1
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
2
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
3
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
The ubiquinone synthesis pathway is a promising drug target for Chagas disease. PLoS One 2021; 16:e0243855. [PMID: 33539347 PMCID: PMC7861437 DOI: 10.1371/journal.pone.0243855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi). It was originally a Latin American endemic health problem, but now is expanding worldwide as a result of increasing migration. The currently available drugs for Chagas disease, benznidazole and nifurtimox, provoke severe adverse effects, and thus the development of new drugs is urgently required. Ubiquinone (UQ) is essential for respiratory chain and redox balance in trypanosomatid protozoans, therefore we aimed to provide evidence that inhibitors of the UQ biosynthesis have trypanocidal activities. In this study, inhibitors of the human COQ7, a key enzyme of the UQ synthesis, were tested for their trypanocidal activities because they were expected to cross-react and inhibit trypanosomal COQ7 due to their genetic homology. We show the trypanocidal activity of a newly found human COQ7 inhibitor, an oxazinoquinoline derivative. The structurally similar compounds were selected from the commercially available compounds by 2D and 3D ligand-based similarity searches. Among 38 compounds selected, 12 compounds with the oxazinoquinoline structure inhibited significantly the growth of epimastigotes of T. cruzi. The most effective 3 compounds also showed the significant antitrypanosomal activity against the mammalian stage of T. cruzi at lower concentrations than benznidazole, a commonly used drug today. We found that epimastigotes treated with the inhibitor contained reduced levels of UQ9. Further, the growth of epimastigotes treated with the inhibitors was partially rescued by UQ10 supplementation to the culture medium. These results suggest that the antitrypanosomal mechanism of the oxazinoquinoline derivatives results from inhibition of the trypanosomal UQ synthesis leading to a shortage of the UQ pool. Our data indicate that the UQ synthesis pathway of T. cruzi is a promising drug target for Chagas disease.
Collapse
|
5
|
Tsuganezawa K, Sekimata K, Nakagawa Y, Utata R, Nakamura K, Ogawa N, Koyama H, Shirouzu M, Fukami T, Kita K, Tanaka A. Identification of small molecule inhibitors of human COQ7. Bioorg Med Chem 2019; 28:115182. [PMID: 31753803 DOI: 10.1016/j.bmc.2019.115182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
Abstract
Given that the associated clinical manifestations of ubiquinone (UQ, or coenzyme Q) deficiency diseases are highly heterogeneous and complicated, effective new research tools for UQ homeostasis studies are awaited. We set out to develop human COQ7 inhibitors that interfere with UQ synthesis. Systematic structure-activity relationship development starting from a screening hit compound led to the identification of highly potent COQ7 inhibitors that did not disturb physiological cell growth of human normal culture cells. These new COQ7 inhibitors may serve as useful tools for studying the balance between UQ supplementation pathways: de novo UQ synthesis and extracellular UQ uptake.
Collapse
Affiliation(s)
- Keiko Tsuganezawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Katsuhiko Sekimata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukari Nakagawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Rei Utata
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kana Nakamura
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroo Koyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takehiro Fukami
- RIKEN Program for Drug Discovery and Medical Technology Platforms, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Akiko Tanaka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
6
|
An Isoprene Lipid-Binding Protein Promotes Eukaryotic Coenzyme Q Biosynthesis. Mol Cell 2019; 73:763-774.e10. [PMID: 30661980 DOI: 10.1016/j.molcel.2018.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis.
