1
|
Inaba H, Yoda K, Adachi H. The F-actin-binding RapGEF GflB is required for efficient macropinocytosis in Dictyostelium. J Cell Sci 2017; 130:3158-3172. [PMID: 28778987 DOI: 10.1242/jcs.194126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis involves the uptake of large volumes of fluid, which is regulated by various small GTPases. The Dictyostelium discoideum protein GflB is a guanine nucleotide exchange factor (GEF) of Rap1, and is involved in chemotaxis. Here, we studied the role of GflB in macropinocytosis, phagocytosis and cytokinesis. In plate culture of vegetative cells, compared with the parental strain AX2, gflB-knockout (KO) cells were flatter and more polarized, whereas GflB-overproducing cells were rounder. The gflB-KO cells exhibited impaired crown formation and retraction, particularly retraction, resulting in more crowns (macropinocytic cups) per cell and longer crown lifetimes. Accordingly, gflB-KO cells showed defects in macropinocytosis and also in phagocytosis and cytokinesis. F-actin levels were elevated in gflB-KO cells. GflB localized to the actin cortex most prominently at crowns and phagocytic cups. The villin headpiece domain (VHP)-like N-terminal domain of GflB directly interacted with F-actin in vitro Furthermore, a domain enriched in basic amino acids interacted with specific membrane cortex structures such as the cleavage furrow. In conclusion, GflB acts as a key local regulator of actin-driven membrane protrusion possibly by modulating Rap1 signaling pathways.
Collapse
Affiliation(s)
- Hironori Inaba
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.,The Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koji Yoda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Adachi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Rho Signaling in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:61-181. [DOI: 10.1016/bs.ircmb.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abstract
Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5-2IQ). Electron microscopy of this chimera (Myo5-2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5-6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5-6IQ but much greater than for Myo5-2IQ. Myo5-2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5-6IQ in in-vitro single molecule assays. In comparison, Myo5-2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5-6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins.
Collapse
|
4
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
6
|
Abstract
Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, 30 quai Ernest Ansermet, Sciences II, CH-1211-Genève-4, Switzerland.
| | | |
Collapse
|
7
|
Kollmar M. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. BMC Genomics 2006; 7:183. [PMID: 16857047 PMCID: PMC1634994 DOI: 10.1186/1471-2164-7-183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/20/2006] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. RESULTS The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins.The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree. CONCLUSION Dictyostelium contains thirteen myosins together with 6-8 MLCs (myosin light chain) to assist in a variety of actin-based processes in the cell. Although they are homologous to myosins of higher eukaryotes, the myosins of Dictyostelium should be considered with care as models for specific functions of vertebrate myosins.
Collapse
Affiliation(s)
- Martin Kollmar
- Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Goettingen, Germany.
| |
Collapse
|
8
|
Rivero F, Somesh BP. Signal transduction pathways regulated by Rho GTPases in Dictyostelium. J Muscle Res Cell Motil 2003; 23:737-49. [PMID: 12952072 DOI: 10.1023/a:1024423611223] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches, cycling between an active GTP-bound state and an inactive GDP-bound state. Activation enables Rho GTPases to interact with a multitude of effectors that relay upstream signals to cytoskeletal and other components, eliciting rearrangements of the actin cytoskeleton and diverse other cellular responses. In Dictyostelium the Rho family comprises 15 members. Some of them (Rac1a/b/c, RacF1/F2, RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily, however the Rho and Cdc42 subfamilies are not represented. Dictyostelium Rho GTPases regulate actin polymerization, cell morphology, endocytosis, cytokinesis, cell polarity and chemotaxis. Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) modulate the activation/inactivation cycle of the GTPases. In addition, guanine nucleotide-dissociation inhibitors (GDIs) regulate cycling of the GTPases between membranes and cytosol. Members of these three classes of regulatory molecules along with some effectors have been identified in Dictyostelium during the last years and their role in Rho signaling pathways has been investigated.
Collapse
Affiliation(s)
- Francisco Rivero
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.
| | | |
Collapse
|
9
|
Abstract
Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation.
Collapse
Affiliation(s)
- Thierry Soldati
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Abstract
Endocytosis in protozoa is often regarded as largely different from the pathways operating in mammalian cells. Experiments in the amoeba Dictyostelium, one of the genetically tractable single-celled organisms, have allowed us to manipulate the flow through endocytic compartments and to study the dynamic distribution of molecules by means of green fluorescent protein fusions. This review attempts to compile the molecular data available from Dictyostelium and assign them to specific steps of internalization by phagocytosis or macropinocytosis and to subsequent stages of the endocytic pathway. Parallels to phagocytes of the mammalian immune system are emphasized. The major distinctive feature between mammalian phagocytes and free-living cells is the need for osmoregulation. Therefore Dictyostelium cells possess a contractile vacuole that has occasionally obscured analysis of endocytosis but is now found to be entirely separate from endocytic organelles. In conclusion, the potential of Dictyostelium amoebas to provide a model system of mammalian phagocytes is ever increasing.
