1
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Siletsky SA, Gennis RB. Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane. BIOCHEMISTRY (MOSCOW) 2021; 86:105-122. [DOI: 10.1134/s0006297921010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
4
|
Shirey K, Stover KR, Cleary J, Hoang N, Hosler J. Membrane-Anchored Cyclic Peptides as Effectors of Mitochondrial Oxidative Phosphorylation. Biochemistry 2016; 55:2100-11. [PMID: 26985698 DOI: 10.1021/acs.biochem.5b01368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The echinocandins are membrane-anchored, cyclic lipopeptides (CLPs) with antifungal activity due to their ability to inhibit a glucan synthase located in the plasma membrane of fungi such as Candida albicans. A hydrophobic tail of an echinocandin CLP inserts into a membrane, placing a six-amino acid cyclic peptide near the membrane surface. Because processes critical for the function of the electron transfer complexes of mitochondria, such as proton uptake and release, take place near the surface of the membrane, we have tested the ability of two echinocandin CLPs, caspofungin and micafungin, to affect the activity of electron transfer complexes in isolated mammalian mitochondria. Indeed, caspofungin and micafungin both inhibit whole chain electron transfer in isolated mitochondria at low micromolar concentrations. The effects of the CLPs are fully reversible, in some cases simply via the addition of bovine serum albumin to bind the CLPs via their hydrophobic tails. Each CLP affects more than one complex, but they still exhibit specificity of action. Only caspofungin inhibits complex I, and the CLP inhibits liver but not heart complex I. Both CLPs inhibit heart and liver complex III. Caspofungin inhibits complex IV activity, while, remarkably, micafungin stimulates complex IV activity nearly 3-fold. Using a variety of assays, we have developed initial hypotheses for the mechanisms by which caspofungin and micafungin alter the activities of complexes IV and III. The dication caspofungin partially inhibits cytochrome c binding at the low-affinity binding site of complex IV, while it also appears to inhibit the release of protons from the outer surface of the complex, similar to Zn(2+). Anionic micafungin appears to stimulate complex IV activity by enhancing the transfer of protons to the O2 reduction site. For complex III, we hypothesize that each CLP binds to the cytochrome b subunit and the Fe-S subunit to inhibit the required rotational movement of the latter.
Collapse
Affiliation(s)
- Kristin Shirey
- Department of Biochemistry and ‡School of Pharmacy, University of Mississippi Medical Center , 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Kayla R Stover
- Department of Biochemistry and ‡School of Pharmacy, University of Mississippi Medical Center , 2500 North State Street, Jackson, Mississippi 39216, United States
| | - John Cleary
- Department of Biochemistry and ‡School of Pharmacy, University of Mississippi Medical Center , 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Ngoc Hoang
- Department of Biochemistry and ‡School of Pharmacy, University of Mississippi Medical Center , 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Jonathan Hosler
- Department of Biochemistry and ‡School of Pharmacy, University of Mississippi Medical Center , 2500 North State Street, Jackson, Mississippi 39216, United States
| |
Collapse
|
5
|
Kriegel S, Srour B, Steimle S, Friedrich T, Hellwig P. Involvement of Acidic Amino Acid Residues in Zn2+Binding to Respiratory Complex I. Chembiochem 2015; 16:2080-5. [DOI: 10.1002/cbic.201500273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sébastien Kriegel
- Laboratoire de Bioelectrochimie et Spectroscopie; UMR 7140; Chimie de la Matière Complexe; Université de Strasbourg; CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
- Université Paris Diderot; Sorbonne Paris Cité; Laboratoire d'Electrochimie Moléculaire; Unité Mixte de Recherche Université-; CNRS No. 7591; Bâtiment Lavoisier 15 rue Jean de Baïf 75205 Paris Cedex 13 France
| | - Batoul Srour
- Laboratoire de Bioelectrochimie et Spectroscopie; UMR 7140; Chimie de la Matière Complexe; Université de Strasbourg; CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
| | - Stefan Steimle
- Albert-Ludwigs-Universität Freiburg; Institut für Biochemie; Albertstrasse 21 79104 Freiburg Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg; Institut für Biochemie; Albertstrasse 21 79104 Freiburg Germany
| | - Petra Hellwig
- Laboratoire de Bioelectrochimie et Spectroscopie; UMR 7140; Chimie de la Matière Complexe; Université de Strasbourg; CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
6
|
Electrochemistry suggests proton access from the exit site to the binuclear center in Paracoccus denitrificans cytochrome c oxidase pathway variants. FEBS Lett 2015; 589:565-8. [PMID: 25637325 DOI: 10.1016/j.febslet.2015.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 11/27/2022]
Abstract
Two different pathways through which protons access cytochrome c oxidase operate during oxygen reduction from the mitochondrial matrix, or the bacterial cytoplasm. Here, we use electrocatalytic current measurements to follow oxygen reduction coupled to proton uptake in cytochrome c oxidase isolated from Paracoccus denitrificans. Wild type enzyme and site-specific variants with defects in both proton uptake pathways (K354M, D124N and K354M/D124N) were immobilized on gold nanoparticles, and oxygen reduction was probed electrochemically in the presence of varying concentrations of Zn(2+) ions, which are known to inhibit both the entry and the exit proton pathways in the enzyme. Our data suggest that under these conditions substrate protons gain access to the oxygen reduction site via the exit pathway.
