations have accelerated and more severe neurocognitive dysfunction compared with non-drug-abusing HIV-infected populations. Because most drugs of abuse are central nervous system stimulants, it stands to reason that these drugs may synergize with neurotoxic substances released during the course of HIV infection. Clinical and laboratory evidence suggests that the dopaminergic systems are most vulnerable to such combined neurotoxicity. Identifying common mechanisms of neuronal injury is critical to developing therapeutic strategies for drug-abusing HIV-infected populations. This article reviews 1) the current evidence for neurodegeneration in the setting of combined HIV infection and use of methamphetamine, cocaine, heroin or alcohol; 2) the proposed underlying mechanisms involved in this combined neurotoxicity; and 3) future directions for research. This article also suggests therapeutic approaches based on our current understanding of the neuropathogenesis of dementia due to HIV infection and drugs of abuse.
Collapse
Affiliation(s)
- Avi Nath
- Department of Neurology, John Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Devaud LL, Bartoo G, Malthankar G. Altered responses to dizocilpine maleate administration in ethanol-withdrawn male and female rats. Alcohol 2002; 28:83-93. [PMID: 12457939 DOI: 10.1016/s0741-8329(02)00239-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dizocilpine maleate (MK-801) is a highly potent, noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. Although it has been suggested that dizocilpine may be beneficial in alleviating some symptoms of ethanol withdrawal, a rigorous evaluation of beneficial versus detrimental (phencyclidine-like) actions has not been done. The objective of the present investigation was to explore whether dizocilpine protects against ethanol withdrawal-induced increases in seizure susceptibility without being compromised by its phencyclidine-like behavioral actions. The effects of dizocilpine were assessed by using seizure threshold determinations and scoring of open field behaviors. Low dose dizocilpine administration preferentially protected against bicuculline seizure induction in ethanol-withdrawn female rats when compared with findings in ethanol-withdrawn male rats. In contrast, we found dramatic reductions in dizocilpine-induced open field behaviors during ethanol withdrawal in both male and female rats compared with findings for pair-fed control animals. [3H]MK-801 binding analysis ruled out changes in cerebral cortex or hippocampus receptor density or affinity as having a primary role in these differential responses. Taken together, our findings from these studies indicate that there are complex neuroadaptations in NMDA receptor systems after persistent ethanol exposure, manifested as either enhanced or reduced responses, depending on the measure used.
Collapse
Affiliation(s)
- Leslie L Devaud
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, CB 8334, Pocatello, ID 83209-8334, USA.
| | | | | |
Collapse
|
43
|
Devaud LL, Chadda R. Sex Differences in Rats in the Development of and Recovery From Ethanol Dependence Assessed by Changes in Seizure Susceptibility. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02176.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Ferreira VM, Frausto S, Browning MD, Savage DD, Morato GS, Valenzuela CF. Ionotropic Glutamate Receptor Subunit Expression in the Rat Hippocampus: Lack of an Effect of a Long-Term Ethanol Exposure Paradigm. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02157.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Meyer RE. Finding Paradigms for the Future of Alcoholism Research: An Interdisciplinary Perspective. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02363.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Littleton JM, Lovinger D, Liljequist S, Ticku R, Matsumoto I, Barron S. Role of Polyamines and NMDA Receptors in Ethanol Dependence and Withdrawal. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02387.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Devaud LL. Ethanol Dependence Has Limited Effects on GABA or Glutamate Transporters in Rat Brain. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02257.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Prendergast MA, Harris BR, Blanchard JA, Mayer S, Gibson DA, Littleton JM. In Vitro Effects of Ethanol Withdrawal and Spermidine on Viability of Hippocampus From Male and Female Rat. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb01990.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Morrow AL, Nguyen UT. Ovariectomy has minimal effects on neuroadaptations associated with ethanol dependence in female rats. Neurochem Int 2000; 37:433-42. [PMID: 10871695 DOI: 10.1016/s0197-0186(00)00052-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously found gender selective alterations in gene expression for GABA(A) and NMDA receptors associated with the development of ethanol dependence. Males and females have a differing hormonal environment, including steroid hormone derivatives (neuroactive steroids) that exert effects at GABA(A) and NMDA receptors. Therefore, we explored whether the removal of ovarian steroids would alter gender differences in response to chronic ethanol exposure. We found that ovariectomy reduced ethanol drinking levels by 15%, comparable to earlier observations between intact female and male rats. However, investigation of the effects of chronic ethanol exposure on intact versus ovariectomized female rats uncovered few differences in chronic ethanol-induced alterations in selected GABA(A) or NMDA receptor subunit peptide levels. In general, findings for both groups of females were similar to previous observations. There was no reduction in GABA(A) receptor alpha1 subunit levels in cerebral cortex in either intact or ovariectomized female rats, in contrast to the significant reduction observed in male rats. In addition, both intact and ovariectomized female rats had increased levels of the NMDA NR1 subunit in cerebral cortex and hypothalamus, but not in hippocampus, whereas ethanol dependent male rats displayed significant increases in the NR1 subunit only in hippocampus. Radioligand binding analysis with [35S]TBPS found no differences in modulation of the GABA(A) receptor by neuroactive steroids between ethanol dependent male, intact female or ovariectomized female rats. Seizure susceptibility was not different between intact or ovariectomized female rats during ethanol withdrawal. We did observe differential effects on brain allopregnanolone and plasma corticosterone levels between ethanol dependent intact and ovariectomized female rats, suggesting that ovarian steroids influence HPA axis adaptations to prolonged ethanol exposure. Overall, these data suggest that ovarian steroids do not significantly impact the gender selective alterations of GABA(A) and NMDA receptors associated with ethanol dependence.
Collapse
|
50
|
Prendergast MA, Harris BR, Mayer S, Littleton JM. Chronic, But Not Acute, Nicotine Exposure Attenuates Ethanol Withdrawal-Induced Hippocampal Damage In Vitro. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04578.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|