1
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhuang K, Yan Y, Zhang X, Zhang J, Zhang L, Han K. Gastrin promotes the metastasis of gastric carcinoma through the β-catenin/TCF-4 pathway. Oncol Rep 2016; 36:1369-76. [PMID: 27430592 DOI: 10.3892/or.2016.4943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/26/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is the most common epithelial malignancy and the second leading cause of cancer-related death worldwide; metastasis is a crucial factor in the progression of gastric cancer. The present study applied gastrin-17 amide (G-17) in SGC7901 cells. The results showed that G-17 promoted the cell cycle by accelerating the G0/G1 phase and by increasing the cell proliferation rate by binding to the gastrin receptor. The migratory and invasive abilities of the SGC7901 cells were increased by G-17. The expression levels of matrix metalloproteinase (MMP)-7, MMP-9 and vascular endothelial growth factor (VEGF) were enhanced by G-17 as well. Moreover, G-17 caused the overexpression of β-catenin and TCF-4. G-17 also caused a preferential cytoplasmic and nuclear localization of β-catenin with a high TOP-FLASH activity. Finally, axin reduced the migratory and invasive abilities of the SGC7901 cells, and inhibited the expression of β-catenin, TCF-4, MMP-7, MMP-9 and VEGF; these effects were counteracted by adding G-17. In summary, the present study confirmed the proliferation and metastasis-promoting role of G-17 via binding to the gastrin receptor, and the β-catenin/TCF-4 pathway was found to be essential for mediating G-17-induced metastasis in gastric cancer. These results may provide a novel gene target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Kun Zhuang
- Division of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710003, P.R. China
| | - Yuan Yan
- Division of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710003, P.R. China
| | - Xin Zhang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jun Zhang
- Division of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710003, P.R. China
| | - Lingxia Zhang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Kun Han
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
3
|
Waha A, Felsberg J, Hartmann W, Hammes J, von dem Knesebeck A, Endl E, Pietsch T, Waha A. Frequent epigenetic inactivation of the chaperone SGNE1/7B2 in human gliomas. Int J Cancer 2011; 131:612-22. [PMID: 21901745 DOI: 10.1002/ijc.26416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/16/2011] [Indexed: 11/08/2022]
Abstract
In a genome-wide screen using DMH (differential methylation hybridization) we have identified a CpG island within the 5' region and untranslated first exon of the secretory granule neuroendocrine protein 1 gene (SGNE1/7B2) that showed hypermethylation in low- and high-grade astrocytomas compared to normal brain tissue. Pyrosequencing was performed to confirm the methylation status of this CpG island in 89 astrocytic gliomas of different malignancy grades and six glioma cell lines. Hypermethylation of SGNE1/7B2 was significantly more frequent in diffuse low-grade astrocytomas as well as secondary glioblastomas and anaplastic astrocytomas as compared to primary glioblastomas. mRNA expression analysis by real-time RT-PCR indicates that SGNE1/7B2 expression is downregulated in astrocytic gliomas compared to white matter samples. Treatment of glioma cells with the demethylating agent 5-aza-2'-deoxycytidine restores the transcription of SGNE1/7B2. Overexpression of SGNE1/7B2 in T98G, A172 and U373MG glioblastoma cells significantly suppressed focus formation and led to a significant increase in apoptotic cells as determined by flow cytometric analysis in T98G cells. In summary, we have identified SGNE1/7B2 as a novel target silenced by DNA methylation in astrocytic gliomas. The high incidence of this alteration and the significant effects of SGNE1/7B2 on the growth and apoptosis of glioblastoma cells provide a first proof for a functional implication of SGNE1/7B2 inactivation in the molecular pathology of gliomas.
