1
|
Miro C, Menale C, Acampora L, Nappi A, Sagliocchi S, Restolfer F, Torabinejad S, Stornaiuolo M, Dentice M, Cicatiello AG. Muscle PGC-1α Overexpression Drives Metabolite Secretion Boosting Subcutaneous Adipocyte Browning. J Cell Physiol 2025; 240:e31480. [PMID: 39676331 PMCID: PMC11733859 DOI: 10.1002/jcp.31480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Muscle and adipose tissue (AT) are in mutual interaction through the integration of endocrine and biochemical signals, thus regulating whole-body function and physiology. Besides a traditional view of endocrine relationships that imply the release of cytokines and growth factors, it is becoming increasingly clear that a metabolic network involving metabolites as signal molecules also exists between the two tissues. By elevating the number and functionality of mitochondria, a key role in muscle metabolism is played by the master regulator of mitochondrial biogenesis peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), that induces a fiber type shift from glycolytic to oxidative myofibers. As a consequence, the upregulation of muscle respiratory rate might affect metabolite production and consumption. However, the underlying mechanisms have not yet been fully elucidated. Here, we used a muscle-specific PGC-1α overexpressing mouse model (MCK-PGC-1α) to analyze the metabolite secretion profile of serum and culture medium recovered from MCK-PGC-1α muscle fibers by NMR. We revealed modified levels of different metabolites that might be ascribed to the metabolic activation of the skeletal muscle fibers. Notably, the dysregulated levels of these metabolites affected adipocyte differentiation, as well as the browning process in vitro and in vivo. Interestingly such effect was exacerbated in the subcutaneous WAT, while only barely present in the visceral WAT. Our data confirm a prominent role of PGC-1α as a trigger of mitochondrial function in skeletal muscle and propose a novel function of this master regulator gene in modulating the metabolite production in turn affecting the activation of WAT and its conversion toward the browning.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Ciro Menale
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Lucia Acampora
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Annarita Nappi
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Serena Sagliocchi
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Federica Restolfer
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | - Sepehr Torabinejad
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
| | | | - Monica Dentice
- Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
- CEINGE‐Biotecnologie Avanzate Franco SalvatoreNaplesItaly
| | | |
Collapse
|
2
|
Seira O, Park H(D, Liu J, Poovathukaran M, Clarke K, Boushel R, Tetzlaff W. Ketone Esters Partially and Selectively Rescue Mitochondrial Bioenergetics After Acute Cervical Spinal Cord Injury in Rats: A Time-Course. Cells 2024; 13:1746. [PMID: 39513853 PMCID: PMC11545339 DOI: 10.3390/cells13211746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Spinal cord injury (SCI) pathology and pathophysiology can be attributed to both primary physical injury and secondary injury cascades. Secondary injury cascades involve dysregulated metabolism and energetic deficits directly linked to compromised mitochondrial bioenergetics. Rescuing mitochondrial function and reducing oxidative stress are associated with neuroprotection. In this regard, ketosis after traumatic brain injury (TBI), or after SCI, improves secondary neuropathology by decreasing oxidative stress, increasing antioxidants, reducing inflammation, and improving mitochondrial bioenergetics. Here, we follow up on our previous study and have used an exogenous ketone monoester, (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE), as an alternative to a ketogenic diet, focusing on mitochondrial function between 1 and 14 days after injury. Starting 3 h following a cervical level 5 (C5) hemi-contusion injury, animals were fed either a standard control diet (SD) or a ketone ester diet (KED) combined with KE administered orally (OKE). We found that mitochondrial function was reduced after SCI at all times post-SCI, accompanied by reduced expression of most of the components of the electron transport chain (ETC). The KE rescued some of the bioenergetic parameters 1 day after SCI when D-β-Hydroxybutyrate (BHB) concentrations were ~2 mM. Still, most of the beneficial effects were observed 14 days after injury, with BHB concentrations reaching values of 4-6 mM. To our knowledge, this is the first report to show the beneficial effects of KE in rescuing mitochondrial function after SCI and demonstrates the suitability of KE in ameliorating the metabolic dysregulation that occurs after traumatic SCI without requiring a restrictive dietary regime.