Collapse
|
7
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
8
|
Schulte M, Mattay D, Kriegel S, Hellwig P, Friedrich T. Inhibition of Escherichia coli respiratory complex I by Zn(2+). Biochemistry 2014; 53:6332-9. [PMID: 25238255 DOI: 10.1021/bi5009276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples NADH oxidation and quinone reduction with the translocation of protons across the membrane. Complex I exhibits a unique L shape with a peripheral arm extending in the aqueous phase and a membrane arm embedded in the lipid bilayer. Both arms have a length of ∼180 Å. The electron transfer reaction is catalyzed by a series of cofactors in the peripheral arm, while the membrane arm catalyzes proton translocation. We used the inhibition of complex I by zinc to shed light on the coupling of the two processes, which is not yet understood. Enzyme kinetics revealed the presence of two high-affinity binding sites for Zn(2+) that are attributed to the proton translocation pathways in the membrane arm. Electrochemically induced Fourier transform infrared difference spectroscopy demonstrated that zinc binding involves at least two protonated acidic residues. Electron paramagnetic resonance spectroscopy showed that one of the cofactors is only partially reduced by NADH in the presence of Zn(2+). We conclude that blocking the proton channels in the membrane arm leads to a partial block of the electron transfer in the peripheral arm, indicating the long-range coupling between both processes.
Collapse
Affiliation(s)
- Marius Schulte
- Institut für Biochemie, Albert-Ludwigs-Universität , 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Role of aspartate 132 at the orifice of a proton pathway in cytochrome c oxidase. Proc Natl Acad Sci U S A 2013; 110:8912-7. [PMID: 23674679 DOI: 10.1073/pnas.1303954110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proton transfer across biological membranes underpins central processes in biological systems, such as energy conservation and transport of ions and molecules. In the membrane proteins involved in these processes, proton transfer takes place through specific pathways connecting the two sides of the membrane via control elements within the protein. It is commonly believed that acidic residues are required near the orifice of such proton pathways to facilitate proton uptake. In cytochrome c oxidase, one such pathway starts near a conserved Asp-132 residue. Results from earlier studies have shown that replacement of Asp-132 by, e.g., Asn, slows proton uptake by a factor of ∼5,000. Here, we show that proton uptake at full speed (∼10(4) s(-1)) can be restored in the Asp-132-Asn oxidase upon introduction of a second structural modification further inside the pathway (Asn-139-Thr) without compensating for the loss of the negative charge. This proton-uptake rate was insensitive to Zn(2+) addition, which in the wild-type cytochrome c oxidase slows the reaction, indicating that Asp-132 is required for Zn(2+) binding. Furthermore, in the absence of Asp-132 and with Thr at position 139, at high pH (>9), proton uptake was significantly accelerated. Thus, the data indicate that Asp-132 is not strictly required for maintaining rapid proton uptake. Furthermore, despite the rapid proton uptake in the Asn-139-Thr/Asp-132-Asn mutant cytochrome c oxidase, proton pumping was impaired, which indicates that the segment around these residues is functionally linked to pumping.