Collapse
Affiliation(s)
- Markus Maniak
- Department of Cell Biology, Universitaet Kassel, 34109 Kassel, Germany
| |
Collapse
|
11
|
Imai K, Kijima T, Noda Y, Sutoh K, Yoda K, Adachi H. A Rho GDP-dissociation inhibitor is involved in cytokinesis of Dictyostelium. Biochem Biophys Res Commun 2002; 296:305-12. [PMID: 12163018 DOI: 10.1016/s0006-291x(02)00861-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Homology searches toward the EST databases of Dictyostelium discoideum identified two putative Rho GDP-dissociation inhibitors (RhoGDIs), RhoGDI1 and RhoGDI2. In this study, the roles of RhoGDI1 in cytokinesis were examined. The RhoGDI1-null Dictyostelium strains produced by homologous recombination were viable but generated multinucleate giant cells in suspension culture, suggesting that RhoGDI1 is involved in cytokinesis. The expression of green fluorescent protein (GFP)-tagged RhoGDI1 complemented the defects of the RhoGDI1-null cells, and the GFP-RhoGDI1 is predominantly present in cytoplasm of the cell-like yeast RhoGDI. Of 15 Rho family GTPases in Dictyostelium currently known, Dictyostelium versions of Rac1 proteins (Rac1A, Rac1B, and Rac1C) and RacE that are reportedly involved in Dictyostelium cytokinesis, showed two-hybrid interactions with RhoGDI1 as well as human and yeast Cdc42. These results suggest that RhoGDI1 is involved in cytokinesis of Dicytostelium through the regulation of Rho family GTPases Rac1s and/or RacE.
Collapse
Affiliation(s)
- Keita Imai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Souchet M, Portales-Casamar E, Mazurais D, Schmidt S, Léger I, Javré JL, Robert P, Berrebi-Bertrand I, Bril A, Gout B, Debant A, Calmels TPG. Human p63RhoGEF, a novel RhoA-specific guanine nucleotide exchange factor, is localized in cardiac sarcomere. J Cell Sci 2002; 115:629-40. [PMID: 11861769 DOI: 10.1242/jcs.115.3.629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The Rho small GTPases are crucial proteins involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. It has been reported that these GTPases are directly associated with cardiovascular disorders. In this context, we have searched for novel modulators of Rho GTPases, and here we describe p63RhoGEF a new Db1-like guanine nucleotide exchange factor (GEF). P63RhoGEF encodes a 63 kDa protein containing a Db1 homology domain in tandem with a pleckstrin homology domain and is most closely related to the second Rho GEF domain of Trio. Northern blot and in situ analysis have shown that p63RhoGEF is mainly expressed in heart and brain. In vitro guanine nucleotide exchange assays have shown that p63RhoGEF specifically acts on RhoA. Accordingly, p63RhoGEF expression induces RhoA-dependent stress fiber formation in fibroblasts and in H9C2 cardiac myoblasts. Moreover, we show that p63RhoGEF activation of RhoA in intact cells is dependent on the presence of the PH domain. Using a specific anti-p63RhoGEF antibody, we have detected the p63RhoGEF protein by immunocytochemistry in human heart and brain tissue sections. Confocal microscopy shows that p63RhoGEF is located in the sarcomeric I-band mainly constituted of cardiac sarcomeric actin. Together, these results show that p63RhoGEF is a RhoA-specific GEF that may play a key role in actin cytoskeleton reorganization in different tissues, especially in heart cellular morphology.
Collapse
Affiliation(s)
- Michel Souchet
- SmithKline Beecham Laboratoires Pharmaceutiques, Unité de Biologie Cardiovasculaire, 4 rue du Chesnay Beauregard, BP 96205, 35760 Saint-Grégoire, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rupper A, Lee K, Knecht D, Cardelli J. Sequential activities of phosphoinositide 3-kinase, PKB/Aakt, and Rab7 during macropinosome formation in Dictyostelium. Mol Biol Cell 2001; 12:2813-24. [PMID: 11553719 PMCID: PMC59715 DOI: 10.1091/mbc.12.9.2813] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macropinocytosis plays an important role in the internalization of antigens by dendritic cells and is the route of entry for many bacterial pathogens; however, little is known about the molecular mechanisms that regulate the formation or maturation of macropinosomes. Like dendritic cells, Dictyostelium amoebae are active in macropinocytosis, and various proteins have been identified that contribute to this process. As described here, microscopic analysis of null mutants have revealed that the class I phosphoinositide 3-kinases, PIK1 and PIK2, and the downstream effector protein kinase B (PKB/Akt) are important in regulating completion of macropinocytosis. Although actin-rich membrane protrusions form in these cell lines, they recede without forming macropinosomes. Imaging of cells expressing green fluorescent protein (GFP) fused to the pleckstrin homology domain (PH) of PKB (GFP-PHPKB) indicates that D3 phosphoinositides are enriched in the forming macropinocytic cup and remain associated with newly formed macropinosomes for <1 minute. A fusion protein, consisting of GFP fused to an F-actin binding domain, overlaps with GFP-PHPKB in the timing of association with forming macropinosomes. Although macropinocytosis is reduced in cells expressing dominant negative Rab7, microscopic imaging studies reveal that GFP-Rab7 associates only with formed macropinosomes at approximately the time that F-actin and D3 phosphoinositide levels decrease. These results support a model in which F-actin modulating proteins and vesicle trafficking proteins coordinately regulate the formation and maturation of macropinosomes.
Collapse
Affiliation(s)
- A Rupper
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms.
Collapse
Affiliation(s)
- J S Berg
- Department of Cell and Molecular Physiology, CB#7545, University of North Carolina at Chapel Hill, 27599, USA
| | | | | |
Collapse
|