Collapse
|
7
|
Lionaki E, Gkikas I, Tavernarakis N. Differential Protein Distribution between the Nucleus and Mitochondria: Implications in Aging. Front Genet 2016; 7:162. [PMID: 27695477 PMCID: PMC5025450 DOI: 10.3389/fgene.2016.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
The coordination of nuclear and mitochondrial genomes plays a pivotal role in maintenance of mitochondrial biogenesis and functionality during stress and aging. Environmental and cellular inputs signal to nucleus and/or mitochondria to trigger interorganellar compensatory responses. Loss of this tightly orchestrated coordination results in loss of cellular homeostasis and underlies various pathologies and age-related diseases. Several signaling cascades that govern interorganellar communication have been revealed up to now, and have been classified as part of the anterograde (nucleus to mitochondria) or retrograde (mitochondrial to nucleus) response. Many of these molecular pathways rely on the dual distribution of nuclear or mitochondrial components under basal or stress conditions. These dually localized components usually engage in specific tasks in their primary organelle of function, whilst upon cellular stimuli, they appear in the other organelle where they engage in the same or a different task, triggering a compensatory stress response. In this review, we focus on protein factors distributed between the nucleus and mitochondria and activated to exert their functions upon basal or stress conditions. We further discuss implications of bi-organellar targeting in the context of aging.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| |
Collapse
|
8
|
CLD1 Reverses the Ubiquinone Insufficiency of Mutant cat5/coq7 in a Saccharomyces cerevisiae Model System. PLoS One 2016; 11:e0162165. [PMID: 27603010 PMCID: PMC5014327 DOI: 10.1371/journal.pone.0162165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
Ubiquinone (Qn) functions as a mobile electron carrier in mitochondria. In humans, Q biosynthetic pathway mutations lead to Q10 deficiency, a life threatening disorder. We have used a Saccharomyces cerevisiae model of Q6 deficiency to screen for new modulators of ubiquinone biosynthesis. We generated several hypomorphic alleles of coq7/cat5 (clk-1 in Caenorhabditis elegans) encoding the penultimate enzyme in Q biosynthesis which converts 5-demethoxy Q6 (DMQ6) to 5-demethyl Q6, and screened for genes that, when overexpressed, suppressed their inability to grow on non-fermentable ethanol—implying recovery of lost mitochondrial function. Through this approach we identified Cardiolipin-specific Deacylase 1 (CLD1), a gene encoding a phospholipase A2 required for cardiolipin acyl remodeling. Interestingly, not all coq7 mutants were suppressed by Cld1p overexpression, and molecular modeling of the mutant Coq7p proteins that were suppressed showed they all contained disruptions in a hydrophobic α-helix that is predicted to mediate membrane-binding. CLD1 overexpression in the suppressible coq7 mutants restored the ratio of DMQ6 to Q6 toward wild type levels, suggesting recovery of lost Coq7p function. Identification of a spontaneous Cld1p loss-of-function mutation illustrated that Cld1p activity was required for coq7 suppression. This observation was further supported by HPLC-ESI-MS/MS profiling of monolysocardiolipin, the product of Cld1p. In summary, our results present a novel example of a lipid remodeling enzyme reversing a mitochondrial ubiquinone insufficiency by facilitating recovery of hypomorphic enzymatic function.
Collapse
|
9
|
Munkácsy E, Khan MH, Lane RK, Borror MB, Park JH, Bokov AF, Fisher AL, Link CD, Rea SL. DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genet 2016; 12:e1006133. [PMID: 27420916 PMCID: PMC4946786 DOI: 10.1371/journal.pgen.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction underlies numerous age-related pathologies. In an effort to uncover how the detrimental effects of mitochondrial dysfunction might be alleviated, we examined how the nematode C. elegans not only adapts to disruption of the mitochondrial electron transport chain, but in many instances responds with extended lifespan. Studies have shown various retrograde responses are activated in these animals, including the well-studied ATFS-1-dependent mitochondrial unfolded protein response (UPRmt). Such processes fall under the greater rubric of cellular surveillance mechanisms. Here we identify a novel p38 signaling cascade that is required to extend life when the mitochondrial electron transport chain is disrupted in worms, and which is blocked by disruption of the Mitochondrial-associated Degradation (MAD) pathway. This novel cascade is defined by DLK-1 (MAP3K), SEK-3 (MAP2K), PMK-3 (MAPK) and the reporter gene Ptbb-6::GFP. Inhibition of known mitochondrial retrograde responses does not alter induction of Ptbb-6::GFP, instead induction of this reporter often occurs in counterpoint to activation of SKN-1, which we show is under the control of ATFS-1. In those mitochondrial bioenergetic mutants which activate Ptbb-6::GFP, we find that dlk-1, sek-3 and pmk-3 are all required for their life extension.