Collapse
|
10
|
Lee HJ, Ädelroth P. The heme-copper oxidase superfamily shares a Zn2+-binding motif at the entrance to a proton pathway. FEBS Lett 2013; 587:770-4. [PMID: 23399935 DOI: 10.1016/j.febslet.2013.01.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/17/2022]
Abstract
Heme-copper oxidases (HCuOs) catalyse the reduction of oxygen, using the liberated free energy to maintain a proton-motive force across the membrane. In the mitochondrial-like A-type HCuOs, binding of heavy metal ions at the surface of the protein inhibits proton transfer. In bacterial C-type oxidases, the entry point to the proton pathway is on an accessory subunit unrelated to any subunit in A-type HCuOs. Despite this, we show here that heavy metal ions such as Zn(2+) inhibit O2-reduction very similarly in C-type as in A-type HCuOs, and furthermore that the binding site shares the same Glu-His motif.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
11
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Structural studies on bovine heart cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:579-89. [PMID: 22236806 DOI: 10.1016/j.bbabio.2011.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/16/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022]
Abstract
Among the X-ray structures of bovine heart cytochrome c oxidase (CcO), reported thus far, the highest resolution is 1.8Å. CcO includes 13 different protein subunits, 7 species of phospholipids, 7 species of triglycerides, 4 redox-active metal sites (Cu(A), heme a (Fe(a)), Cu(B), heme a(3) (Fe(a3))) and 3 redox-inactive metal sites (Mg(2+), Zn(2+) and Na(+)). The effects of various O(2) analogs on the X-ray structure suggest that O(2) molecules are transiently trapped at the Cu(B) site before binding to Fe(a3)(2+) to provide O(2)(-). This provides three possible electron transfer pathways from Cu(B), Fe(a3) and Tyr244 via a water molecule. These pathways facilitate non-sequential 3 electron reduction of the bound O(2)(-) to break the OO bond without releasing active oxygen species. Bovine heart CcO has a proton conducting pathway that includes a hydrogen-bond network and a water-channel which, in tandem, connect the positive side phase with the negative side phase. The hydrogen-bond network forms two additional hydrogen-bonds with the formyl and propionate groups of heme a. Thus, upon oxidation of heme a, the positive charge created on Fe(a) is readily delocalized to the heme peripheral groups to drive proton-transport through the hydrogen-bond network. A peptide bond in the hydrogen-bond network and a redox-coupled conformational change in the water channel are expected to effectively block reverse proton transfer through the H-pathway. These functions of the pathway have been confirmed by site-directed mutagenesis of bovine CcO expressed in HeLa cells.
Collapse
|
13
|
Inhibition of proton pumping in membrane reconstituted bovine heart cytochrome c oxidase by zinc binding at the inner matrix side. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1075-82. [DOI: 10.1016/j.bbabio.2011.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/23/2022]
|
14
|
Brzezinski P, Johansson AL. Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:710-23. [DOI: 10.1016/j.bbabio.2010.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
15
|
Inhibition of proton-transfer steps in transhydrogenase by transition metal ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1276-88. [PMID: 19505432 DOI: 10.1016/j.bbabio.2009.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a "cyclic reaction" was stimulated. Of metal ions tested they were effective in the order Pb(2+)>Cu(2+)>Zn(2+)=Cd(2+)>Ni(2+)>Co(2+). The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn(2+)-binding site(s). A mutant in which betaHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn(2+). Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn(2+)-induced FTIR difference spectra of the betaHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that betaHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.
Collapse
|
16
|
Vygodina TV, Zakirzianova W, Konstantinov AA. Inhibition of membrane-bound cytochromecoxidase by zinc ions: High-affinity Zn2+-binding site at the P-side of the membrane. FEBS Lett 2008; 582:4158-62. [DOI: 10.1016/j.febslet.2008.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
|
17
|
Carboxyl group functions in the heme-copper oxidases: information from mid-IR vibrational spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:912-8. [PMID: 18486595 DOI: 10.1016/j.bbabio.2008.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/15/2008] [Accepted: 04/22/2008] [Indexed: 11/24/2022]
Abstract
Carboxyl groups of possible functional importance in bovine and bacterial cytochrome c oxidases (CcO) are reviewed and assessed. A critical analysis is presented of available mid-infrared vibrational data that pertain to these functional carboxyl groups. These data and their interpretations are discussed in relation to current models of the mechanism of proton and electron coupling in the protonmotive CcO superfamily.
