1
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
2
|
Abdalla AME, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, Ouyang C, Yang G. Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903164. [PMID: 32440473 PMCID: PMC7237845 DOI: 10.1002/advs.201903164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Growing experience with engineered chimeric antigen receptor (CAR)-T cells has revealed some of the challenges associated with developing patient-specific therapy. The promising clinical results obtained with CAR-T therapy nevertheless demonstrate the urgency of advancements to promote and expand its uses. There is indeed a need to devise novel methods to generate potent CARs, and to confer them and track their anti-tumor efficacy in CAR-T therapy. A potentially effective approach to improve the efficacy of CAR-T cell therapy would be to exploit the benefits of nanotechnology. This report highlights the current limitations of CAR-T immunotherapy and pinpoints potential opportunities and tremendous advantages of using nanotechnology to 1) introduce CAR transgene cassettes into primary T cells, 2) stimulate T cell expansion and persistence, 3) improve T cell trafficking, 4) stimulate the intrinsic T cell activity, 5) reprogram the immunosuppressive cellular and vascular microenvironments, and 6) monitor the therapeutic efficacy of CAR-T cell therapy. Therefore, genetic and functional modifications promoted by nanotechnology enable the generation of robust CAR-T cell therapy and offer precision treatments against cancer.
Collapse
Affiliation(s)
- Ahmed M. E. Abdalla
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Department of BiochemistryCollege of Applied ScienceUniversity of BahriKhartoum1660/11111Sudan
| | - Lin Xiao
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yu Miao
- Department of Vascular SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsSchool of Chemistry and Life SciencesHubei University of EducationWuhan430205China
| | - Gendeal M. Fadlallah
- Department of Chemistry and BiologyFaculty of EducationUniversity of GeziraWad‐Medani2667Sudan
| | - Mario Gauthier
- Department of ChemistryUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Chenxi Ouyang
- Department of Vascular SurgeryFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Guang Yang
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
3
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Vegi NM, Chakrabortty S, Zegota MM, Kuan SL, Stumper A, Rawat VPS, Sieste S, Buske C, Rau S, Weil T, Feuring-Buske M. Somatostatin receptor mediated targeting of acute myeloid leukemia by photodynamic metal complexes for light induced apoptosis. Sci Rep 2020; 10:371. [PMID: 31941913 PMCID: PMC6962389 DOI: 10.1038/s41598-019-57172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by relapse and treatment resistance in a major fraction of patients, underlining the need of innovative AML targeting therapies. Here we analysed the therapeutic potential of an innovative biohybrid consisting of the tumor-associated peptide somatostatin and the photosensitizer ruthenium in AML cell lines and primary AML patient samples. Selective toxicity was analyzed by using CD34 enriched cord blood cells as control. Treatment of OCI AML3, HL60 and THP1 resulted in a 92, and 99 and 97% decrease in clonogenic growth compared to the controls. Primary AML cells demonstrated a major response with a 74 to 99% reduction in clonogenicity in 5 of 6 patient samples. In contrast, treatment of CD34+ CB cells resulted in substantially less reduction in colony numbers. Subcellular localization assays of RU-SST in OCI-AML3 cells confirmed strong co-localization of RU-SST in the lysosomes compared to the other cellular organelles. Our data demonstrate that conjugation of a Ruthenium complex with somatostatin is efficiently eradicating LSC candidates of patients with AML. This indicates that receptor mediated lysosomal accumulation of photodynamic metal complexes is a highly attractive approach for targeting AML cells.
Collapse
Affiliation(s)
- Naidu M Vegi
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University, AP - Amaravati, Andhra Pradesh, 522502, India.,Max Planck Institute for Polymer Research, D-55128, Mainz, Germany
| | - Maksymilian M Zegota
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Anne Stumper
- Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Stefanie Sieste
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, D-55128, Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, D-89081, Ulm, Germany
| | - Michaela Feuring-Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre, University Hospital Ulm, D-89081, Ulm, Germany. .,Department of Internal Medicine III, University Hospital Ulm, D-89081, Ulm, Germany.
| |
Collapse
|
5
|
Emami-Shahri N, Foster J, Kashani R, Gazinska P, Cook C, Sosabowski J, Maher J, Papa S. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat Commun 2018. [PMID: 29540684 PMCID: PMC5852048 DOI: 10.1038/s41467-018-03524-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancy has established a new therapeutic pillar of hematology–oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field. Adoptive transfer of chimeric antigen receptor (CAR) T cells has shown promising anticancer results in clinical trials. Here the authors use the human sodium iodide symporter (hNIS) as a reporter gene to image human CAR T cells in cancer-bearing mice using broadly available tracers and imaging platforms.