Collapse
Affiliation(s)
- Anke Waha
- Department of Neuropathology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The following pages present four examples of such cell-specific processing and the implications of the phenomenon for the use of peptide hormones as markers of diseases. Notably, sick cells - not least the neoplastic cells - often process prohormones in a manner different from that of the normal endocrine cells.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
5
|
Abstract
Gastrin and cholecystokinin (CCK) are homologous hormones with important functions in the brain and the gut. Gastrin is the main regulator of gastric acid secretion and gastric mucosal growth, whereas cholecystokinin regulates gall bladder emptying, pancreatic enzyme secretion and besides acts as a major neurotransmitter in the central and peripheral nervous systems. The tissue-specific expression of the hormones is regulated at the transcriptional level, but the posttranslational phase is also decisive and is highly complex in order to ensure accurate maturation of the prohormones in a cell specific manner. Despite the structural similarities of gastrin and CCK, there are decisive differences in the posttranslational processing and secretion schemes, suggesting that specific features in the processing may have evolved to serve specific purposes. For instance, CCK peptides circulate in low picomolar concentrations, whereas the cellular expression of gastrin is expressed at higher levels, and accordingly gastrin circulates in 10-20-fold higher concentrations. Both common cancers and the less frequent neuroendocrine tumors express the gastrin gene and prohormone. But the posttranslational processing progastrin is often greatly disturbed in neoplastic cells.The posttranslational phase of the biogenesis of gastrin and the various progastrin products in gastrin gene-expressing tissues is now reviewed here. In addition, the individual contributions of the processing enzymes are discussed, as are structural features of progastrin that are involved in the precursor activation process. Thus, the review describes how the processing depends on the cell-specific expression of the processing enzymes and kinetics in the secretory pathway.
Collapse
Affiliation(s)
- Jens R Bundgaard
- Department of Clinical Biochemistry, KB 3014, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
6
|
Rehfeld JF. The art of measuring gastrin in plasma: a dwindling diagnostic discipline? Scandinavian Journal of Clinical and Laboratory Investigation 2009; 68:353-61. [PMID: 19172694 DOI: 10.1080/00365510701771831] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The gastrointestinal hormone gastrin is measured in plasma in physiological, pathophysiological and diagnostic investigations. In the diagnosis of hypergastrinaemic diseases such as gastrinomas and gastric achlorhydria, measurement of gastrin concentrations in circulation is crucial. Gastrin circulates, however, not as a single peptide but as a mixture of peptides of different lengths and amino acid derivatizations. Moreover, in hypergastrinaemia the peptide pattern changes. Consequently, diagnostic gastrin measurements require immunoassays that recognize the pathological plasma patterns, which are characterized by a predominance of the large peptides (gastrin-34 and gastrin-71) and less, if any, of the shorter main form of gastrin in normal tissue, gastrin-17. Alternatively, and in specific cases, "processing-independent assays" (PIA) for progastrin may be considered, since hypersecreting gastrin cells also release substantial amounts of biosynthetic precursors and processing intermediates. Recently, gastrin kits that do not take the pathological plasma patterns into account have been marketed and may miss the diagnosis. Therefore, proper diagnosis of gastrinomas and other hypergastrinaemic diseases requires insight into cellular gastrin synthesis and peripheral metabolism, and also into the design of useful immunoassays. This review discusses the art of measuring gastrin in plasma with adequate diagnostic specificity.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University Hospital of Copenhagen, Denmark.
| |
Collapse
|
7
|
Prohormone convertases 1/3 and 2 together orchestrate the site-specific cleavages of progastrin to release gastrin-34 and gastrin-17. Biochem J 2008; 415:35-43. [PMID: 18554181 DOI: 10.1042/bj20080881] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cellular synthesis of peptide hormones requires PCs (prohormone convertases) for the endoproteolysis of prohormones. Antral G-cells synthesize the most gastrin and express PC1/3, 2 and 5/6 in the rat and human. But the cleavage sites in progastrin for each PC have not been determined. Therefore, in the present study, we measured the concentrations of progastrin, processing intermediates and alpha-amidated gastrins in antral extracts from PC1/3-null mice and compared the results with those in mice lacking PC2 and wild-type controls. The expression of PCs was examined by immunocytochemistry and in situ hybridization of mouse G-cells. Finally, the in vitro effect of recombinant PC5/6 on progastrin and progastrin fragments containing the relevant dibasic cleavage sites was also examined. The results showed that mouse G-cells express PC1/3, 2 and 5/6. The concentration of progastrin in PC1/3-null mice was elevated 3-fold. Chromatography showed that cleavage of the Arg(36)Arg(37) and Arg(73)Arg(74) sites were grossly decreased. Accordingly, the concentrations of progastrin products were markedly reduced, alpha-amidated gastrins (-34 and -17) being 25% of normal. Lack of PC1/3 was without effect on the third dibasic site (Lys(53)Lys(54)), which is the only processing site for PC2. Recombinant PC5/6 did not cleave any of the dibasic processing sites in progastrin and fragments containing the relevant dibasic processing sites. The complementary cleavages of PC1/3 and 2, however, suffice to explain most of the normal endoproteolysis of progastrin. Moreover, the results show that PCs react differently to the same dibasic sequences, suggesting that additional structural factors modulate the substrate specificity.