Collapse
|
18
|
Wikström M, Verkhovsky MI. Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1200-14. [PMID: 17689487 DOI: 10.1016/j.bbabio.2007.06.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
Recent time-resolved optical and electrometric experiments have provided a sequence of events for the proton-translocating mechanism of cytochrome c oxidase. These data also set limits for the mechanistic, kinetic, and thermodynamic parameters of the proton pump, which are analysed here in some detail. The analysis yields limit values for the pK of the "pump site", its modulation during the proton-pumping process, and suggests its identity in the structure. Special emphasis is made on side-reactions that may short-circuit the pump, and the means by which these may be avoided. We will also discuss the most prominent proton pumping mechanisms proposed to date in relation to these data.
Collapse
Affiliation(s)
- Mårten Wikström
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
19
|
Giachini L, Francia F, Veronesi G, Lee DW, Daldal F, Huang LS, Berry EA, Cocco T, Papa S, Boscherini F, Venturoli G. X-Ray absorption studies of Zn2+ binding sites in bacterial, avian, and bovine cytochrome bc1 complexes. Biophys J 2007; 93:2934-51. [PMID: 17573435 PMCID: PMC1989705 DOI: 10.1529/biophysj.107.110957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of Zn2+ has been shown previously to inhibit the ubiquinol cytochrome c oxidoreductase (cyt bc1 complex). X-ray diffraction data in Zn-treated crystals of the avian cyt bc1 complex identified two binding sites located close to the catalytic Qo site of the enzyme. One of them (Zn01) might interfere with the egress of protons from the Qo site to the aqueous phase. Using Zn K-edge x-ray absorption fine-structure spectroscopy, we report here on the local structure of Zn2+ bound stoichiometrically to noncrystallized cyt bc1 complexes. We performed a comparative x-ray absorption fine-structure spectroscopy study by examining avian, bovine, and bacterial enzymes. A large number of putative clusters, built by combining information from first-shell analysis and metalloprotein databases, were fitted to the experimental spectra by using ab initio simulations. This procedure led us to identify the binding clusters with high levels of confidence. In both the avian and bovine enzyme, a tetrahedral ligand cluster formed by two His, one Lys, and one carboxylic residue was found, and this ligand attribution fit the crystallographic Zn01 location of the avian enzyme. In the chicken enzyme, the ligands were the His121, His268, Lys270, and Asp253 residues, and in the homologous bovine enzyme they were the His121, His267, Lys269, and Asp254 residues. Zn2+ bound to the bacterial cyt bc1 complex exhibited quite different spectral features, consistent with a coordination number of 6. The best-fit octahedral cluster was formed by one His, two carboxylic acids, one Gln or Asn residue, and two water molecules. It was interesting that by aligning the crystallographic structures of the bacterial and avian enzymes, this group of residues was found located in the region homologous to that of the Zn01 site. This cluster included the His276, Asp278, Glu295, and Asn279 residues of the cyt b subunit. The conserved location of the Zn2+ binding sites at the entrance of the putative proton release pathways, and the presence of His residues point to a common mechanism of inhibition. As previously shown for the photosynthetic bacterial reaction center, zinc would compete with protons for binding to the His residues, thus impairing their function as proton donors/acceptors.
Collapse
Affiliation(s)
- Lisa Giachini
- Department of Physics, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qin L, Mills DA, Hiser C, Murphree A, Garavito RM, Ferguson-Miller S, Hosler J. Crystallographic location and mutational analysis of Zn and Cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome c oxidase. Biochemistry 2007; 46:6239-48. [PMID: 17477548 PMCID: PMC2387241 DOI: 10.1021/bi700173w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jonathan Hosler
- To whom correspondence should be addressed. Telephone: (601) 984-1861. Fax: (601) 984-1501. E-mail:
| |
Collapse
|
21
|
Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S. A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 2007; 104:7881-6. [PMID: 17470809 PMCID: PMC1876541 DOI: 10.1073/pnas.0610031104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase transfers electrons and protons for dioxygen reduction coupled with proton pumping. These electron and proton transfers are tightly coupled with each other for the effective energy transduction by various unknown mechanisms. Here, we report a coupling mechanism by a histidine (His-503) at the entrance of a proton transfer pathway to the dioxygen reduction site (D-pathway) of bovine heart cytochrome c oxidase. In the reduced state, a water molecule is fixed by hydrogen bonds between His-503 and Asp-91 of the D-pathway and is linked via two water arrays extending to the molecular surface. The microenvironment of Asp-91 appears in the x-ray structure to have a proton affinity as high as that of His-503. Thus, Asp-91 and His-503 cooperatively trap, on the fixed water molecule, the proton that is transferred through the water arrays from the molecular surface. On oxidation, the His-503 imidazole plane rotates by 180 degrees to break the hydrogen bond to the protonated water and releases the proton to Asp-91. On reduction, Asp-91 donates the proton to the dioxygen reduction site through the D-pathway. The proton collection controlled by His-503 was confirmed by partial electron transfer inhibition by binding of Zn2+ and Cd2+ to His-503 in the x-ray structures. The estimated Kd for Zn2+ binding to His-503 in the x-ray structure is consistent with the reported Kd for complete proton-pumping inhibition by Zn2+ [Kannt A, Ostermann T, Muller H, Ruitenberg M (2001) FEBS Lett 503:142-146]. These results suggest that His-503 couples the proton transfer for dioxygen reduction with the proton pumping.