Collapse
Affiliation(s)
- Erin Munkácsy
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maruf H. Khan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rebecca K. Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jae H. Park
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex F. Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alfred L. Fisher
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas VA Health Care System, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher D. Link
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
10
|
|
11
|
Lu TT, Lee SJ, Apfel UP, Lippard SJ. Aging-associated enzyme human clock-1: substrate-mediated reduction of the diiron center for 5-demethoxyubiquinone hydroxylation. Biochemistry 2013; 52:2236-44. [PMID: 23445365 DOI: 10.1021/bi301674p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mitochondrial membrane-bound enzyme Clock-1 (CLK-1) extends the average longevity of mice and Caenorhabditis elegans, as demonstrated for Δclk-1 constructs for both organisms. Such an apparent impact on aging and the presence of a carboxylate-bridged diiron center in the enzyme inspired this work. We expressed a soluble human CLK-1 (hCLK-1) fusion protein with an N-terminal immunoglobulin binding domain of protein G (GB1). Inclusion of the solubility tag allowed for thorough characterization of the carboxylate-bridged diiron active site of the resulting GB1-hCLK-1 by spectroscopic and kinetic methods. Both UV-visible and Mössbauer experiments provide unambiguous evidence that GB1-hCLK-1 functions as a 5-demethoxyubiquinone-hydroxylase, utilizing its carboxylate-bridged diiron center. The binding of DMQn (n = 0 or 2) to GB1-hCLK-1 mediates reduction of the diiron center by nicotinamide adenine dinucleotide (NADH) and initiates O2 activation for subsequent DMQ hydroxylation. Deployment of DMQ to mediate reduction of the diiron center in GB1-hCLK-1 improves substrate specificity and diminishes consumption of NADH that is uncoupled from substrate oxidation. Both Vmax and kcat/KM for DMQ hydroxylation increase when DMQ0 is replaced by DMQ2 as the substrate, which demonstrates that an isoprenoid side chain enhances enzymatic hydroxylation and improves catalytic efficiency.
Collapse
Affiliation(s)
- Tsai-Te Lu
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
12
|
Takahashi M, Ogawara M, Shimizu T, Shirasawa T. Restoration of the behavioral rates and lifespan in clk-1 mutant nematodes in response to exogenous coenzyme Q10. Exp Gerontol 2012; 47:276-9. [DOI: 10.1016/j.exger.2011.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/17/2022]
|
13
|
Silencing of FAD synthase gene in Caenorhabditis elegans upsets protein homeostasis and impacts on complex behavioral patterns. Biochim Biophys Acta Gen Subj 2012; 1820:521-31. [PMID: 22306247 DOI: 10.1016/j.bbagen.2012.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND FAD synthase is a ubiquitous enzyme that catalyses the last step of FAD biosynthesis, allowing for the biogenesis of several flavoproteins. In humans different isoforms are generated by alternative splicing, isoform 1 being localized in mitochondria. Homology searching in Caenorabditis elegans leads to the identification of two human FAD synthase homologues, coded by the single copy gene R53.1. METHODS The C. elegans R53.1 gene was silenced by feeding. The expression level of transcripts was established by semi-quantitative RT-PCR. Overall protein composition was evaluated by two-dimensional electrophoresis. Enzymatic activities were measured by spectrophotometry and oxygen consumption by polarography on isolated mitochondria. RESULTS From R53.1 two transcripts are generated by trans-splicing. Reducing by 50% the transcription efficiency of R53.1 by RNAi results in a 50% reduction in total flavin with decrease in ATP content and increase in ROS level. Significant phenotypical changes are noticed in knock-down nematodes. Among them, a significant impairment in locomotion behaviour possibly due to altered cholinergic transmission. At biochemical level, impairment of flavoenzyme activities and of some KCN-insensitive oxygen-consuming enzymes is detected. At proteomic level, at least 15 abundant proteins are affected by R53.1 gene silencing, among which superoxide dismutases. CONCLUSION AND GENERAL SIGNIFICANCE For the first time we addressed the existence of different isoforms of FAD-metabolizing enzymes in nematodes. A correlation between FAD synthase silencing and flavoenzyme derangement, energy shortage and redox balance impairment is apparent. In this aspect R53.1-interfered nematodes could provide an animal model system for studying human pathologies with alteration in flavin homeostasis/flavoenzyme biogenesis.