Collapse
|
8
|
Rehfeld JF, Bundgaard JR, Hannibal J, Zhu X, Norrbom C, Steiner DF, Friis-Hansen L. The cell-specific pattern of cholecystokinin peptides in endocrine cells versus neurons is governed by the expression of prohormone convertases 1/3, 2, and 5/6. Endocrinology 2008; 149:1600-8. [PMID: 18096669 PMCID: PMC2734493 DOI: 10.1210/en.2007-0278] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most peptide hormone genes are, in addition to endocrine cells, also expressed in neurons. The peptide hormone cholecystokinin (CCK) is expressed in different molecular forms in cerebral neurons and intestinal endocrine cells. To understand this difference, we examined the roles of the neuroendocrine prohormone convertases (PC) 1/3, PC2, and PC5/6 by measurement of proCCK, processing intermediates and bioactive, alpha-amidated, and O-sulfated CCK peptides in cerebral and jejunal extracts of null mice, controls, and in the PC5/6-expressing SK-N-MC cell-line. In PC1/3 null mice, the synthesis of bioactive CCK peptide in the gut was reduced to 3% of the translational product, all of which was in the form of alpha-amidated and tyrosine O-sulfated CCK-22, whereas the neuronal synthesis in the brain was largely unaffected. This is opposite to the PC2 null mice in which only the cerebral synthesis was affected. SK-N-MC cells, which express neither PC1/3 nor PC2, synthesized alone the processing intermediate, glycine-extended CCK-22. Immunocytochemistry confirmed that intestinal endocrine CCK cells in wild-type mice express PC1/3 but not PC2. In contrast, cerebral CCK neurons contain PC2 and only little, if any, PC1/3. Taken together, the data indicate that PC1/3 governs the endocrine and PC2 the neuronal processing of proCCK, whereas PC5/6 contributes only to a modest endocrine synthesis of CCK-22. The results suggest that the different peptide patterns in the brain and the gut are due to different expression of PCs.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
9
|
Bundgaard JR, Rehfeld JF. Distinct linkage between post-translational processing and differential secretion of progastrin derivatives in endocrine cells. J Biol Chem 2007; 283:4014-21. [PMID: 18057001 DOI: 10.1074/jbc.m707908200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prohormones often undergo extensive cellular processing prior to secretion. These post-translational processing events occur in organelles of the constitutive or regulated secretory pathway. The aim of this study was to examine the relationship between post-translational modifications and the secretory pathways taken by peptides derived from progastrin, the prohormone of gastrin, which in vivo is secreted by cells of the pyloric glands and stimulates the release of gastric acid. Targeting progastrin to compartments of the early secretory pathway shows that endoproteolytic processing is initiated in a pre-trans-Golgi network compartment of endocrine but not non-endocrine cells. The resulting N-terminal fragments of progastrin are secreted via the constitutive pathway, whereas endoproteolytically processed C-terminal fragments are secreted via the regulated or constitutive-like pathways. C-terminal fragments derived from progastrin differ in characteristic manners in levels and patterns of carboxyamidation and tyrosine sulfation in accordance with the secretory pathway taken. Point mutations introduced into a sorting motif disrupt these patterns, suggesting that differences in post-translational modifications are attributable to differential intracellular sorting of precursors. The results suggest a two-step sorting mechanism for progastrin leading to differential secretion of processed fragments via different secretory pathways.
