1
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
2
|
Rehmani T, Dias AP, Applin BD, Salih M, Tuana BS. SLMAP3 is essential for neurulation through mechanisms involving cytoskeletal elements, ABP, and PCP. Life Sci Alliance 2024; 7:e202302545. [PMID: 39366759 PMCID: PMC11452652 DOI: 10.26508/lsa.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
SLMAP3 is a tail-anchored membrane protein that targets subcellular organelles and is believed to regulate Hippo signaling. The global loss of SLMAP3 causes late embryonic lethality in mice, with some embryos exhibiting neural tube defects such as craniorachischisis. We show here that SLMAP3 -/- embryos display reduced length and increased width of neural plates, signifying arrested convergent extension. The expression of planar cell polarity (PCP) components Dvl2/3 and the activity of the downstream targets ROCK2, cofilin, and JNK1/2 were dysregulated in SLMAP3 -/- E12.5 brains. Furthermore, the cytoskeletal proteins (γ-tubulin, actin, and nestin) and apical components (PKCζ and ZO-1) were mislocalized in neural tubes of SLMAP3 -/- embryos, with a subsequent decrease in colocalization of PCP proteins (Fzd6 and pDvl2). However, no changes in PCP or cytoskeleton proteins were found in cultured neuroepithelial cells depleted of SLMAP3, suggesting an essential requirement for SLMAP3 for these processes in vivo for neurulation. The loss of SLMAP3 had no impact on Hippo signaling in SLMAP3 -/- embryos, brains, and neural tubes. Proteomic analysis revealed SLMAP3 in an interactome with cytoskeletal components, including nestin, tropomyosin 4, intermediate filaments, plectin, the PCP protein SCRIB, and STRIPAK members in embryonic brains. These results reveal a crucial role of SLMAP3 in neural tube development by regulating the cytoskeleton organization and PCP pathway.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
El-Sappah AH, Li J, Yan K, Zhu C, Huang Q, Zhu Y, Chen Y, El-Tarabily KA, AbuQamar SF. Fibrillin gene family and its role in plant growth, development, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1453974. [PMID: 39574446 PMCID: PMC11580037 DOI: 10.3389/fpls.2024.1453974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
Fibrillins (FBNs), highly conserved plastid lipid-associated proteins (PAPs), play a crucial role in plant physiology. These proteins, encoded by nuclear genes, are prevalent in the plastoglobules (PGs) of chloroplasts. FBNs are indispensable for maintaining plastid stability, promoting plant growth and development, and enhancing stress responses. The conserved PAP domain of FBNs was found across a wide range of photosynthetic organisms, from plants and cyanobacteria. FBN families are classified into 12 distinct groups/clades, with the 12th group uniquely present in algal-fungal symbiosis. This mini review delves into the structural attributes, phylogenetic classification, genomic features, protein-protein interactions, and functional roles of FBNs in plants, with a special focus on their effectiveness in mitigating abiotic stresses, particularly drought stress.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - ChaoYang Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Yu Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
5
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the forkhead-associated domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. Genetics 2024; 228:iyae106. [PMID: 38979911 PMCID: PMC11373509 DOI: 10.1093/genetics/iyae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at double-strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover-specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a 5-amino acid sequence, RPSKR, located between the DNA-binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full-length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a noncanonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt 2-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint and, in certain circumstances, exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
6
|