Collapse
|
14
|
Butler JA, Ventura N, Johnson TE, Rea SL. Long‐lived mitochondrial (Mit) mutants of Caenorhabditis elegansutilize a novel metabolism. FASEB J 2010. [DOI: 10.1096/fj.10.162941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeffrey A. Butler
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San Antonio San Antonio Texas USA
- Department of PhysiologyUniversity of Texas Health Science Center at San Antonio San Antonio Texas USA
- Department of Integrative PhysiologyInstitute for Behavioral Genetics, University of Colorado Boulder Colorado USA
| | - Natascia Ventura
- Department of Experimental Medicine and Biochemical SciencesUniversity of Rome Tor Vergata Rome Italy
| | - Thomas E. Johnson
- Department of Integrative PhysiologyInstitute for Behavioral Genetics, University of Colorado Boulder Colorado USA
| | - Shane L. Rea
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San Antonio San Antonio Texas USA
- Department of PhysiologyUniversity of Texas Health Science Center at San Antonio San Antonio Texas USA
- Department of Integrative PhysiologyInstitute for Behavioral Genetics, University of Colorado Boulder Colorado USA
| |
Collapse
|
15
|
Behan RK, Lippard SJ. The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins. Biochemistry 2010; 49:9679-81. [PMID: 20923139 PMCID: PMC2976817 DOI: 10.1021/bi101475z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aging-associated enzyme CLK-1 is proposed to be a member of the carboxylate-bridged diiron family of proteins. To evaluate this hypothesis and characterize the protein, we expressed soluble mouse CLK-1 (MCLK1) in Escherichia coli as a heterologous host. Using Mössbauer and EPR spectroscopy, we established that MCLK1 indeed belongs to this protein family. Biochemical analyses of the in vitro activity of MCLK1 with quinone substrates revealed that NADH can serve directly as a reductant for catalytic activation of dioxygen and substrate oxidation by the enzyme, with no requirement for an additional reductase protein component. The direct reaction of NADH with a diiron-containing oxidase enzyme has not previously been encountered for any member of the protein superfamily.
Collapse
Affiliation(s)
- Rachel K. Behan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
16
|
Butler JA, Ventura N, Johnson TE, Rea SL. Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J 2010; 24:4977-88. [PMID: 20732954 DOI: 10.1096/fj.10-162941] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Caenorhabditis elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain (ETC) functionality, yet, surprisingly, they are long lived. We have previously proposed that Mit mutants supplement their energy needs by exploiting alternate energy production pathways normally used by wild-type animals only when exposed to hypoxic conditions. We have also proposed that longevity in the Mit mutants arises as a property of their new metabolic state. If longevity does arise as a function of metabolic state, we would expect to find a common metabolic signature among these animals. To test these predictions, we established a novel approach monitoring the C. elegans exometabolism as a surrogate marker for internal metabolic events. Using HPLC-ultraviolet-based metabolomics and multivariate analyses, we show that long-lived clk-1(qm30) and isp-1(qm150) Mit mutants have a common metabolic profile that is distinct from that of aerobically cultured wild-type animals and, unexpectedly, wild-type animals cultured under severe oxygen deprivation. Moreover, we show that 2 short-lived mitochondrial ETC mutants, mev-1(kn1) and ucr-2.3(pk732), also share a common metabolic signature that is unique. We show that removal of soluble fumarate reductase unexpectedly increases health span in several genetically defined Mit mutants, identifying at least 1 alternate energy production pathway, malate dismutation, that is operative in these animals. Our study suggests long-lived, genetically specified Mit mutants employ a novel metabolism and that life span may well arise as a function of metabolic state.
Collapse
Affiliation(s)
- Jeffrey A Butler
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | |
Collapse
|
17
|
Hudder BN, Morales JG, Stubna A, Münck E, Hendrich MP, Lindahl PA. Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae. J Biol Inorg Chem 2007; 12:1029-53. [PMID: 17665226 DOI: 10.1007/s00775-007-0275-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/27/2007] [Indexed: 11/30/2022]
Abstract
Mitochondria from respiring cells were isolated under anaerobic conditions. Microscopic images were largely devoid of contaminants, and samples consumed O(2) in an NADH-dependent manner. Protein and metal concentrations of packed mitochondria were determined, as was the percentage of external void volume. Samples were similarly packed into electron paramagnetic resonance tubes, either in the as-isolated state or after exposure to various reagents. Analyses revealed two signals originating from species that could be removed by chelation, including rhombic Fe(3+) (g = 4.3) and aqueous Mn(2+) ions (g = 2.00 with Mn-based hyperfine). Three S = 5/2 signals from Fe(3+) hemes were observed, probably arising from cytochrome c peroxidase and the a(3):Cu(b) site of cytochrome c oxidase. Three Fe/S-based signals were observed, with averaged g values of 1.94, 1.90 and 2.01. These probably arise, respectively, from the [Fe(2)S(2)](+) cluster of succinate dehydrogenase, the [Fe(2)S(2)](+) cluster of the Rieske protein of cytochrome bc (1), and the [Fe(3)S(4)](+) cluster of aconitase, homoaconitase or succinate dehydrogenase. Also observed was a low-intensity isotropic g = 2.00 signal arising from organic-based radicals, and a broad signal with g (ave) = 2.02. Mössbauer spectra of intact mitochondria were dominated by signals from Fe(4)S(4) clusters (60-85% of Fe). The major feature in as-isolated samples, and in samples treated with ethylenebis(oxyethylenenitrilo)tetraacetic acid, dithionite or O(2), was a quadrupole doublet with DeltaE (Q) = 1.15 mm/s and delta = 0.45 mm/s, assigned to [Fe(4)S(4)](2+) clusters. Substantial high-spin non-heme Fe(2+) (up to 20%) and Fe(3+) (up to 15%) species were observed. The distribution of Fe was qualitatively similar to that suggested by the mitochondrial proteome.