Collapse
Affiliation(s)
- Nia Emami-Shahri
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roxana Kashani
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Patrycja Gazinska
- Breast Cancer Now, Division of Cancer Studies, Guy's Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
| | - Celia Cook
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Maher
- CAR Mechanics Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.,Department of Immunology, Eastbourne Hospital, King's Drive, Eastbourne, BN21 2UD, UK
| | - Sophie Papa
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK. .,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
6
|
Naqvi SAR, Sosabowski JK, Nagra SA, Ishfaq MM, Mather SJ, Matzow T. Radiopeptide internalisation and externalization assays: cell viability and radioligand integrity. Appl Radiat Isot 2010; 69:68-74. [PMID: 20880713 DOI: 10.1016/j.apradiso.2010.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Various aspects of radiopeptide receptor-mediated cell internalisation and externalization assays were assessed, including the integrity of externalized peptides and the effect of varying the pH and incubation time of the acid wash step (to remove surface receptor-bound ligand) on efficacy and cell viability. The observed intact proportion of externalized peptide was 5-10%, and acid wash buffers with pH 2.8 or below were found to be detrimental to cell viability and integrity, particularly following prolonged incubation times.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
8
|
Wang Q, Lu R, Zhao J, Limbird LE. Arrestin serves as a molecular switch, linking endogenous alpha2-adrenergic receptor to SRC-dependent, but not SRC-independent, ERK activation. J Biol Chem 2006; 281:25948-55. [PMID: 16809338 DOI: 10.1074/jbc.m605415200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies have demonstrated that neither receptor endocytosis nor arrestin is required for ERK activation by the alpha2-adrenergic receptor (Wang, Q., Zhao, J., Brady, A. E., Feng, J., Allen, P. B., Lefkowitz, R. J., Greengard, P., and Limbird, L. E. (2004) Science 304, 1940-1944). The present studies address whether arrestin plays a role in determining the route of alpha2AR-evoked ERK signaling activation, taking advantage of endogenous expression of the alpha(2A)AR subtype in mouse embryonic fibroblasts (MEFs) and the availability of MEFs without arrestin expression (derived from Arr2,3-/- mice). Our data demonstrate that the endogenous alpha(2A)AR evokes ERK phosphorylation through both a Src-dependent and a Src-independent pathway, both of which are G protein dependent and converge on the Ras-Raf-MEK pathway. Arrestin is essential to recruit Src to this process, as alpha(2A)AR-mediated ERK signaling in Arr2,3-/- MEFs does not involve Src. Stimulation of alpha(2A)AR enhances arrestin-Src interaction and promotes activation of Src. alpha2 agonists have similar potencies in stimulating Src-dependent and Src-independent ERK phosphorylation in wild-type and Arr2,3-/- cells, respectively. However, Src-independent alpha(2A)AR-mediated ERK stimulation has both a longer duration of activation and a more rapid translocation of pERK into the nucleus when compared with Src-dependent activation. These data not only affirm the role of arrestin as an escort for signaling molecules such as Src family kinases but also demonstrate the impact of arrestin-dependent modulation on both the temporal and spatial properties of ERK activation.
