1
|
Fu K, Chen W, Meng M, Zhao H, Yuan H, Wang Y, Ren Y, Yun Y, Guo D. An allosteric modulator of the adenosine A 1 receptor potentiates the antilipolytic effect in rat adipose tissue. Eur J Pharmacol 2023; 951:175777. [PMID: 37182594 DOI: 10.1016/j.ejphar.2023.175777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The adenosine A1 receptor plays important roles in tuning free fatty acid (FFA) levels and represents an attractive target for metabolic disorders. Though remarkable progress has been achieved in the exploitation of effective (orthosteric) A1 receptor agonists in modulating aberrant FFA levels, the effect of A1 receptor allosteric modulation on lipid homeostasis is less investigated. Herein we sought to explore the effect of an allosteric modulator on the action of an A1 receptor orthosteric agonist in regulating the lipolytic process in vitro and in vivo. We examined the binding kinetics of a selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) in the absence or presence of an allosteric modulator (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)-phenyl]methanone (PD81,723) on rat adipocyte membranes. We also examined the allosteric effects of PD81,723 on mediating the CCPA-induced inhibition of cAMP accumulation, HSL (hormone-sensitive lipase) phosphorylation and FFA production in in vitro and in vivo models. Our results demonstrated that PD81,723 slowed down the dissociation of CCPA from the A1 receptor, which, consequently, potentiated the antilipolytic action of CCPA through downregulating the cAMP/HSL pathway. Our study exemplified the application of A1 receptor allosteric modulators as an alternative for metabolic disease treatments.
Collapse
Affiliation(s)
- Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wenbing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mingzhu Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huimin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yi Yun
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhi Road, Suqian, 223800, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Pasquini S, Contri C, Cappello M, Borea PA, Varani K, Vincenzi F. Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications. Front Pharmacol 2022; 13:1030895. [PMID: 36278183 PMCID: PMC9581118 DOI: 10.3389/fphar.2022.1030895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- *Correspondence: Katia Varani,
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Mauro AN, Turgeon PJ, Gupta S, Brand-Arzamendi K, Chen H, Malone JH, Ng R, Ho K, Dubinsky M, Di Ciano-Oliveira C, Spring C, Plant P, Leong-Poi H, Marshall JC, Marsden PA, Connelly KA, Singh KK. Automated in vivo compound screening with zebrafish and the discovery and validation of PD 81,723 as a novel angiogenesis inhibitor. Sci Rep 2022; 12:14537. [PMID: 36008455 PMCID: PMC9411172 DOI: 10.1038/s41598-022-18230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.
Collapse
Affiliation(s)
- Antonio N Mauro
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada.
| | - Paul J Turgeon
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Sahil Gupta
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Koroboshka Brand-Arzamendi
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Hao Chen
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
| | - Jeanie H Malone
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Robin Ng
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Kevin Ho
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Michelle Dubinsky
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Christopher Spring
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Pamela Plant
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
| | - Howard Leong-Poi
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
| | - John C Marshall
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Departments of Surgery and Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Philip A Marsden
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Canada
- Department of Medicine, University of Toronto, Toronto, M5S 3H2, Canada
| | - Kim A Connelly
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, M5T 1W7, Canada.
| | - Krishna K Singh
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, M5B 1T8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada.
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, N6A 5C1, Canada.
| |
Collapse
|
4
|
Vincenzi F, Pasquini S, Battistello E, Merighi S, Gessi S, Borea PA, Varani K. A 1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic? Front Pharmacol 2020; 11:625134. [PMID: 33362567 PMCID: PMC7756085 DOI: 10.3389/fphar.2020.625134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Enrica Battistello
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Hill SJ, May LT, Kellam B, Woolard J. Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 2014; 171:1102-13. [PMID: 24024783 DOI: 10.1111/bph.12345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs -protein-coupled adenosine receptors (A2A and A2B ), or inhibit AC activity, in the case of Gi/o -coupled adenosine receptors (A1 and A3 ). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1 - and A3 -receptor allosteric modulators on in vivo pharmacology.