Collapse
Affiliation(s)
- Jens R Bundgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, KB 3014, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| | | |
Collapse
|
10
|
Friis-Hansen L. Lessons from the gastrin knockout mice. ACTA ACUST UNITED AC 2007; 139:5-22. [DOI: 10.1016/j.regpep.2006.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 12/22/2022]
|
11
|
Rehfeld JF. The endoproteolytic maturation of progastrin and procholecystokinin. J Mol Med (Berl) 2006; 84:544-50. [PMID: 16680481 DOI: 10.1007/s00109-006-0055-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/03/2006] [Indexed: 11/29/2022]
Abstract
The homologous brain-gut propeptides, procholecystokinin (proCCK) and progastrin, both undergo extensive posttranslational maturation in specific neuroendocrine cells. The process comprises multiple endoproteolytic cleavages at mono- and dibasic sites, in addition to exoproteolytic trimmings and amino acid derivatizations. Knockout of prohormone convertases (PCs) in mice and studies in cell lines indicate that PC1, PC2 and, to a minor extent, PC5, are responsible for most of the endoproteolytic cleavages of both prohormones. Progastrin in antral G-cells is cleaved by PC1 at two di-Arg sites, R36R37 and R73R74, whereas, PC2 only cleaves at the single di-Lys site, K53K54. Pituitary corticotrophs and intestinal TG-cells, both of which express gastrin, do not cleave K53K54 due to lack of PC2. In proCCK five monobasic (R25, R44, R50, K61 and R75) as well as a single dibasic site (R85R86) can all be cleaved by both PC1 and PC2. But the cleavage differs in a cell-specific manner in that PC1 is responsible for the entire endoproteolytic cleavage in intestinal endocrine I-cells, except for perhaps the K61 site. In contrast PC2 is responsible for most endoproteolysis of proCCK in the cerebral CCK-neurons, which do not express PC1 in significant amounts. Moreover, PC5 appears to contribute to a minor extent to the neuronal proCCK and to the antral progastrin processing. This review emphasizes that prohormone convertases play a decisive but substrate and cell-specific role in the biosynthetic maturation of gastrin and CCK.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Lu YC, Sternini C, Rozengurt E, Zhukova E. Release of transgenic human insulin from gastric g cells: a novel approach for the amelioration of diabetes. Endocrinology 2005; 146:2610-9. [PMID: 15731364 DOI: 10.1210/en.2004-1109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We explored the hypothesis that meal-regulated release of insulin from gastric G cells can be used for gene therapy for diabetes. We generated transgenic mice in which the coding sequence of human insulin has been knocked into the mouse gastrin gene. Insulin was localized specifically to antral G cells of G-InsKi mice by double immunofluorescence staining using antibodies against insulin and gastrin. Insulin extracted from antral stomach of G-InsKi mice decreased blood glucose upon injection into streptozotocin-diabetic mice. Intragastric administration of peptone, a known potent luminal stimulant of gastrin secretion, induced an increase in circulating levels of transgenic human insulin from 10.7 +/- 2 to 23.3 +/- 4 pm in G-InsKi mice. Although G cell-produced insulin decreased blood glucose in G-InsKi mice, it did not cause toxic hypoglycemia. Proton pump inhibitors, pharmacological agents that increase gastrin output, caused a further increase in the circulating levels of gastric insulin (41.5 +/- 2 pm). G cell-produced insulin was released into circulation in response to the same meal-associated stimuli that control release of gastrin. The most striking aspect of the results presented here is that in the presence of the G-InsKi allele, Ins2(Akita/+) mice exhibited a marked prolongation of life span. These results imply that G cell-derived transgenic insulin is beneficial in the amelioration of diabetes. We suggest that an efficient G cells-based insulin gene therapy can relieve diabetic patients from daily insulin injections and protect them from complications of insulin insufficiency while avoiding episodes of toxic hypoglycemia.