Collapse
Affiliation(s)
- Qin Wang
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | |
Collapse
|
9
|
Tsitolovsky LE. Protection from neuronal damage evoked by a motivational excitation is a driving force of intentional actions. ACTA ACUST UNITED AC 2005; 49:566-94. [PMID: 16269320 DOI: 10.1016/j.brainresrev.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 02/25/2005] [Indexed: 01/13/2023]
Abstract
Motivation may be understood as an organism's subjective attitude to its current physiological state, which somehow modulates generation of actions until the organism attains an optimal state. How does this subjective attitude arise and how does it modulate generation of actions? Diverse lines of evidence suggest that elemental motivational states (hunger, thirst, fear, drug-dependence, etc.) arise as the result of metabolic disturbances and are related to transient injury, while rewards (food, water, avoidance, drugs, etc.) are associated with the recovery of specific neurons. Just as motivation and the very life of an organism depend on homeostasis, i.e., maintenance of optimum performance, so a neuron's behavior depends on neuronal (i.e., ion) homeostasis. During motivational excitation, the conventional properties of a neuron, such as maintenance of membrane potential and spike generation, are disturbed. Instrumental actions may originate as a consequence of the compensational recovery of neuronal excitability after the excitotoxic damage induced by a motivation. When the extent of neuronal actions is proportional to a metabolic disturbance, the neuron theoretically may choose a beneficial behavior even, if at each instant, it acts by chance. Homeostasis supposedly may be directed to anticipating compensation of the factors that lead to a disturbance of the homeostasis and, as a result, participates in the plasticity of motivational behavior. Following this line of thought, I suggest that voluntary actions arise from the interaction between endogenous compensational mechanisms and excitotoxic damage of specific neurons, and thus anticipate the exogenous compensation evoked by a reward.
Collapse
Affiliation(s)
- Lev E Tsitolovsky
- Department of Life Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
10
|
Lahlou H, Guillermet J, Hortala M, Vernejoul F, Pyronnet S, Bousquet C, Susini C. Molecular signaling of somatostatin receptors. Ann N Y Acad Sci 2004; 1014:121-31. [PMID: 15153426 DOI: 10.1196/annals.1294.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatostatin is a neuropeptide family that is produced by neuroendocrine, inflammatory, and immune cells in response to different stimuli. Somatostatin acts as an endogenous inhibitory regulator of various cellular functions including secretions, motility, and proliferation. Its action is mediated by a family of G-protein-coupled receptors (called sst1-sst5) that are widely distributed in the brain and periphery. The five receptors bind the natural peptides with high affinity, but only sst2, sst5, and sst3 bind the short synthetic analogs used to treat acromegaly and neuroendocrine tumors. This review covers the current knowledge in somatostatin receptor biology and signaling.
Collapse
Affiliation(s)
- Hicham Lahlou
- INSERM U 531, IFR 31, CHU Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2004; 2:999-1017. [PMID: 14654798 DOI: 10.1038/nrd1255] [Citation(s) in RCA: 413] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gisbert Weckbecker
- Transplantation and Immunology, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
12
|
Grimes ML, Miettinen HM. Receptor tyrosine kinase and G-protein coupled receptor signaling and sorting within endosomes. J Neurochem 2003; 84:905-18. [PMID: 12603816 DOI: 10.1046/j.1471-4159.2003.01603.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark L Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812-4824, USA.
| | | |
Collapse
|
13
|
Campa MJ, Serlin SB, Patz EF. Development of novel tumor imaging agents with phage-display combinatorial peptide libraries. Acad Radiol 2002; 9:927-32. [PMID: 12186442 DOI: 10.1016/s1076-6332(03)80463-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES Current radiologic methods do not provide sufficient information for unambiguous diagnosis and prognosis of cancer. The present investigation sought to address this deficiency by developing a system for designing novel small molecules targeted against tumor-specific molecules for use as radionuclide imaging agents. MATERIALS AND METHODS Part of a tumor-specific receptor, purified recombinant epidermal growth factor receptor (EGFR), variant III, extracellular domain (rEGFRvIII-ecd), was used as the target in the selection of EGFRvIII-specific peptide ligands from random peptide bacteriophage (phage) display libraries. After three rounds of screening, phage isolates were tested for binding affinity with an enzyme-linked immunosorbent assay. Positive phage were sequenced, and the peptides were synthesized and tested for binding affinity with a surface plasmon resonance assay. RESULTS Affinity screening identified 49 peptide-expressing phage that showed enhanced binding to the variant receptor compared with wild-type EGFR. Free peptides from the two phage isolates exhibiting the most favorable binding were tested for target binding. One of these demonstrated a binding affinity for rEGFRvIII-ecd in the 30-nmol/L range. CONCLUSION These data suggest that phage display libraries may be very useful in the design of novel, high-affinity tumor imaging agents.
Collapse
Affiliation(s)
- Michael J Campa
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|