Willet AH, Ren L, Turner LA, Gould KL. Transient PP2A SIP complex localization to mitotic SPBs for SIN inhibition is mediated solely by the Csc1 FHA domain. Mol Biol Cell 2024; 35:br14. [PMID: 38865179 PMCID: PMC11321038 DOI: 10.1091/mbc.e24-04-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Many organisms utilize an actin- and myosin-based cytokinetic ring (CR) to help complete cytokinesis. In Schizosaccharomyces pombe, the Septation Initiation Network (SIN) promotes proper CR function and stability. The SIN is a conserved and essential signaling network consisting of a GTPase and a cascade of kinases assembled at the spindle pole body (SPB). The PP2A SIN inhibitory phosphatase (SIP) complex related to the STRIPAK phosphatase complex is one inhibitor of SIN signaling. The SIP consists of Csc1, Csc2, Csc3, Csc4, Paa1, and the phosphatase subunit Ppa3. Here, we determine that the SIP is anchored at the SPB via the Csc1 FHA domain and that constitutive SPB localization of the SIP is lethal due to persistent SIN inhibition. Disrupting SIP docking at the SPB with a point mutation within the FHA domain or eliminating phosphatase activity by introducing a point mutation within Ppa3 resulted in intact SIP complexes without SIN inhibitory function. Lastly, we defined the unique features of Ppa3 that allow it, but not two other PP2A catalytic subunits, to incorporate into the SIP. Overall, we provide insight into how the SIP complex assembles, localizes, and functions to counteract the SIN with spatiotemporal precision during cytokinesis.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
7
|
Aranda-Chan V, Cárdenas-Guerra RE, Otero-Pedraza A, Pacindo-Cabrales EE, Flores-Pucheta CI, Montes-Flores O, Arroyo R, Ortega-López J. Insights into Peptidyl-Prolyl cis- trans Isomerases from Clinically Important Protozoans: From Structure to Potential Biotechnological Applications. Pathogens 2024; 13:644. [PMID: 39204244 PMCID: PMC11357558 DOI: 10.3390/pathogens13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and Cryptosporidium hominis, all of which cause important neglected diseases. PPIases are classified as cyclophilins, FKBPs, or parvulins and play crucial roles in catalyzing the cis-trans isomerization of the peptide bond preceding a proline residue. This activity assists in correct protein folding. However, experimentally, the biological structure-function characterization of PPIases from these protozoan parasites has been poorly addressed. The recombinant production of these enzymes is highly relevant for this ongoing research. Thus, this review explores the structural diversity, functions, recombinant production, activity, and inhibition of protozoan PPIases. We also highlight their potential as biotechnological tools for the in vitro refolding of other recombinant proteins from these parasites. These applications are invaluable for the development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Verónica Aranda-Chan
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Alejandro Otero-Pedraza
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Esdras Enoc Pacindo-Cabrales
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| |
Collapse
|
8
|
Fu Z, MacKinnon R. Structure of the flotillin complex in a native membrane environment. Proc Natl Acad Sci U S A 2024; 121:e2409334121. [PMID: 38985763 PMCID: PMC11260169 DOI: 10.1073/pnas.2409334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, we used cryoelectron microscopy to determine the structures of the Flotillin protein complex, part of the Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) superfamily, from cell-derived vesicles without detergents. It forms a right-handed helical barrel consisting of 22 pairs of Flotillin1 and Flotillin2 subunits, with a diameter of 32 nm at its wider end and 19 nm at its narrower end. Oligomerization is stabilized by the C terminus, which forms two helical layers linked by a β-strand, and coiled-coil domains that enable strong charge-charge intersubunit interactions. Flotillin interacts with membranes at both ends; through its SPFH1 domains at the wide end and the C terminus at the narrow end, facilitated by hydrophobic interactions and lipidation. The inward tilting of the SPFH domain, likely triggered by phosphorylation, suggests its role in membrane curvature induction, which could be connected to its proposed role in clathrin-independent endocytosis. The structure suggests a shared architecture across the family of SPFH proteins and will promote further research into Flotillin's roles in cell biology.