Collapse
Affiliation(s)
- Stephen J Hill
- Cell Signalling Research Group, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
6
|
Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils. Brain Res 2013; 1510:78-88. [PMID: 23528266 DOI: 10.1016/j.brainres.2013.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
Abstract
Although many studies regarding ischemic brain damage in the gerbil have been reported, studies on neuronal damage according to various durations of ischemia-reperfusion (I-R) have been limited. In this study, we examined neuronal damage/death and glial changes in the somatosensory cortex 4 days after 5, 10 and 15 min of transient cerebral ischemia using the gerbil. To examine neuronal damage, we used Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining as well as cresyl violet (CV) staining and neuronal nuclei (NeuN, neuronal marker) immunohistochemistry. In the somatosensory cortex, some CV and NeuN positive (+) neurons were slightly decreased only in layers III and VI in the 5 min ischemia-group, and the number of CV+ and NeuN+ neurons were decreased with longer ischemic time. The F-J B histofluorescence staining showed a clear neuronal damage in layers III and VI, and the number of F-J B+ neurons was increased with time of ischemia-reperfusion: in the 15 min ischemia-group, the number of F-J B+ neurons was much higher in layer III than in layer VI. In addition, we immunohistochemically examined gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti-ionized calcium-binding adapter molecule 1 (Iba-1) antibody, respectively. In the 5 min ischemia-group, GFAP+ astrocytes and Iba-1+ microglia were distinctively increased in number, and their immunoreactivity was stronger than that in the sham-group. In the 10 and 15 min ischemia-groups, numbers of GFAP+ and Iba-1+ glial cells were much more increased with time of ischemia-reperfusion; in the 15 min ischemia-group, their distribution patterns of GFAP+ and Iba-1+ glial cells were similar to those in the 10 min ischemia-group. Our fining indicates that neuronal death/damage and gliosis of astrocytes and microglia were apparently increased with longer time of ischemia-reperfusion.
Collapse
|
7
|
Park SW, Kim JY, Ham A, Brown KM, Kim M, D'Agati VD, Lee HT. A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2012; 303:F721-32. [PMID: 22759398 DOI: 10.1152/ajprenal.00157.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R injury without the undesirable side effects of systemic A(1)AR activation by potentiating the cytoprotective effects of renal adenosine generated locally by ischemia. Pretreatment with PD-81723 produced dose-dependent protection against renal I/R injury in A(1)AR wild-type mice but not in A(1)AR-deficient mice. Significant reductions in renal tubular necrosis, neutrophil infiltration, and inflammation as well as tubular apoptosis were observed in A(1)AR wild-type mice treated with PD-81723. Furthermore, PD-81723 decreased apoptotic cell death in human proximal tubule (HK-2) cells in culture, which was attenuated by a specific A(1)AR antagonist (8-cyclopentyl-1,3-dipropylxanthine). Mechanistically, PD-81723 induced sphingosine kinase (SK)1 mRNA and protein expression in HK-2 cells and in the mouse kidney. Supporting a critical role of SK1 in A(1)AR allosteric enhancer-mediated renal protection against renal I/R injury, PD-81723 failed to protect SK1-deficient mice against renal I/R injury. Finally, proximal tubule sphingosine-1-phosphate type 1 receptors (S1P(1)Rs) are critical for PD-81723-induced renal protection, as mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(flox/flox) PEPCK(Cre/-) mice) were not protected against renal I/R injury with PD-81723 treatment. Taken together, our experiments demonstrate potent renal protection with PD-81723 against I/R injury by reducing necrosis, inflammation, and apoptosis through the induction of renal tubular SK1 and activation of proximal tubule S1P(1)Rs. Our findings imply that selectively enhancing A(1)AR activation by locally produced renal adenosine may be a clinically useful therapeutic option to attenuate ischemic acute kidney injury without systemic side effects.