Collapse
Affiliation(s)
- Oscar Seira
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - HyoJoon (David) Park
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - Michelle Poovathukaran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| | - Kieran Clarke
- Department of Physiology, University of Oxford, Oxford OX1 2JD, UK;
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (J.L.)
| |
Collapse
|
3
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
4
|
Lin L, Tian L, Li T, Sun M, Duan J, Yu Y, Sun Z. Microarray analysis of mRNA expression profiles in liver of ob/ob mice with real-time atmospheric PM 2.5 exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76816-76832. [PMID: 35672633 DOI: 10.1007/s11356-022-21088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have demonstrated the association between exposure to fine particulate matter (PM2.5) and the onset of non-alcoholic fatty liver disease (NAFLD). However, the potential biological mechanism is largely unknown. Our study was aimed to explore the impact of PM2.5 on the transcriptome level in the liver of ob/ob mice by atmosphere PM2.5 whole-body dynamic exposure system, and meanwhile preliminarily investigated the effects of metformin intervention in this process. More than three thousand differentially expressed genes (DEGs) was screened out by microarray analysis (p < 0.05, |FC|> 1.5). KEGG pathway enrichment analysis showed that these DEGs were mainly enriched in cancers, infectious diseases, and signal transduction, and the most significant pathways were thyroid hormone signaling pathway, chronic myeloid leukemia and metabolic pathways. Then, 12 hub genes were gained through weighted gene correlation network analysis (WGCNA) and verified by qRT-PCR. The expression of 5 genes in darkslateblue module (cd53, fcer1g, cd68, ctss, laptm5) increased after PM2.5 exposure and decreased after metformin intervention. They were related to insulin resistance, glucose and lipid metabolism and other liver metabolism, and also neurodegenerative diseases. This study provided valuable clues and possible protective measures to the liver damage in ob/ob mice caused by PM2.5 exposure, and further research is needed to explore the related mechanism in detail.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
5
|
Reinisch I, Schreiber R, Prokesch A. Regulation of thermogenic adipocytes during fasting and cold. Mol Cell Endocrinol 2020; 512:110869. [PMID: 32439414 DOI: 10.1016/j.mce.2020.110869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Cold exposure activates brown and brown-like adipocytes that dissipate large amounts of glucose and fatty acids via uncoupling protein 1 (UCP1) to drive non-shivering thermogenesis (NST). Evidence for the existence of these thermogenic adipocytes in adult humans gave rise to a renaissance in research on brown adipose tissue, establishing it as linchpin of energy homeostasis and metabolic health. Besides low ambient temperature, shortage or excess of food affect thermoregulation. Upon high caloric meals thermogenic adipocytes burn excess calories and maintain energy balance. In contrast, in conditions of nutrient deprivation, counter-regulatory mechanisms prevent thermogenic adipocytes from "wasting" energy substrates that need to be conserved. In this review, we discuss cell-autonomous mechanisms, metabolites, and hormones that modify NST in response to nutrient fluctuations. In particular, we focus on how thermogenic adipocytes balance thermogenesis with systemic energy homeostasis during fasting periods.
Collapse
Affiliation(s)
- Isabel Reinisch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
6
|
Zhang H, Shen LY, Xu ZC, Kramer LM, Yu JQ, Zhang XY, Na W, Yang LL, Cao ZP, Luan P, Reecy JM, Li H. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poult Sci 2020; 99:2349-2361. [PMID: 32359570 PMCID: PMC7597553 DOI: 10.1016/j.psj.2020.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
There have been several genome-wide association study (GWAS) reported for carcass, growth, and meat traits in chickens. Most of these studies have been based on single SNPs GWAS. In contrast, haplotype-based GWAS reports have been limited. In the present study, 2 Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) and genotyped with the chicken 60K SNP chip were used to perform a haplotype-based GWAS. The lean and fat chicken lines were selected for abdominal fat content for 11 yr. Abdominal fat weight was significantly different between the 2 lines; however, there was no difference for body weight between the lean and fat lines. A total of 132 haplotype windows were significantly associated with abdominal fat weight. These significantly associated haplotype windows were primarily located on chromosomes 2, 4, 8, 10, and 26. Seven candidate genes, including SHH, LMBR1, FGF7, IL16, PLIN1, IGF1R, and SLC16A1, were located within these associated regions. These genes may play important roles in the control of abdominal fat content. Two regions on chromosomes 3 and 10 were significantly associated with testis weight. These 2 regions were previously detected by the single SNP GWAS using this same resource population. TCF21 on chromosome 3 was identified as a potentially important candidate gene for testis growth and development based on gene expression analysis and the reported function of this gene. TCF12, which was previously detected in our SNP by SNP interaction analysis, was located in a region on chromosome 10 that was significantly associated with testis weight. Six candidate genes, including TNFRSF1B, PLOD1, NPPC, MTHFR, EPHB2, and SLC35A3, on chromosome 21 may play important roles in bone development based on the known function of these genes. In addition, several regions were significantly associated with other carcass and growth traits, but no candidate genes were identified. The results of the present study may be helpful in understanding the genetic mechanisms of carcass and growth traits in chickens.