Collapse
Affiliation(s)
- Kazumasa Muramoto
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kunio Hirata
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and
| | - Kyoko Shinzawa-Itoh
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shinji Yoko-o
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and
| | - Hiroshi Aoyama
- RIKEN Harima Institute, Mikazuki Sayo, Hyogo 679-5148, Japan
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and
| | - Shinya Yoshikawa
- *Department of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Francia F, Giachini L, Boscherini F, Venturoli G, Capitanio G, Martino PL, Papa S. The inhibitory binding site(s) of Zn2+in cytochromecoxidase. FEBS Lett 2007; 581:611-6. [PMID: 17266955 DOI: 10.1016/j.febslet.2007.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.
Collapse
|
23
|
Sharpley MS, Hirst J. The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 2006; 281:34803-9. [PMID: 16980308 DOI: 10.1074/jbc.m607389200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a highly complicated, membrane-bound enzyme. It is central to energy transduction, an important source of cellular reactive oxygen species, and its dysfunction is implicated in neurodegenerative and muscular diseases and in aging. Here, we describe the effects of Zn2+ on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn2+ can be used to probe the mechanism of complex I. Zn2+ inhibits complex I more strongly than Mg2+, Ca2+, Ba2+, and Mn2+ to Cu2+ or Cd2+. It does not inhibit NADH oxidation or intramolecular electron transfer, so it probably inhibits either proton transfer to bound quinone or proton translocation. Thus, zinc represents a new class of complex I inhibitor clearly distinct from the many ubiquinone site inhibitors. No evidence for increased superoxide production by zinc-inhibited complex I was detected. Zinc binding to complex I is mechanistically complicated. During catalysis, zinc binds slowly and progressively, but it binds rapidly and tightly to the resting state(s) of the enzyme. Reactivation of the inhibited enzyme upon the addition of EDTA is slow, and inhibition is only partially reversible. The IC50 value for the Zn2+ inhibition of complex I is high (10-50 microm, depending on the enzyme state); therefore, complex I is unlikely to be a major site for zinc inhibition of the electron transport chain. However, the slow response of complex I to a change in Zn2+ concentration may enhance any physiological consequences.
Collapse
Affiliation(s)
- Mark S Sharpley
- Medical Research Council (MRC) Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, United Kingdom
| | | |
Collapse
|
24
|
Faxén K, Salomonsson L, Adelroth P, Brzezinski P. Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:388-94. [PMID: 16806055 DOI: 10.1016/j.bbabio.2006.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/04/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c oxidase (CytcO) is a redox-driven proton pump in the respiratory chain of mitochondria and many aerobic bacteria. The results from several studies have shown that zinc ions interfere with both the uptake and release of protons, presumably by binding near the orifice of the proton entrance and exit pathways. To elucidate the effect of Zn2+ binding on individual electron and proton-transfer reactions, in this study, we have investigated the reaction of the fully reduced R. sphaeroides CytcO with O2, both with enzyme in detergent solution and reconstituted in phospholipid vesicles, and, with and without, Zn2+. The results show that addition of Zn2+ at concentrations of < or = 250 microM to the outside of the vesicles did not alter the transition rates between intermediates PR (P3)-->F3-->O4. However, proton pumping was impaired specifically during the P3-->F3, but not during the F3-->O4 transition at Zn2+ concentrations of < or = 25 microM. Furthermore, proton pumping during the P3-->F3 transition was typically impaired with the "as isolated" CytcO, which was found to contain Zn2+ ions at microM concentration. As has already been shown, Zn2+ was also found to obstruct proton uptake during the P3-->F3 transition, presumably by binding to a site near the orifice of the D-pathway. In this work we found a KI of approximately 1 microM for this binding site. In conclusion, the results show that Zn2+ ions bind on both sides of CytcO and that binding of Zn2+ at the proton output side selectively impairs proton release during the P3-->F3 transition.