Collapse
Affiliation(s)
- Yu-Chun Lu
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at University of California, Los Angeles, California 90095-1786, USA
| | | | | | | |
Collapse
|
13
|
Rehfeld JF, Bundgaard JR, Goetze JP, Friis-Hansen L, Hilsted L, Johnsen AH. Naming progastrin-derived peptides. ACTA ACUST UNITED AC 2005; 120:177-83. [PMID: 15177936 DOI: 10.1016/j.regpep.2004.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/26/2004] [Accepted: 03/11/2004] [Indexed: 11/17/2022]
Abstract
The antral hormone gastrin continues to be in focus, because its hormonal and growth promoting effects are essential both for the function of the normal stomach and for the pathogenesis of major dyspeptic and neoplastic diseases. Deduction of the progastrin structure has improved the insight in the cellular synthesis of gastrin, but has also revealed that the biosynthetic machinery is complex, and, accordingly, that progastrin is processed to a multitude of more or less bioactive fragments. The naming of these fragments has, however, become inconsistent and confusing. Therefore, we propose a systematic nomenclature for progastrin-derived peptides of which there are three classes: (I) The gastrins with the evolutionary preserved tetrapeptide amide (Trp-Met-Asp-PheNH2) at the C-terminus, which ensures high-affinity binding to the gastrin (CCK-B) receptor. Among the gastrins, gastrin-34 and gastrin-17 constitute the primary forms. (II) Processing intermediates, which are early products of progastrin that contain the structure of the primary gastrins within their sequence, but still cannot bind the gastrin receptor due to insufficient processing at their C-terminus. (III) Flanking fragments from the N- and C-termini of progastrin that do not contain any primary gastrin in their sequence, but nevertheless may undergo posttranslational processing. Each fragment can be specified with suffixes corresponding to the derived sequence in progastrin.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry (KB 3014), Rigshospitalet, University of Copenhagen, DK-2100, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Bundgaard JR, Birkedal H, Rehfeld JF. Progastrin Is Directed to the Regulated Secretory Pathway by Synergistically Acting Basic and Acidic Motifs. J Biol Chem 2004; 279:5488-93. [PMID: 14660571 DOI: 10.1074/jbc.m310547200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bioactivation of prohormones occurs in the granules of the regulated secretory pathway of endocrine cells, which release hormones in response to external stimulation. How secretory granules are formed and how the cargo is selected is still unclear, but it has been shown for several prohormones and processing enzymes that domains within the prohormone structure can act as "sorting signals" for this pathway. The domains mediate interactions with other proteins or with the membrane or facilitate aggregation of the (pro)peptides. We have now searched for domains in progastrin that are active in sorting the prohormone into secretory granules. Truncation studies showed that the N-terminal 30 residues of progastrin are dispensable, whereas the last 49 residues are sufficient for correct biosynthesis of bioactive gastrin. Thus, further N-terminal truncation abolished gastrin expression. C-terminal truncation of 8 residues resulted in an increase in basal secretion as did point mutations in the dibasic processing sites of progastrin. These mutants, however, still responded to secretagogues, suggesting a residual sorting capacity to the regulated pathway. Amino acid substitutions in an acidic, polyglutamate motif within gastrin-17, the main bioactive, cellular gastrin form, did not alter secretion per se, but when these residues were substituted in C-terminally truncated mutants, double mutants increased in basal secretion and did not respond to secretagogue stimulation. This implies that the mutants are constitutively secreted. Our data suggest that the dibasic processing sites constitute the most important sorting domain of progastrin, and these sites act in synergy with the acidic domain.
Collapse
Affiliation(s)
- Jens R Bundgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
15
|
Mayan H, Ni XP, Almog S, Humphreys MH. Suppression of gamma-melanocyte-stimulating hormone secretion is accompanied by salt-sensitive hypertension in the rat. Hypertension 2003; 42:962-7. [PMID: 14568996 DOI: 10.1161/01.hyp.0000097601.83235.f8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma-melanocyte-stimulating hormone (gamma-MSH) is a natriuretic peptide derived from proopiomelanocortin (POMC) in the pituitary neurointermediate lobe (NIL); its plasma concentration in rats doubles after ingestion of a high (HSD; 8% NaCl) compared with a low sodium diet (LSD; 0.07%). Because NIL function is regulated through dopaminergic pathways, we asked whether dopaminergic stimulation with bromocriptine (5 mg/kg IP daily for 1 week) or inhibition with haloperidol (5 mg/kg IP for 1 week) alters the gamma-MSH response to a HSD. In vehicle-treated rats, plasma