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin-Yong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zi-Chun Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Luke M Kramer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jia-Qiang Yu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Yang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Yang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Ping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
López-Fontana CM, Pennacchio G, Zyla LE, Toneatto J, Bruna FA, Ortiz N, Sassi PL, Santiano FE, García S, Sasso CV, Pietrobon EO, Jahn GA, Pistone Creydt V, Soaje M, Carón RW. Effects of hypothyroidism on the mesenteric and omental adipose tissue in rats. Mol Cell Endocrinol 2019; 490:88-99. [PMID: 31004687 DOI: 10.1016/j.mce.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
To characterize the influence of hypothyroidism on the endocrine activity of mesenteric and omental adipose tissue (MOAT) and the peripheral regulation of energy balance (EB) in rats, we analyzed food intake (FI); basal metabolic rate (BMR); locomotor activity; body weight (BW); serum hormone concentrations and the expression of their receptors in MOAT. We evaluated the morphology and differentiation of adipocytes. Hypothyroidism decreased FI, BMR and BW. The percentage of visceral white adipose tissue (WAT) depots and the morphology of adipocytes were similar to euthyroid rats. Serum leptin and adiponectin expression in MOAT were altered by hypothyroidism. The expression of Perilipin 1, HSL, UCP1 and PRDM16 was significantly lower in MOAT of hypothyroid animals. Hypothyroidism in rats leads to a compensated EB by inducing a white adipocyte dysfunction and a decrease in BW, BMR, FI and adipokine secretions without changing the percentage of WAT depots and the morphology of the MOAT.
Collapse
Affiliation(s)
- C M López-Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - G Pennacchio
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - L E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - J Toneatto
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
| | - F A Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - N Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - P L Sassi
- Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA), CONICET, CCT-Mendoza, Argentina.
| | - F E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - S García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - C V Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - E O Pietrobon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - G A Jahn
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - V Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - M Soaje
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| | - R W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza, Argentina.
| |
Collapse
|
8
|
MCT1 and MCT4 Expression and Lactate Flux Activity Increase During White and Brown Adipogenesis and Impact Adipocyte Metabolism. Sci Rep 2017; 7:13101. [PMID: 29026134 PMCID: PMC5638914 DOI: 10.1038/s41598-017-13298-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue takes up glucose and releases lactate, thereby contributing significantly to systemic glucose and lactate homeostasis. This implies the necessity of upregulation of net acid and lactate flux capacity during adipocyte differentiation and function. However, the regulation of lactate- and acid/base transporters in adipocytes is poorly understood. Here, we tested the hypothesis that adipocyte thermogenesis, browning and differentiation are associated with an upregulation of plasma membrane lactate and acid/base transport capacity that in turn is important for adipocyte metabolism. The mRNA and protein levels of the lactate-H+ transporter MCT1 and the Na+,HCO3− cotransporter NBCe1 were upregulated in mouse interscapular brown and inguinal white adipose tissue upon cold induction of thermogenesis and browning. MCT1, MCT4, and NBCe1 were furthermore strongly upregulated at the mRNA and protein level upon differentiation of cultured pre-adipocytes. Adipocyte differentiation was accompanied by increased plasma membrane lactate flux capacity, which was reduced by MCT inhibition and by MCT1 knockdown. Finally, in differentiated brown adipocytes, glycolysis (assessed as ECAR), and after noradrenergic stimulation also oxidative metabolism (OCR), was decreased by MCT inhibition. We suggest that upregulation of MCT1- and MCT4-mediated lactate flux capacity and NBCe1-mediated HCO3−/pH homeostasis are important for the physiological function of mature adipocytes.
Collapse
|
9
|
Subramaniam M, Cicek M, Pitel KS, Bruinsma ES, Nelson Holte MH, Withers SG, Rajamannan NM, Secreto FJ, Venuprasad K, Hawse JR. TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone. Nucleic Acids Res 2017; 45:5170-5182. [PMID: 28201653 PMCID: PMC5435970 DOI: 10.1093/nar/gkx118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired β-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3β. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and β-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.