Collapse
Affiliation(s)
- Ziao Fu
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
9
|
Weng Q, Wan L, Straker GC, Deegan TD, Duncker BP, Neiman AM, Luk E, Hollingsworth NM. An acidic loop in the FHA domain of the yeast meiosis-specific kinase Mek1 interacts with a specific motif in a subset of Mek1 substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595751. [PMID: 38826409 PMCID: PMC11142242 DOI: 10.1101/2024.05.24.595751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The meiosis-specific kinase Mek1 regulates key steps in meiotic recombination in the budding yeast, Saccharomyces cerevisiae. MEK1 limits resection at the double strand break (DSB) ends and is required for preferential strand invasion into homologs, a process known as interhomolog bias. After strand invasion, MEK1 promotes phosphorylation of the synaptonemal complex protein Zip1 that is necessary for DSB repair mediated by a crossover specific pathway that enables chromosome synapsis. In addition, Mek1 phosphorylation of the meiosis-specific transcription factor, Ndt80, regulates the meiotic recombination checkpoint that prevents exit from pachytene when DSBs are present. Mek1 interacts with Ndt80 through a five amino acid sequence, RPSKR, located between the DNA binding and activation domains of Ndt80. AlphaFold Multimer modeling of a fragment of Ndt80 containing the RPSKR motif and full length Mek1 indicated that RPSKR binds to an acidic loop located in the Mek1 FHA domain, a non-canonical interaction with this motif. A second protein, the 5'-3' helicase Rrm3, similarly interacts with Mek1 through an RPAKR motif and is an in vitro substrate of Mek1. Genetic analysis using various mutants in the MEK1 acidic loop validated the AlphaFold model, in that they specifically disrupt two-hybrid interactions with Ndt80 and Rrm3. Phenotypic analyses further showed that the acidic loop mutants are defective in the meiotic recombination checkpoint, and in certain circumstances exhibit more severe phenotypes compared to the NDT80 mutant with the RPSKR sequence deleted, suggesting that additional, as yet unknown, substrates of Mek1 also bind to Mek1 using an RPXKR motif.
Collapse
Affiliation(s)
- Qixuan Weng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Geburah C. Straker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tom. D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Bernard P. Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
10
|
Ahmad H, Ali A, Khalil AT, Ali R, Khan I, Khan MM, Ahmed I, Basharat Z, Alorini M, Mehmood A. Clinico-genomic findings, molecular docking, and mutational spectrum in an understudied population with breast cancer patients from KP, Pakistan. Front Genet 2024; 15:1383284. [PMID: 38784039 PMCID: PMC11111998 DOI: 10.3389/fgene.2024.1383284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we report the mutational profiles, pathogenicity, and their association with different clinicopathologic and sociogenetic factors in patients with Pashtun ethnicity for the first time. A total of 19 FFPE blocks of invasive ductal carcinoma (IDC) from the Breast Cancer (BC) tissue and 6 normal FFPE blocks were analyzed by whole-exome sequencing (WES). Various somatic and germline mutations were identified in cancer-related genes, i.e., ATM, CHEK2, PALB2, and XRCC2. Among a total of 18 mutations, 14 mutations were somatic and 4 were germline. The ATM gene exhibited the maximum number of mutations (11/18), followed by CHEK2 (3/18), PALB2 (3/18), and XRCC2 (1/18). Except one frameshift deletion, all other 17 mutations were nonsynonymous single-nucleotide variants (SNVs). SIFT prediction revealed 7/18 (38.8%) mutations as deleterious. PolyPhen-2 and MutationTaster identified 5/18 (27.7%) mutations as probably damaging and 10/18 (55.5%) mutations as disease-causing, respectively. Mutations like PALB2 p.Q559R (6/19; 31.5%), XRCC2 p.R188H (5/19; 26.31%), and ATM p.D1853N (4/19; 21.05%) were recurrent mutations and proposed to have a biomarker potential. The protein network prediction was performed using GeneMANIA and STRING. ISPRED-SEQ indicated three interaction site mutations which were further used for molecular dynamic simulation. An average increase in the radius of gyration was observed in all three mutated proteins revealing their perturbed folding behavior. Obtained SNVs were further correlated with various parameters related to the clinicopathological status of the tumors. Three mutation positions (ATM p. D1853N, CHEK2 p.M314I, and PALB2 p.T1029S) were found to be highly conserved. Finally, the wild- and mutant-type proteins were screened for two drugs: elagolix (DrugBank ID: DB11979) and LTS0102038 (a triterpenoid, isolated from the anticancer medicinal plant Fagonia indica). Comparatively, a higher number of interactions were noted for normal ATM with both compounds, as compared to mutants.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Asif Ali