Collapse
Affiliation(s)
- Brandon N Hudder
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | | | | | | | | | | |
Collapse
|
18
|
Selective Conversion of Hydrocarbons with H2O2 Using Biomimetic Non-heme Iron and Manganese Oxidation Catalysts. ADVANCES IN INORGANIC CHEMISTRY 2006. [DOI: 10.1016/s0898-8838(05)58002-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rea SL. Metabolism in the Caenorhabditis elegans Mit mutants. Exp Gerontol 2005; 40:841-9. [PMID: 16137850 DOI: 10.1016/j.exger.2005.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/09/2005] [Accepted: 06/14/2005] [Indexed: 11/21/2022]
Abstract
In many eukaryotes oxidative phosphorylation via the mitochondrial electron transport chain provides the major means of ATP production. Complete removal of this capacity often results in premature death. Recent studies using the nematode Caenorhabditis elegans are surprising because they have revealed that disruption of many of the key components of the normal mitochondrial energy-generating machinery do not result in death, rather they result in adult life span extension. Such mutants have been collectively termed Mit mutants. In this short review, the potential use of alternate metabolic pathways for energy generation by Mit mutants will be considered. The effects of using such pathways on residual mitochondrial functionality, reactive radical species production, and longevity will also be explored.
Collapse
Affiliation(s)
- Shane L Rea
- Institute for Behavioral Genetics, University of Colorado, Campus Box 447, Boulder, CO 80309-0447, USA.
| |
Collapse
|
20
|
Nakamura K, Sakamoto K, Kido Y, Fujimoto Y, Suzuki T, Suzuki M, Yabu Y, Ohta N, Tsuda A, Onuma M, Kita K. Mutational analysis of the Trypanosoma vivax alternative oxidase: The E(X)6Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity. Biochem Biophys Res Commun 2005; 334:593-600. [PMID: 16009344 DOI: 10.1016/j.bbrc.2005.06.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/23/2005] [Indexed: 11/16/2022]
Abstract
Based on amino acid sequence similarity and the ability to catalyze the four-electron reduction of oxygen to water using a quinol substrate, mitochondrial alternative oxidase (AOX) and plastid terminal oxidase (PTOX) appear to be two closely related members of the membrane-bound diiron carboxylate group of proteins. In the current studies, we took advantage of the high activity of Trypanosoma vivax AOX (TvAOX) to examine the importance of the conserved Glu and the Tyr residues around the predicted third helix region of AOXs and PTOXs. We first compared the amino acid sequences of TvAOX with AOXs and PTOXs from various taxa and then performed alanine-scanning mutagenesis of TvAOX between amino acids Y(199) and Y(247). We found that the ubiquinol oxidase activity of TvAOX is completely lost in the E214A mutant, whereas mutants E215A and E216A retained more than 30% of the wild-type activity. Among the Tyr mutants, a complete loss of activity was also observed for the Y221A mutant, whereas the activities were equivalent to wild-type for the Y199A, Y212A, and Y247A mutants. Finally, residues Glu(214) and Tyr(221) were found to be strictly conserved among AOXs and PTOXs. Based on these findings, it appears that AOXs and PTOXs are a novel subclass of diiron carboxylate proteins that require the conserved motif E(X)(6)Y for enzyme activity.