Collapse
Affiliation(s)
| | - Muzaffer Cicek
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Molly H Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G Withers
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nalini M Rajamannan
- Division of Cardiology, Most Sacred Heart of Jesus Cardiology and Valvular Institute, Sheboygan, WI 53081, USA
| | - Frank J Secreto
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P. Monocarboxylate transporters in the brain and in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2481-97. [PMID: 26993058 PMCID: PMC4990061 DOI: 10.1016/j.bbamcr.2016.03.013] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/12/2016] [Indexed: 12/20/2022]
Abstract
Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Jhudit Pérez-Escuredo
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Vincent F Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Martina Sboarina
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Jorge Falces
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Luc Pellerin
- Laboratory of Neuroenergetics, Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium.
| |
Collapse
|
11
|
Sun J, Ye X, Xie M, Ye J. Induction of triglyceride accumulation and mitochondrial maintenance in muscle cells by lactate. Sci Rep 2016; 6:33732. [PMID: 27645401 PMCID: PMC5028732 DOI: 10.1038/srep33732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 11/02/2022] Open
Abstract
Muscle exercise induces intramuscular triglyceride (TG) accumulation and promotes mitochondrial maintenance in myotubes. However, the mechanism underlying exercise effects remains unknown. In this study, lactic acid was tested as a signaling molecule in C2C12 myotubes to understand the mechanism. Intracellular TG storage was induced in the cells by sodium lactate. The lactate activity was observed with an inhibition of the cAMP-PKA pathway as indicated by a reduction in the phosphorylation status of CREB (pCREB). Induction of pCREB signal by forskolin was blocked by pretreatment of cells with lactate. The impact of lactate on mitochondrial function was examined with a focus on the activities of two enzymes, MCAT (malonylCoA:ACP transferase) and PDH (pyruvate dehydrogenase). The enzyme activities were induced in the cells by lactate. Expression of the lactate receptor (GPR81) and lactate transporters (MCT1/4) were induced as well by lactate. The lactate activities were observed at concentrations between 4-64 mM, and were not dependent on the increase in intracellular pyruvate. Pyruvate treatment did not generate the same effects in the cells. Those results suggest that lactate may induce intramuscular TG storage and mitochondrial maintenance in myotubes through inhibition of the cAMP pathway by activation of GPR81 in a positive feedback manner.
Collapse
Affiliation(s)
- Jingquan Sun
- Sport Science College of Beijing Sport University, Beijing, China.,Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University, Louisiana, USA
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University, Louisiana, USA
| | - Minhao Xie
- China Institute of Sports Medicine, Beijing, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University, Louisiana, USA
| |
Collapse
|
12
|
Lee YH, Kim HS, Kim JS, Yu MK, Cho SD, Jeon JG, Yi HK. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress. J Dent Res 2015; 95:430-8. [PMID: 26661713 DOI: 10.1177/0022034515622139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases.
Collapse
Affiliation(s)
- Y H Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - H S Kim
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J S Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - M K Yu
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - S D Cho
- Department of Oral Pathology, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J G Jeon
- Department of Preventive Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - H K Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
13
|
Abstract
Over the last two decades, several genes have been identified that appear to play a role in the regulation of energy homeostasis and body weight. For a small subset of them, a reduction or an absence of expression confers a resistance to the development of obesity. Recently, a knockin mouse for a member of the monocarboxylate transporter (MCT) family, MCT1, was demonstrated to exhibit a typical phenotype of resistance to diet-induced obesity and a protection from its associated metabolic perturbations. Such findings point out at MCTs as putatively new therapeutic targets in the context of obesity. Here, we will review what is known about MCTs and their possible metabolic roles in different organs and tissues. Based on the description of the phenotype of the MCT1 knockin mouse, we will also provide some insights about their putative roles in weight gain regulation.