Collapse
Affiliation(s)
- Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA. Zinc ions as cytochrome C oxidase inhibitors: two sites of action. BIOCHEMISTRY (MOSCOW) 2005; 70:128-36. [PMID: 15807649 DOI: 10.1007/s10541-005-0091-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zinc ions are shown to be an efficient inhibitor of mitochondrial cytochrome c oxidase activity, both in the solubilized and the liposome-reconstituted enzyme. The effect of zinc is biphasic. First there occurs rapid interaction of zinc with the enzyme at a site exposed to the aqueous phase corresponding to the mitochondrial matrix. This interaction is fully reversed by EDTA and results in a partial inhibition of the enzyme activity (50-90%, depending on preparation) with an effective K(i) of approximately 10 microM. The rapid effect of zinc is observed with the solubilized enzyme, it vanishes upon incorporation of cytochrome oxidase in liposomes, and it re-appears when proteoliposomes are supplied with alamethicin that makes the membrane permeable to low molecular weight substances. Zinc presumably blocks the entrance of the D-protonic channel opening into the inner aqueous phase. Second, zinc interacts slowly (tens of minutes, hours) with a site of cytochrome oxidase accessible from the outer aqueous phase bringing about complete inhibition of the enzymatic activity. The slow phase is characterized by high affinity of the inhibitor for the enzyme: full inhibition can be achieved upon incubation of the solubilized oxidase for 24 h with zinc concentration as low as 2 microM. The rate of zinc inhibitory action in the slow phase is proportional to Zn(2+) concentration. The slow interaction of zinc with the outer surface of liposome-reconstituted cytochrome oxidase is observed only with the enzyme turning over or in the presence of weak reductants, whereas incubation of zinc with the fully oxidized proteoliposomes does not induce the inhibition. It is shown that zinc ions added to cytochrome oxidase proteoliposomes from the outside inhibit specifically the slow electrogenic phase of proton transfer, coupled to a transition of cytochrome oxidase from the oxo-ferryl to the oxidized state (the F --> O step corresponding to transfer of the 4th electron in the catalytic cycle).
Collapse
Affiliation(s)
- S S Kuznetsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobjevy Gory, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
26
|
Whitehead SJ, Rossington KE, Hafiz A, Cotton NPJ, Jackson JB. Zinc ions selectively inhibit steps associated with binding and release of NADP(H) during turnover of proton-translocating transhydrogenase. FEBS Lett 2005; 579:2863-7. [PMID: 15878164 DOI: 10.1016/j.febslet.2005.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. In membrane vesicles from Escherichia coli and Rhodospirillum rubrum, the transhydrogenase reaction (measured in the direction driving inward proton translocation) was inhibited by Zn(2+) and Cd(2+). However, depending on pH, the metal ions either had no effect on, or stimulated, "cyclic" transhydrogenation. They must, therefore, interfere specifically with steps involving binding/release of NADP(+)/NADPH: the steps thought to be associated with proton translocation. It is suggested that Zn(2+) and Cd(2+) bind in the proton-transfer pathway and block inter-conversion of states responsible for changing NADP(+)/NADPH binding energy.