- Institute of Pathology and Diagnostic Medicine (IPDM), Khyber Medical University, Peshawar, Pakistan
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Roshan Ali
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Ishaq Khan
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Mah Muneer Khan
- Department of Surgery, Khyber Teaching Hospital, Medical Teaching Institution, Peshawar, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics (Private) Limited, Islamabad, Pakistan
- Microbiological Analysis Team, Group for Biometrology, The Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | | | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Amna Mehmood
- Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Zhang X, Xue J, Jiang S, Zheng H, Wang C. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) deficiency impaired murine sperm motility. PeerJ 2024; 12:e17142. [PMID: 38563001 PMCID: PMC10984166 DOI: 10.7717/peerj.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Genetic knockout-based studies conducted in mice provide a powerful means of assessing the significance of a gene for fertility. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) contains a conserved FHA domain, that is present in many proteins with phospho-threonine reader activity. How FHAD1 functions in male fertility, however, remains uncertain. Methods Fhad1-/- mice were generated by CRISPR/Cas9-mediated knockout, after which qPCR was used to evaluate changes in gene expression, with subsequent analyses of spermatogenesis and fertility. The testis phenotypes were also examined using immunofluorescence and histological staining, while sperm concentrations and motility were quantified via computer-aided sperm analysis. Cellular apoptosis was assessed using a TUNEL staining assay. Results The Fhad1-/-mice did not exhibit any abnormal changes in fertility or testicular morphology compared to wild-type littermates. Histological analyses confirmed that the testicular morphology of both Fhad1-/-and Fhad1+/+ mice was normal, with both exhibiting intact seminiferous tubules. Relative to Fhad1+/+ mice, however, Fhad1-/-did exhibit reductions in the total and progressive motility of epididymal sperm. Analyses of meiotic division in Fhad1-/-mice also revealed higher levels of apoptotic death during the first wave of spermatogenesis. Discussion The findings suggest that FHAD1 is involved in both meiosis and the modulation of sperm motility.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Reproductive Health and Infertility Clinic, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangyang Xue
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shan Jiang
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haoyu Zheng
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gynaecology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Chang Wang
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
- College of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
12
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, origin, and evolution of the ESCRT systems. mBio 2024; 15:e0033524. [PMID: 38380930 PMCID: PMC10936438 DOI: 10.1128/mbio.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, Origin and Evolution of the ESCRT Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579148. [PMID: 38903064 PMCID: PMC11188069 DOI: 10.1101/2024.02.06.579148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Endosomal Sorting Complexes Required for Transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold, using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The Last Archaeal Common Ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
14
|
Liu S, Zhuang Z, Liu F, Yuan X, Zhang Z, Liang X, Li X, Chen Y. Identification of potential biomarkers and infiltrating immune cells from scalp psoriasis. Gene 2024; 893:147918. [PMID: 37871808 DOI: 10.1016/j.gene.2023.147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Scalp psoriasis seriously affects the appearance and psychological status of patients. The aim of this study was to investigate the effect and potential mechanism of RPL9 and TIFA in scalp psoriasis, so as to provide a precise and effective way for the clinical treatment of scalp psoriasis. METHODS The Gene Expression Omnibus (GEO) database was employed to download the GSE75343 dataset to search for differentially expressed genes (DEGs) in scalp psoriasis through Sangerbox. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) enrichment analysis, functional enrichment analysis, immune cell infiltration analysis, immune responses and correlation analysis with 12 hub genes were performed. Then, STRING was used to develop a protein-protein interaction (PPI) network, used Cytoscape to locate hub genes, and SVM-RFE and random forest were utilized to identified RPL9 as the targeted gene. TIFA-RPL9 interaction predictions were made viathe Open Targets Platform and Uniprot. Further, the RPL9 and TIFA expression, molecular mechanism, and function were assessed in scalp psoriasis. RESULTS Immunohistochemistry, qPCR, and western blotting verified that RPL9 and TIFA were highly expressed in lesional tissues of scalp psoriasis and IL17A-stimulated HaCaT cells. RPL9 knockdown effectively suppressed the proliferative capacity of IL17A-stimulated HaCaT cells in the CCK8 assay. The co-immunoprecipitation results revealed that RPL9 could interact with TIFA in IL17A-stimulated HaCaT cells. In qPCR and western blotting, RPL9 knockdown significantly inhibited TIFA at the mRNA and protein levels in IL17A-stimulated HaCaT cells. In ELISA, the secretion of TNF-α was markedly inhibited after downregulating RPL9 in IL17A-stimulated HaCaT cells. CONCLUSION To our knowledge, we have elucidated the expression and role of RPL9 and TIFA in scalp psoriatic skin and keratinocytes, and our findings confirm that RPL9 might act as a candidate therapeutic target for scalp psoriasis.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhe Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fanghua Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China; Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiuqing Yuan
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Liang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xinhui Li
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Hong Y, Chen B, Wang C, Gui R, Zhai X, Qian Q, Ren X, Xie X, Jiang C. circPPP2R4 promotes colorectal cancer progression and reduces ROS production through the miR-646/FOXK1 axis. Mol Carcinog 2024; 63:106-119. [PMID: 37750597 DOI: 10.1002/mc.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Circular RNAs (circRNAs) play important roles in colorectal cancer (CRC) development and progression. This study aimed to investigate the function and molecular mechanism of circPPP2R4 in CRC. Based on bioinformatic analyses and validation by qRT-PCR, we identified a novel circRNA, circPPP2R4, which was upregulated in CRC tissues. Receiver operating characteristic curve analysis implied a high diagnostic value of circPPP2R4 for CRC. Additionally, high circPPP2R4 levels were positively correlated with advanced clinical stage and lymph node metastasis. Functionally, circPPP2R4 overexpression facilitated CRC cells proliferation, migration and invasion, whereas circPPP2R4 knockdown attenuated the malignant behaviors. In mouse models, circPPP2R4 overexpression remarkably promoted tumor growth and lung metastasis. Mechanistically, a series of experiments containing RIP, RNA pull-down, and dual-luciferase reporter assays revealed the circPPP2R4/miR-646/FOXK1 axis in CRC. Further experiments were conducted to verify that circPPP2R4 reduced reactive oxygen species generation to exert its oncogenic function by sponging miR-646 to upregulate FOXK1 expression. For the first time, we identified the regulatory role of circPPP2R4 in CRC pathogenesis, providing a potential diagnostic biomarker and therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Gui
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| |
Collapse
|
16
|
Akbar MA, Mohd Yusof NY, Usup G, Ahmad A, Baharum SN, Bunawan H. Nutrient Deficiencies Impact on the Cellular and Metabolic Responses of Saxitoxin Producing Alexandrium minutum: A Transcriptomic Perspective. Mar Drugs 2023; 21:497. [PMID: 37755110 PMCID: PMC10532982 DOI: 10.3390/md21090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Gires Usup
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Asmat Ahmad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Hamidun Bunawan
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
17
|
Zajkowski T, Lee MD, Sharma S, Vallota-Eastman A, Kuska M, Malczewska M, Rothschild LJ. Conserved functions of prion candidates suggest a primeval role of protein self-templating. Proteins 2023; 91:1298-1315. [PMID: 37519023 DOI: 10.1002/prot.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Universities Space Research Association at NASA Ames Research Center, Mountain View, California, USA
- Polish Astrobiology Society, Warsaw, Poland