Collapse
Affiliation(s)
- L Carneiro
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
14
|
IWANAGA T, KISHIMOTO A. Cellular distributions of monocarboxylate transporters: a review . Biomed Res 2015; 36:279-301. [DOI: 10.2220/biomedres.36.279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Ayuko KISHIMOTO
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
15
|
Carrière A, Jeanson Y, Berger-Müller S, André M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 2014; 63:3253-65. [PMID: 24789919 DOI: 10.2337/db13-1885] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The presence of brown adipose tissue (BAT) in human adults opens attractive perspectives to treat metabolic disorders. Indeed, BAT dissipates energy as heat via uncoupling protein (UCP)1. Brown adipocytes are located in specific deposits or can emerge among white fat through the so-called browning process. Although numerous inducers have been shown to drive this process, no study has investigated whether it could be controlled by specific metabolites. Here, we show that lactate, an important metabolic intermediate, induces browning of murine white adipose cells with expression of functional UCP1. Lactate-induced browning also occurs in human cells and in vivo. Lactate controls Ucp1 expression independently of hypoxia-inducible factor-1α and PPARα pathways but requires active PPARγ signaling. We demonstrate that the lactate effect on Ucp1 is mediated by intracellular redox modifications as a result of lactate transport through monocarboxylate transporters. Further, the ketone body β-hydroxybutyrate, another metabolite that impacts redox state, is also a strong browning inducer. Because this redox-dependent increase in Ucp1 expression promotes an oxidative phenotype with mitochondria, browning appears as an adaptive mechanism to alleviate redox pressure. Our findings open new perspectives for the control of adipose tissue browning and its physiological relevance.
Collapse
Affiliation(s)
- Audrey Carrière
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Yannick Jeanson
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Sandra Berger-Müller
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Mireille André
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Vanessa Chenouard
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Emmanuelle Arnaud
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Corinne Barreau
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Romy Walther
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Anne Galinier
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| | - Brigitte Wdziekonski
- Faculté de Médecine, Institut de Biologie Valrose CNRS/INSERM/Université Nice Sophia Antipolis, Nice, France
| | - Phi Villageois
- Faculté de Médecine, Institut de Biologie Valrose CNRS/INSERM/Université Nice Sophia Antipolis, Nice, France
| | - Katie Louche
- INSERM, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
| | - Cédric Moro
- INSERM, UMR 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Christian Dani
- Faculté de Médecine, Institut de Biologie Valrose CNRS/INSERM/Université Nice Sophia Antipolis, Nice, France
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular and Institute of Biomedicine, Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Louis Casteilla
- CNRS 5273, UMR STROMALab, Toulouse, France Université de Toulouse, Université Paul Sabatier, UMR 5273, Toulouse, France INSERM U1031, Toulouse, France Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, France
| |
Collapse
|
16
|
Lengacher S, Nehiri-Sitayeb T, Steiner N, Carneiro L, Favrod C, Preitner F, Thorens B, Stehle JC, Dix L, Pralong F, Magistretti PJ, Pellerin L. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS One 2013; 8:e82505. [PMID: 24367518 PMCID: PMC3867350 DOI: 10.1371/journal.pone.0082505] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O₂ consumption and CO₂ production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Collapse
Affiliation(s)
- Sylvain Lengacher
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Nadia Steiner
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Lionel Carneiro
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Céline Favrod
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Preitner
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jean-Christophe Stehle
- Mouse Pathology Facility, Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laure Dix
- Mouse Pathology Facility, Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - François Pralong
- Service d’endocrinologie, diabétologie et métabolisme, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre J. Magistretti
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
|
18
|
Rhodes NR, LeBlanc PA, Rasco JF, Vincent JB. Monocarboxylate transporters are not responsible for Cr(3+) transport from endosomes. Biol Trace Elem Res 2012; 148:409-14. [PMID: 22391796 DOI: 10.1007/s12011-012-9381-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Cr(3+), similar to Fe(3+), is transported into cells primarily via endocytosis as the metal-transferrin complex. As Cr(3+) ions are not readily reduced under biological conditions, the ion cannot be transported from endosomes by the same mechanism as iron that utilized divalent metal ion transporters. Cr(3+) has been hypothesized to potentially be transported as small ligand complexes with a free carboxylate functionality by monocarboxylate transporters (MCT), in a similar fashion to that proposed for Al(3+). Consequently, mouse C2C12 muscle cells were utilized to determine if Cr(3+) is potentially transported by MCT by examining the effects of MCT inhibitors on Cr and Fe transport and subcellular distribution when the metals are added as their transferrin complexes. The results suggest that Cr is not primarily transported by MCT from the endosomes to the cytosol, and that another mechanism for this transport needs to be identified.