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Anesthesiology, Columbia University, 630 W. 168th St., New York, NY 10032-3784, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Jacobson KA, Gao ZG, Göblyös A, IJzerman AP. Allosteric modulation of purine and pyrimidine receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:187-220. [PMID: 21586360 PMCID: PMC3165024 DOI: 10.1016/b978-0-12-385526-8.00007-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the purine and pyrimidine receptors, the discovery of small molecular allosteric modulators has been most highly advanced for the A(1) and A(3) adenosine receptors (ARs). These AR modulators have allosteric effects that are structurally separated from the orthosteric effects in SAR studies. The benzoylthiophene derivatives tend to act as allosteric agonists as well as selective positive allosteric modulators (PAMs) of the A(1) AR. A 2-amino-3-aroylthiophene derivative T-62 has been under development as a PAM of the A(1) AR for the treatment of chronic pain. Several structurally distinct classes of allosteric modulators of the human A(3) AR have been reported: 3-(2-pyridinyl)isoquinolines, 2,4-disubstituted quinolines, 1H-imidazo-[4,5-c]quinolin-4-amines, endocannabinoid 2-arachidonylglycerol, and the food dye Brilliant Black BN. Site-directed mutagenesis of A(1) and A(3) ARs has identified residues associated with the allosteric effect, distinct from those that affect orthosteric binding. A few small molecular allosteric modulators have been reported for several of the P2X ligand-gated ion channels and the G protein-coupled P2Y receptor nucleotides. Metal ion modulation of the P2X receptors has been extensively explored. The allosteric approach to modulation of purine and pyrimidine receptors looks promising for development of drugs that are event and site specific in action.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anikó Göblyös
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
9
|
Park IS, Meno JR, Witt CE, Suttle TK, Chowdhary A, Nguyen TS, Ngai AC, Britz GW. Subarachnoid hemorrhage model in the rat: Modification of the endovascular filament model. J Neurosci Methods 2008; 172:195-200. [DOI: 10.1016/j.jneumeth.2008.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 04/19/2008] [Accepted: 04/25/2008] [Indexed: 11/26/2022]
|
10
|
Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008; 55:281-8. [PMID: 18541276 DOI: 10.1016/j.neuropharm.2008.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 01/07/2023]
Abstract
We outline the mechanisms currently thought to be responsible for controlling cerebral blood flow (CBF) in the physiologic state and during ischemia, focusing on the arterial pial and penetrating microcirculation. Initially, we categorize the cerebral circulation and then review the vascular anatomy. We draw attention to a number of unique features of the cerebral vasculature, which are relevant to the microcirculatory response during ischemia: arterial histology, species differences, collateral flow, the venous drainage, the blood-brain barrier, astrocytes and vascular nerves. The physiology of the arterial microcirculation is then assessed. Lastly, we review the changes during ischemia which impact on the microcirculation. Further understanding of the normal cerebrovascular anatomy and physiology as well as the pathophysiology of ischemia will allow the rational development of a pharmacologic therapy for human stroke and brain injury.
Collapse
Affiliation(s)
- Tobias Kulik
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
11
|
Hwang IK, Yoo KY, Kim DW, Kwon OS, Lim SS, Kang IJ, Choi SY, Won MH. Differential Changes in Pyridoxine 5′-Phosphate Oxidase Immunoreactivity and Protein Levels in the Somatosensory Cortex and Striatum of the Ischemic Gerbil Brain. Neurochem Res 2008; 33:1356-64. [DOI: 10.1007/s11064-008-9591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 01/07/2008] [Indexed: 11/30/2022]
|
12
|
Hwang IK, Yoo KY, Kim DH, Lee BH, Kwon YG, Won MH. Time course of changes in pyridoxal 5'-phosphate (vitamin B6 active form) and its neuroprotection in experimental ischemic damage. Exp Neurol 2007; 206:114-25. [PMID: 17531224 DOI: 10.1016/j.expneurol.2007.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/19/2007] [Accepted: 04/14/2007] [Indexed: 10/23/2022]
Abstract
In the present study, we investigated ischemia-induced changes of pyridoxal 5'-phosphate synthesizing enzyme and degrading enzyme and neuroprotective effects and roles of pyridoxal 5'-phosphate against ischemic damage in the gerbil hippocampal CA1 region. Pyridoxal 5'-phosphate oxidase and pyridoxal phosphate phosphatase immunoreactivities were changed in neurons up to 2 days after ischemia, while 4 days after ischemia their immunoreactivities were expressed in astrocytes. Pyridoxal 5'-phosphate oxidase immunoreactivity and its protein level were highest 12 h after ischemia, while those in pyridoxal phosphate phosphatase were highest 2 days after ischemia. Total activities of these enzymes were changed after ischemia, but specific activities of the enzymes were not altered. Treatment with pyridoxal 5'-phosphate into brains (4 microg/5 microl, i.c.v.) at 30 min before transient ischemia protected about 80% of CA1 pyramidal cells 4 days after ischemia and induced elevation of glutamic acid decarboxylase 67 immunoreactivity in the CA1 region. However, pyridoxal 5'-phosphate treatment into ischemic brains decreased GABA transaminase immunoreactivity in the CA1 region after ischemia. These results indicate that pyridoxal 5'-phosphate may be associated with the inhibitory discharge of GABA in the hippocampal CA1 neurons, and the increased level of GABA may protect hippocampal CA1 pyramidal cells from ischemic damage.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | |
Collapse
|
13
|
Yokoo N, Sheng H, Mixco J, Homi HM, Pearlstein RD, Warner DS. Intraischemic Nitrous Oxide Alters Neither Neurologic Nor Histologic Outcome: A Comparison with Dizocilpine. Anesth Analg 2004; 99:896-903. [PMID: 15333428 DOI: 10.1213/01.ane.0000132973.32387.8b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-Methyl-D-aspartate receptor antagonism contributes to the anesthetic action of nitrous oxide (N(2)O). We examined the effects of the N-methyl-D-aspartate antagonists N(2)O and dizocilpine on outcome from filament occlusion of the middle cerebral artery (MCAO). Rats breathed 70% nitrogen/30% oxygen or 70% N(2)O/30% oxygen during MCAO. A third group breathed 70% nitrogen/30% oxygen and was given dizocilpine (0.25 mg/kg IV). After 75 min of MCAO, the rats recovered for 3 or 14 days. Pericranial temperature was maintained at 37.5 degrees C +/- 0.2 degrees C during ischemia and for 20 h postischemia. N(2)O did not alter neurologic scores at 3 days (N(2)O, 21 +/- 6; nitrogen, 22 +/- 8; P = 0.95; 0 = normal; 48 = maximal deficit; mean +/- sd; n = 15) or 14 days (N(2)O, 13 +/- 6; nitrogen, 12 +/- 6; P = 0.93; n = 15-16) postischemia. N(2)O had no effect on infarct size at 3 days (N(2)O, 162 +/- 45 mm(3); nitrogen, 162 +/- 61 mm(3); P > 0.99) or 14 days (N(2)O, 147 +/- 56 mm(3); nitrogen, 151 +/- 62 mm(3); P = 0.99) postischemia. Dizocilpine treatment caused smaller infarcts (3 days: 66 +/- 49 mm(3), P < 0.0001 versus nitrogen; 14 days: 84 +/- 50 mm(3), P < 0.006 versus nitrogen) and reduced the neurologic deficit (3 days: 10 +/- 10, P = 0.002 versus nitrogen; 14 days: 6 +/- 7, P = 0.006 versus nitrogen). N(2)O (70%) had no effect on either behavioral or histologic outcome from transient focal cerebral ischemia when compared with results in rats breathing 70% nitrogen. These results indicate that normobaric N(2)O does not alter the response of rat brain to a focal ischemic insult.
Collapse
Affiliation(s)
- Noriko Yokoo
- Departments of *Anesthesiology, ‡Surgery, and §Neurobiology, Duke University Medical Center; and †Duke University School of Medicine, Durham, North Carolina
| | | | | | | | | | | |
Collapse
|
14
|
Etherington LAV, Frenguelli BG. Endogenous adenosine modulates epileptiform activity in rat hippocampus in a receptor subtype-dependent manner. Eur J Neurosci 2004; 19:2539-50. [PMID: 15128407 DOI: 10.1111/j.0953-816x.2004.03355.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purine nucleoside adenosine is released during seizure activity and exerts an anticonvulsant influence through inhibition of glutamate release and hyperpolarization of neurons via adenosine A(1) receptors. However, activation of adenosine A(2A) and A(3) receptors may counteract the inhibitory effects of A(1) receptors. We have therefore examined the extent to which endogenous adenosine released during seizure activity activates the different adenosine receptor subtypes and the implications for seizure activity in the rat hippocampus in vitro. Brief trains of high-frequency stimulation in nominally Mg(2+)-free artificial cerebrospinal fluid evoked epileptiform activity and resulted in a transient depression of the simultaneously recorded CA1 field excitatory postsynaptic potential. In the presence of 8-cyclopentyl-1,3-dimethylxanthine (CPT), an adenosine A(1) receptor antagonist, the occurrence of spontaneous seizure activity was greatly increased as was the duration and intensity of evoked seizures, whilst the postictal depression of basal synaptic transmission was greatly attenuated. Application of ZM 241385, an adenosine A(2A) receptor antagonist, shortened the duration of epileptiform activity, whereas administration of MRS 1191, an adenosine A(3) receptor antagonist, both decreased the duration and intensity of seizures. Combined application of the A(2A) and A(3) receptor antagonists also resulted in a reduction in seizure duration and intensity. However, no evidence was found for a role for protein kinase C in the regulation of seizure activity by endogenous adenosine. Our data confirm the dominant anticonvulsant role that endogenous and tonic adenosine play via the A(1) receptor, and suggest that the additional adenosine receptor subtypes may compromise this anticonvulsant property through promotion of seizure activity.
Collapse
Affiliation(s)
- Lori-An V Etherington
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, Scotland, UK
| | | |
Collapse
|