Collapse
|
27
|
Szundi I, Cappuccio J, Einarsdóttir O. Amplitude Analysis of Single-Wavelength Time-Dependent Absorption Data Does Not Support the Conventional Sequential Mechanism for the Reduction of Dioxygen to Water Catalyzed by Bovine Heart Cytochrome c Oxidase. Biochemistry 2004; 43:15746-58. [PMID: 15595830 DOI: 10.1021/bi049408p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of fully reduced and mixed-valence bovine heart cytochrome c oxidase with dioxygen have been reinvestigated in the absence and presence of metal ions (Zn(2+), Ni(2+), and Cd(2+)) by time-resolved optical absorption spectroscopy using the CO flow-flash technique. The time-resolved data were recorded on a microsecond to millisecond time scale at 442, 610, and 820 nm and subjected to quantitative amplitude analysis based on a conventional unidirectional sequential mechanism. The amplitudes of the sequential intermediates are derived from the absorbance changes associated with the different exponentials and from the kinetic equations of the sequential scheme. The general relationship between the pre-exponential factors and the absorbance of the successive intermediates in the sequential scheme is presented. A comparison of the experimental amplitudes of the individual intermediates with the model amplitudes at the three wavelengths indicates that the low spin heme a is incompletely oxidized during the formation of the sequential P(R) intermediate (P(R,s)). The conversion of the sequential F intermediate to the oxidized enzyme occurs on two millisecond time scales. The amplitude analysis of the single-wavelength data does not support the conventional sequential mechanism for the reduction of dioxygen to water catalyzed by cytochrome c oxidase.
Collapse
Affiliation(s)
- Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
28
|
Dupuy DLC, Rial DV, Ceccarelli EA. Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:4582-93. [PMID: 15560800 DOI: 10.1111/j.1432-1033.2004.04430.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ferredoxin-NADP(H) reductases (FNRs) represent a prototype of enzymes involved in numerous metabolic pathways. We found that pea FNR ferricyanide diaphorase activity was inhibited by Zn2+ (Ki 1.57 microM). Dichlorophenolindophenol diaphorase activity was also inhibited by Zn2+ (Ki 1.80 microM), but the addition of ferrocyanide was required, indicating that the inhibitor is an arrangement of both ions. Escherichia coli FNR was also inhibited by Zn-ferrocyanide, suggesting that inhibition is a consequence of common structural features of these flavoenzymes. The inhibitor behaves in a noncompetitive manner for NADPH and for artificial electron acceptors. Analysis of the oxidation state of the flavin during catalysis in the presence of the inhibitor suggests that the electron-transfer process between NADPH and the flavin is not significantly altered, and that the transfer between the flavin and the second substrate is mainly affected. Zn-ferrocyanide interacts with the reductase, probably increasing the accessibility of the prosthetic group to the solvent. Ferredoxin reduction was also inhibited by Zn-ferrocyanide in a noncompetitive manner, but the observed Ki was about nine times higher than those for the diaphorase reactions. The electron transfer to Anabaena flavodoxin was not affected by Zn-ferrocyanide. Binding of the apoflavodoxin to the reductase was sufficient to overcome the inhibition by Zn-ferrocyanide, suggesting that the interaction of FNRs with their proteinaceous electron partners may induce a conformational change in the reductase that alters or completely prevents the inhibitory effect.
Collapse
Affiliation(s)
- Daniela L Catalano Dupuy
- Molecular Biology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | |
Collapse
|
29
|
Adelroth P, Brzezinski P. Surface-mediated proton-transfer reactions in membrane-bound proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:102-15. [PMID: 15100022 DOI: 10.1016/j.bbabio.2003.10.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 10/22/2003] [Indexed: 11/30/2022]
Abstract
As outlined by Peter Mitchell in the chemiosmotic theory, an intermediate in energy conversion in biological systems is a proton electrochemical potential difference ("proton gradient") across a membrane, generated by membrane-bound protein complexes. These protein complexes accommodate proton-transfer pathways through which protons are conducted. In this review, we focus specifically on the role of the protein-membrane surface and the surface-bulk water interface in the dynamics of proton delivery to these proton-transfer pathways. The general mechanisms are illustrated by experimental results from studies of bacterial photosynthetic reaction centres (RCs) and cytochrome c oxidase (CcO).