Collapse
Affiliation(s)
- Nicholas R Rhodes
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | | | | |
Collapse
|
19
|
Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflugers Arch 2009; 459:509-18. [PMID: 19876643 DOI: 10.1007/s00424-009-0750-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/06/2009] [Accepted: 10/16/2009] [Indexed: 12/17/2022]
Abstract
Hypoxia modulates white adipose tissue function, and this includes stimulating glucose uptake and the expression of facilitative glucose transporters (particularly GLUT1) in adipocytes. This study has examined the effect of hypoxia on lactate release from adipocytes and whether the monocarboxylate transporters that mediate lactate transport (MCTs1-4) are expressed in human adipocytes and are induced by low O(2) tension. Exposure of human Simpson-Golabi-Behmel syndrome adipocytes to 1% O(2) for 24 h resulted in increased lactate release (2.3-fold) compared with cells in normoxia (21% O(2)). Screening by reverse transcription polymerase chain reaction indicated that the genes encoding MCT1, MCT2, and MCT4 are expressed in human adipose tissue, and in adipocytes and preadipocytes in culture. Hypoxia (48 h) increased MCT1 (8.5-fold) and MCT4 (14.3-fold) messenger RNA (mRNA) levels in human adipocytes, but decreased MCT2 mRNA (fourfold). MCT1 protein level was also increased (2.7-fold at 48 h) by hypoxia, but there was no change in MCT4 protein. The changes in MCT gene expression induced by hypoxia were reversed on return to normoxia. Treatment with the hypoxia mimetic CoCl(2) resulted in up-regulation of MCT1 (up to twofold) and MCT4 (fivefold) mRNA level, but there was no significant effect on MCT2 expression. It is concluded that hypoxia increases lactate release from adipocytes and modulates MCT expression in a type-specific manner, with MCT1 and MCT4 expression being hypoxia-inducible transcription factor-1 (HIF-1) dependent. Increased lactate production and monocarboxylate transporter expression are likely to be key components of the adaptive response of adipocytes to low O(2) tension as adipose tissue mass expands in obesity.
Collapse
|
20
|
Bonen A, Heynen M, Hatta H. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab 2006; 31:31-9. [PMID: 16604139 DOI: 10.1139/h05-002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the past decade, a family of monocarboxylate transporters (MCTs) have been identified that can potentially transport lactate, pyruvate, ketone bodies, and branched-chain ketoacids. Currently, 14 such MCTs are known. However, many orphan transporters exist that have transport capacities that remain to be determined. In addition, the tissue distribution of many of these MCTs is not well defined. Such a cataloging can, at times, begin to suggest the metabolic role of a particular MCT. Recently, a number of antibodies against selected MCTs (MCT1, -2, -4, and -5 to -8) have become commercially available. Therefore, we examined the protein expression of these MCTs in a large number of rat tissues (heart, skeletal muscle, skin, brain, testes, vas deferens, adipose tissue, liver, kidney, spleen, and pancreas), as well as in human skeletal muscle. Unexpectedly, many tissues coexpressed 4-5 MCTs. In particular, in rat skeletal muscle MCT1, MCT2, MCT4, MCT5, and MCT6 were observed. In human muscle, these same MCTs were present. We also observed a pronounced MCT7 signal in human muscle, whereas a very faint signal occurred for MCT8. In rat heart, which is an important metabolic sink for lactate, we confirmed that MCT1 and -2 were expressed. In addition, MCT6 and -8 were also prominently expressed in this tissue, although it is known that MCT8 does not transport aromatic amino acids or lactate. This catalog of MCTs in skeletal muscle and other tissues has revealed an unexpected complexity of coexpression, which makes it difficult to associate changes in monocarboxylate transport with the expression of a particular MCT. The differences in transport kinetics for lactate and pyruvate are only known for MCT1, -2 and -4. Transport kinetics remain to be established for many other MCTs. In conclusion, this study suggests that in skeletal muscle, as well as other tissues, lactate and pyruvate transport rates may not only involve MCT1 and -4, as other monocarboxylate transporters are also expressed in rat (MCT2, -5, -6) and human skeletal muscle (MCT2, -5, -6, -7).