Collapse
Affiliation(s)
- Kosuke Nakamura
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Houthoofd K, Fidalgo MA, Hoogewijs D, Braeckman BP, Lenaerts I, Brys K, Matthijssens F, De Vreese A, Van Eygen S, Muñoz MJ, Vanfleteren JR. Metabolism, physiology and stress defense in three aging Ins/IGF-1 mutants of the nematode Caenorhabditis elegans. Aging Cell 2005; 4:87-95. [PMID: 15771612 DOI: 10.1111/j.1474-9726.2005.00150.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The insulin/insulin-like growth factor-1 (Ins/IGF-1) pathway regulates the aging rate of the nematode Caenorhabditis elegans. We describe other features of the three Ins/IGF-1 mutants daf-2, age-1 and aap-1. We show that the investigated Ins/IGF-1 mutants all have a reduced body volume, reduced reproductive capacity, increased ATP concentrations and an elevated stress resistance. We also observed that heat production is lower in these mutants, although the respiration rate was similar or higher compared with wild-type individuals, suggesting a metabolic shift in these mutants.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tshuva EY, Lippard SJ. Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. Chem Rev 2004; 104:987-1012. [PMID: 14871147 DOI: 10.1021/cr020622y] [Citation(s) in RCA: 544] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edit Y Tshuva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
23
|
Abstract
Several studies with the nematode Caenorhabditis elegans have made the unexpected discovery that certain hypomorphic mutations in genes encoding mitochondrial proteins result in life span extension. These mutations appear to act independently of the other known pathway that regulates life span extension, the dauer-specifying insulin/IGF-1-like pathway. Here we present a hypothesis that unifies the effects of these two classes of genes on longevity. The central concept is that energy generation in C. elegans occurs by differential flux through two coexisting mitochondrial metabolic pathways-aerobic respiration and fermentative malate dismutation. In the latter process, fumarate is terminally reduced at complex II to succinate. We suggest that most, if not all, long-lived mutants in C. elegans utilize malate dismutation, a byproduct of which is the generation of fewer radical species.
Collapse
Affiliation(s)
- Shane Rea
- Institute for Behavioral Genetics, University of Colorado, Boulder, 1480 30th Street, Boulder, CO 80309, USA.
| | | |
Collapse
|
24
|
Adachi A, Shinjyo N, Fujita D, Miyoshi H, Amino H, Watanabe YI, Kita K. Complementation of Escherichia coli ubiF mutation by Caenorhabditis elegans CLK-1, a product of the longevity gene of the nematode worm. FEBS Lett 2003; 543:174-8. [PMID: 12753928 DOI: 10.1016/s0014-5793(03)00419-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caenorhabditis elegans CLK-1 was identified from long-lived mutant worms, and is believed to be involved in ubiquinone biosynthesis. The protein belongs to the eukaryotic CLK-1/Coq7p family, which is also similar to the bacterial Coq7 family, that hydroxylates demethoxyubiquinone, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. In Escherichia coli, the corresponding reaction is catalyzed by UbiF, a member of a distinct class of hydroxylase. Although previous studies suggested that the eukaryotic CLK-1/Coq7 family is a hydroxylase of demethoxyubiquinone, there was no direct evidence to show the enzymatic activity of the eukaryotic CLK-1/Coq7 family. Here we show that the plasmid encoding C. elegans CLK-1 supported aerobic respiration on a non-fermentable carbon source of E. coli ubiF mutant strain and rescued the ability to synthesize ubiquinone, suggesting that the eukaryotic CLK-1/Coq7p family could function as bacterial UbiF.
Collapse
Affiliation(s)
- Akihiko Adachi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
We show that gene co-expression, which generally provides only a very weak signal for the prediction of functional interactions, can provide a reliable signal by exploiting evolutionary conservation. The encoded proteins of conserved co-expressed gene pairs are highly likely to be part of the same pathway not only after speciation (98%), but also after parallel gene duplication (97%). Conserved co-expression combined with homology data enables us to predict specific gene functions. The use of conservation between parallel duplicated gene pairs to predict function is especially promising given that gene duplication is common in eukaryotes, and that data from only a single organism can be used.
Collapse
Affiliation(s)
- Vera van Noort
- Nijmegen Center for Molecular Life Sciences, Center for Molecular and Biomolecular Informatics, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | |
Collapse
|
26
|
Gorbunova V, Seluanov A. CLK-1 protein has DNA binding activity specific to O(L) region of mitochondrial DNA. FEBS Lett 2002; 516:279-84. [PMID: 11959146 DOI: 10.1016/s0014-5793(02)02568-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in the clk-1 gene of Caenorhabditis elegans extend worm life span and slow down a variety of physiological processes. Here we report that C. elegans CLK-1 as well as its mouse homologue have DNA binding activity that is specific to the O(L) region of mitochondrial DNA. DNA binding activity of CLK-1 is inhibited by ADP, and is altered by mutations that extend nematode life span. Our results suggest that, in addition to its enzymatic function in ubiquinone biosynthesis, CLK-1 is involved in the regulation of mtDNA replication or transcription.
Collapse
Affiliation(s)
- Vera Gorbunova
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|