Collapse
Affiliation(s)
- Pia Adelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Svante Arrhenius väg 12, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
30
|
Mills DA, Tan Z, Ferguson-Miller S, Hosler J. A role for subunit III in proton uptake into the D pathway and a possible proton exit pathway in Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 2003; 42:7410-7. [PMID: 12809496 DOI: 10.1021/bi0341307] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protons are transferred from the inner surface of cytochrome c oxidase to the active site by the D and K pathways, as well as from the D pathway to the outer surface by a largely undefined proton exit route. Alteration of the initial proton acceptor of the D pathway, D132, to alanine has previously been shown to greatly inhibit oxidase turnover and slow proton uptake into the D pathway. Here it is shown that the removal of subunit III restores a substantial rate of O(2) reduction to D132A. Presumably an alternative proton acceptor for the D pathway becomes active in the absence of subunit III and D132. Thus, in the absence of subunit III cytochrome oxidase shows greater flexibility in terms of proton entry into the D pathway. In the presence of DeltaPsi and DeltapH, turnover of the wild-type oxidase or D132A is slower in the absence of subunit III. Comparison of the turnover rates of subunit III-depleted wild-type oxidase to those of the zinc-inhibited wild-type oxidase containing subunit III, both reconstituted into vesicles, leads to the hypothesis that the absence of subunit III inhibits the ability of the normal proton exit pathway to take up protons from the outside in the presence of DeltaPsi and DeltapH. Thus, subunit III appears to affect the transfer of protons from both the inner and outer surfaces of cytochrome oxidase, perhaps accounting for the long-observed lower efficiency of proton pumping by the subunit III-depleted oxidase.
Collapse
Affiliation(s)
- Denise A Mills
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
31
|
Aagaard A, Namslauer A, Brzezinski P. Inhibition of proton transfer in cytochrome c oxidase by zinc ions: delayed proton uptake during oxygen reduction. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:133-9. [PMID: 12206905 DOI: 10.1016/s0005-2728(02)00268-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the effect of Zn ions on proton-transfer reactions in cytochrome c oxidase. In the absence of Zn(2+) the transition from the "peroxy" (P(R)) to the "ferryl" (F) intermediate has a time constant of approximately 100 micros and it is associated with proton transfer from the bulk solution with an intrinsic time constant of <<100 micros, but rate limited by the P(R)-->F transition. While in the presence of 100 microM Zn(2+) the P(R)-->F transition was slowed by a factor of approximately 2, proton uptake from the bulk solution was impaired to a much greater extent. Instead, about two protons (one proton in the absence of Zn(2+)) were taken up during the next reaction step, i.e. the decay of F to the oxidized (O) enzyme with a time constant of approximately 2.5 ms. Thus, the results show that there is one proton available within the enzyme that can be used for oxygen reduction and confirm our previous observation that F can be formed without proton uptake from the bulk solution. No effect of Zn(2+) was observed with a mutant enzyme in which Asp(I-132), at the entry point of the D-pathway, was replaced by its non-protonatable analogue Asn. In addition, no effect of Zn(2+) was observed on the F-->O transition rate when measured in D(2)O, because in D(2)O, the transition is internally slowed to approximately 10 ms, which is already slower than with bound Zn(2+). Together with earlier results showing that both the P(R)-->F and F-->O transitions are associated with proton uptake through the D-pathway, the results from this study indicate that Zn(2+) binds to and blocks the entrance of the D-pathway.
Collapse
Affiliation(s)
- Anna Aagaard
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Mills DA, Schmidt B, Hiser C, Westley E, Ferguson-Miller S. Membrane potential-controlled inhibition of cytochrome c oxidase by zinc. J Biol Chem 2002; 277:14894-901. [PMID: 11832490 DOI: 10.1074/jbc.m111922200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like many voltage-sensitive ion pumps, cytochrome c oxidase is inhibited by zinc. Binding of zinc to the outside surface of Rhodobacter sphaeroides cytochrome c oxidase inhibits the enzyme with a K(I) of < or = 5 microm when the enzyme is reconstituted into phospholipid vesicles in the presence of a membrane potential. In the absence of a membrane potential and a pH gradient, millimolar concentrations of zinc are required to inhibit. This differential inhibition causes a dramatic increase in the respiratory control ratio from 6 to 40 for wild-type oxidase. The external zinc inhibition is removed by EDTA and is not competitive with cytochrome c binding but is competitive with protons. Only Cd(2+) of the many metals tested (Mg(2+), Mn(2+), Ca(2+), Ba(2+), Li(2+), Cs(2+), Hg(2+), Ni(2+), Co(2+), Cu(2+) Tb(3+), Tm(3+)) showed inhibitory effects similar to Zn(2+). Proton pumping is slower and less efficient with zinc. The results suggest that zinc inhibits proton movement through a proton exit path, which can allow proton back-leak at high membrane potentials. The physiological and mechanistic significance of proton movement in the exit pathway and its blockage by zinc is discussed in terms of regulation of the efficiency of energy transduction.
Collapse
Affiliation(s)
- Denise A Mills
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | | | | | | | |
Collapse
|