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Tokyo, Japan.
| | | | | |
Collapse
|
21
|
Bairras C, Ferrand C, Atgié C. Effect of tyramine, a dietary amine, on glycerol and lactate release by isolated adipocytes from old rats. J Physiol Biochem 2004; 59:161-7. [PMID: 15000446 DOI: 10.1007/bf03179911] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amine degradation by adipocyte amine oxidases leads to the production of metabolites that interact with lipid and glucose metabolisms and their hormonal regulations. To further investigate these interactions, we determined the effect of a dietary amine, tyramine (TYR), on glycerol and lactate releases, respectively taken as indices of lipolytic and glycolytic activities of isolated adipocytes. Old male Wistar rats were used to prepare adipocytes by collagenase dissociation of retroperitoneal fat pads. The two tested doses of tyramine (10 microM and 1 mM) had no effect on basal glycerol release. On the other hand, TYR, at the highest dose tested (1 mM), weakly but significantly increased basal lactate release, which was elevated in adipocytes from old rats. Norepinephrine (NE), highly stimulated adipocyte lipolysis with a submaximal effect at 1 microM which was slightly but significantly inhibited by TYR 1 mM. Insulin 1 nM (INS) also poorly inhibited the NE-stimulated lipolysis in adipocytes isolated from old rats. TYR was able to potentiate the poor antilipolytic efficiency of INS. Under similar conditions, a high dose of NE greatly reduced lactate production and TYR (1 mM) reversed this inhibition of lactate release. INS was also able to totally reverse the inhibitory effect of NE on lactate release, but there was no potentiation between insulin and tyramine effects. It can be concluded that high doses of TYR interact with norepinephrine and insulin, at least on the control of glycerol and lactate release, by counteracting catecholamine effects and by mimicking insulin actions.
Collapse
Affiliation(s)
- C Bairras
- Unité de Nutrition et Signalisation Cellulaire (site d'Agen), Université Bordeaux 1--DUSA, Avenue Michel Serres, 47000 Agen, France
| | | | | |
Collapse
|
22
|
Yoshida Y, Hatta H, Kato M, Enoki T, Kato H, Bonen A. Relationship between skeletal muscle MCT1 and accumulated exercise during voluntary wheel running. J Appl Physiol (1985) 2004; 97:527-34. [PMID: 15107415 DOI: 10.1152/japplphysiol.01347.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether the quantity of exercise performed influences the expression of monocarboxylate transporter (MCT) 1 and MCT4 in mouse skeletal muscles (plantaris, tibialis anterior, soleus) and heart. Wheel running exercise (1, 3, and 6 wk) was used, which results in marked variations in self-selected running activity. Differences in muscle MCT1 and MCT4 among animals, before the initiation of running, were not related to the quantity of exercise performed on the first day of wheel running. No changes in MCT4 were observed over the course of the study (P > 0.05). After 6 wk of running, were there significant increases in heart (50%; P < 0.05) and muscle MCT1 (31-60%; P < 0.05) but not after 1 and 3 wk (P > 0.05). Because skeletal muscle MCT1 and running distances varied considerably, we examined the relationship between these two parameters. Within the first week of training, MCT1 was negatively correlated with the accumulated running distance (r = -0.70, P < 0.05). On further analysis, it appears that, in the first week, excessive running (>20 km/wk) represses MCT1 (-16.1%; P < 0.05), whereas more modest amounts of running (<20 km/wk) increase MCT1 (+37%; P < 0.05). After 3 wk of running, a positive relationship was observed between MCT1 and running distance (r = +0.76), although there is a threshold that must be exceeded before an increase over the control animals occurs. Finally, in week 6, when MCT1 was increased in the tibialis anterior and plantaris muscles, there were no correlations with the accumulated running distances. These studies have shown that mild exercise training fails to increase MCT4 and that changes in MCT1 are complex, depending not only the accumulated exercise but also on the stage of training.
Collapse
Affiliation(s)
- Yuko Yoshida
- Department of Sports Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004; 447:619-28. [PMID: 12739169 DOI: 10.1007/s00424-003-1067-2] [Citation(s) in RCA: 756] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 03/27/2003] [Indexed: 11/30/2022]
Abstract
The monocarboxylate cotransporter (MCT) family now comprises 14 members, of which only the first four (MCT1-MCT4) have been demonstrated experimentally to catalyse the proton-linked transport of metabolically important monocarboxylates such as lactate, pyruvate and ketone bodies. SLC16A10 (T-type amino-acid transporter-1, TAT1) is an aromatic amino acid transporter whilst the other members await characterization. MCTs have 12 transmembrane domains (TMDs) with intracellular N- and C-termini and a large intracellular loop between TMDs 6 and 7. MCT1 and MCT4 require a monotopic ancillary protein, CD147, for expression of functional protein at the plasma membrane. Lactic acid transport across the plasma membrane is fundamental for the metabolism of and pH regulation of all cells, removing lactic acid produced by glycolysis and allowing uptake by those cells utilizing it for gluconeogenesis (liver and kidney) or as a respiratory fuel (heart and red muscle). The properties of the different MCT isoforms and their tissue distribution and regulation reflect these roles.