gamma-MSH and NIL gamma-MSH content on the HSD were both markedly elevated over values in rats on the LSD (P<0.001); no difference in mean arterial pressure (MAP) occurred. In haloperidol-treated rats on the LSD, both plasma gamma-MSH and NIL gamma-MSH content were greater than in vehicle-treated rats (P<0.05) and did not increase further on the HSD; MAP was also no different. In bromocriptine-treated rats, neither plasma gamma-MSH nor NIL gamma-MSH content increased on the HSD versus LSD, and MAP was markedly elevated on the HSD (132+/-3 versus 106+/-3 mm Hg, P<0.001). Intravenous infusion of gamma-MSH (0.4 pmol/min) to bromocriptine-treated rats on the HSD restored plasma gamma-MSH concentration to a level appropriate for the HSD and lowered MAP from 131+/-6 to 108+/-5 mm Hg (P<0.01). These results demonstrate that the increases in NIL content and plasma concentration of gamma-MSH normally occurring during ingestion of the HSD are prevented by dopaminergic suppression of NIL function. This results in deficiency of gamma-MSH on the HSD and is accompanied by elevated blood pressure, which is corrected by infusion of the peptide. gamma-MSH may be an important component in the normal response to a HSD; interruption of this response leads to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Haim Mayan
- Institute of Clinical Pharmacology and Toxicology, Chaim Sheba Medical Center, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
16
|
Taylor NA, Van De Ven WJM, Creemers JWM. Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 2003; 17:1215-27. [PMID: 12832286 DOI: 10.1096/fj.02-0831rev] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proprotein convertases (PCs) are a seven-member family of endoproteases that activate proproteins by cleavage at basic motifs. Expression patterns for individual PCs vary widely, and all cells express several members. The list of substrates activated by PCs has grown to include neuropeptides, peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules, blood coagulation factors, plasma proteins, viral coat proteins, and bacterial toxins. It has become clear that the PC family plays a crucial role in a variety of physiological processes and is involved in the pathology of diseases such as cancer, viral infection, and Alzheimer's disease. Recent studies using PC inhibitors have demonstrated their potential as therapeutic targets. Despite the avalanche of in vitro data, the physiological role of individual PCs has remained largely elusive. Recently, however, knockout mouse models have been developed for furin, PC1, PC2, PC4, PC6B, LPC, and PACE4, and human patients with PC1 deficiency have been identified. The phenotypes range from undetectable to early embryonic lethality. The major lesson learned from these studies is that specific PC-substrate pairs do exist, but that there is substantial redundancy for the majority of substrates. To some extent, redundancy may be cell type and even species dependent.
Collapse
Affiliation(s)
- Neil A Taylor
- Laboratory of Molecular Oncology, Department for Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Gasthuisberg O/N 6, Herestraat 49, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
17
|
Rehfeld JF, Lindberg I, Friis-Hansen L. Increased synthesis but decreased processing of neuronal proCCK in prohormone convertase 2 and 7B2 knockout animals. J Neurochem 2002; 83:1329-37. [PMID: 12472887 DOI: 10.1046/j.1471-4159.2002.01244.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to its role as a gut hormone, cholecystokinin (CCK) is a widespread and potent neurotransmitter. Its biosynthesis requires endoproteolytic cleavage of proCCK at several mono- and dibasic sites by subtilisin-like prohormone convertases (PCs). Of these, PC1 and PC2 are specific for neuroendocrine cells. We have now examined the role of PC2 and its binding protein, 7B2, in the neuronal processing of proCCK by measurement of precursor, processing-intermediates and bioactive end-products in brain extracts from PC2- and 7B2-null mice and from corresponding controls. PC2-null mice displayed a nine-fold increase of cerebral proCCK concentrations, and a two-fold increase in the concentrations of the processing-intermediate, glycine-extended CCK, whereas the concentrations of transmitter-active (i.e. alpha-amidated and O-sulfated) CCK peptides were reduced (61%). Chromatography showed that O-sulfated CCK-8 still is the predominant transmitter-active CCK in PC2-null brains, but that the fraction of intermediate-sized CCK-peptides (CCK-58, -33 and -22) was eight-fold increased. 7B2-null brains displayed a similar pattern but with less pronounced precursor accumulation. In contrast with the cerebral changes, PC2 deficiency was without effect on proCCK synthesis and processing in intestinal endocrine cells, whereas 7B2 deficiency halved the concentration of bioactive CCK in the intestine. The results show that PC2 plays a major neuron-specific role in the processing of proCCK.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | |
Collapse
|