Collapse
Affiliation(s)
- Andrew P Halestrap
- Department of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK.
| | | |
Collapse
|
24
|
Enoki T, Yoshida Y, Hatta H, Bonen A. Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscles of STZ-induced diabetic rats. J Appl Physiol (1985) 2003; 94:2433-8. [PMID: 12611763 DOI: 10.1152/japplphysiol.01155.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.
Collapse
Affiliation(s)
- Taisuke Enoki
- Department of Sports Sciences, College of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
25
|
Buyse M, Sitaraman SV, Liu X, Bado A, Merlin D. Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. J Biol Chem 2002; 277:28182-90. [PMID: 12034734 DOI: 10.1074/jbc.m203281200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the intestine, butyrate constitutes the major energy fuel for colonocytes. However, little is known about the transport of butyrate and its regulation in the intestine. In this study we demonstrate that the monocarboxylate transporter (MCT-1) is apically polarized in model human intestinal epithelia and is involved in butyrate uptake by Caco2-BBE cell monolayers. The butyrate uptake by Caco2-BBE cell monolayers displayed conventional Michaelis-Menten kinetics and was found to be pH-dependent, Na(+)-independent, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-insensitive, and inhibited by the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamate and by an excess of unlabeled butyrate. We show that MCT-1 associates with CD147 at the apical plasma membrane in Caco2-BBE cell monolayers. Using antisense CD147, we demonstrate that the association of CD147 with MCT-1 is critical for the butyrate transport activity. Interestingly, we show for the first time hormonal regulation of CD147/MCT-1 mediated butyrate uptake. Specifically, luminal leptin significantly up-regulates MCT-1-mediated butyrate uptake by increasing its maximal velocity (V(max)) without any modification in the apparent Michaelis-Menten constant (K(m)). Finally, we show that luminal leptin up-regulates butyrate uptake in Caco2-BBE monolayers by two distinct actions: (i) increase of the intracellular pool of MCT-1 protein without affecting CD147 expression and (ii) translocation of CD147/MCT-1 to the apical plasma membrane of Caco2-BBE cell monolayers.
Collapse
Affiliation(s)
- Marion Buyse
- Epithelial Pathology Unit, Department of Pathology and Laboratory, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Chatham JC, Des Rosiers C, Forder JR. Evidence of separate pathways for lactate uptake and release by the perfused rat heart. Am J Physiol Endocrinol Metab 2001; 281:E794-802. [PMID: 11551857 DOI: 10.1152/ajpendo.2001.281.4.e794] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The simultaneous release and uptake of lactate by the heart has been observed both in vivo and ex vivo; however, the pathways underlying these observations have not been satisfactorily explained. Consequently, the purpose of this study was to test the hypothesis that hearts release lactate from glycolysis while simultaneously taking up exogenous lactate. Therefore, we determined the effects of fatty acids and diabetes on the regulation of lactate uptake and release. Hearts from control and 1-wk diabetic animals were perfused with 5 mM glucose, 0.5 mM [3-(13)C]lactate, and 0, 0.1, 0.32, or 1.0 mM palmitate. Parameters measured include perfusate lactate concentrations, fractional enrichment, and coronary flow rates, which enabled the simultaneous, but independent, measurements of the rates of 1) uptake of exogenous [(13)C]lactate and 2) efflux of unlabeled lactate from metabolism of glucose. Although the rates of lactate uptake and efflux were both similarly inhibited by the addition of palmitate, (i.e., the ratio of lactate uptake to efflux remained constant), the ratio of lactate uptake to efflux was significantly higher in the controls compared with the diabetic group (1.00 +/- 0.14 vs. 0.50 +/- 0.07, P < 0.002). These data, combined with heterogeneous (13)C enrichment of tissue lactate, pyruvate, and alanine, suggest that glycolytically derived lactate production and oxidation of exogenous lactate operate as functionally separate metabolic pathways. These results are consistent with the concept of an intracellular lactate shuttle.
Collapse
Affiliation(s)
- J C Chatham
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|