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- KBR, NASA Ames Research Center, Mountain View, California, USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Alec Vallota-Eastman
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Mikołaj Kuska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Małgorzata Malczewska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Mountain View, California, USA
| |
Collapse
|
18
|
Jiang Z, Lin Z, Gan Q, Wu P, Zhang X, Xiao Y, She Q, Ni J, Shen Y, Huang Q. The FHA domain protein ArnA functions as a global DNA damage response repressor in the hyperthermophilic archaeon Saccharolobus islandicus. mBio 2023; 14:e0094223. [PMID: 37389462 PMCID: PMC10470591 DOI: 10.1128/mbio.00942-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Forkhead-associated (FHA) domain proteins specifically recognize phosphorylated threonine via the FHA domain and are involved in signal transduction in various processes especially DNA damage response (DDR) and cell cycle regulation in eukaryotes. Although FHA domain proteins are found in prokaryotes, archaea, and bacteria, their functions are far less clear as compared to the eukaryotic counterparts, and it has not been studied whether archaeal FHA proteins play a role in DDR. Here, we have characterized an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) by genetic, biochemical, and transcriptomic approaches. We find that ΔSisarnA exhibits higher resistance to DNA damage agent 4-nitroquinoline 1-oxide (NQO). The transcription of ups genes, encoding the proteins for pili-mediated cell aggregation and cell survival after DDR, is elevated in ΔSisarnA. The interactions of SisArnA with two predicted partners, SisvWA1 (SisArnB) and SisvWA2 (designated as SisArnE), were enhanced by phosphorylation in vitro. ΔSisarnB displays higher resistance to NQO than the wild type. In addition, the interaction between SisArnA and SisArnB, which is reduced in the NQO-treated cells, is indispensable for DNA binding in vitro. These indicate that SisArnA and SisArnB work together to inhibit the expression of ups genes in vivo. Interestingly, ΔSisarnE is more sensitive to NQO than the wild type, and the interaction between SisArnA and SisArnE is strengthened after NQO treatment, suggesting a positive role of SisArnE in DDR. Finally, transcriptomic analysis reveals that SisArnA represses a number of genes, implying that archaea apply the FHA/phospho-peptide recognition module for extensive transcriptional regulation. IMPORTANCE Cellular adaption to diverse environmental stresses requires a signal sensor and transducer for cell survival. Protein phosphorylation and its recognition by forkhead-associated (FHA) domain proteins are widely used for signal transduction in eukaryotes. Although FHA proteins exist in archaea and bacteria, investigation of their functions, especially those in DNA damage response (DDR), is limited. Therefore, the evolution and functional conservation of FHA proteins in the three domains of life is still a mystery. Here, we find that an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) represses the transcription of pili genes together with its phosphorylated partner SisArnB. SisArnA derepression facilitates DNA exchange and repair in the presence of DNA damage. The fact that more genes including a dozen of those involved in DDR are found to be regulated by SisArnA implies that the FHA/phosphorylation module may serve as an important signal transduction pathway for transcriptional regulation in archaeal DDR.
Collapse
Affiliation(s)
- Zhichao Jiang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuanxi Xiao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
19
|
Kim D, Crippen TL, Dhungel L, Delclos PJ, Tomberlin JK, Jordan HR. Behavioral interplay between mosquito and mycolactone produced by Mycobacterium ulcerans and bacterial gene expression induced by mosquito proximity. PLoS One 2023; 18:e0289768. [PMID: 37535670 PMCID: PMC10399876 DOI: 10.1371/journal.pone.0289768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Mycolactone is a cytotoxic lipid metabolite produced by Mycobacterium ulcerans, the environmental pathogen responsible for Buruli ulcer, a neglected tropical disease. Mycobacterium ulcerans is prevalent in West Africa, particularly found in lentic environments, where mosquitoes also occur. Researchers hypothesize mosquitoes could serve as a transmission mechanism resulting in infection by M. ulcerans when mosquitoes pierce skin contaminated with M. ulcerans. The interplay between the pathogen, mycolactone, and mosquito is only just beginning to be explored. A triple-choice assay was conducted to determine the host-seeking preference of Aedes aegypti between M. ulcerans wildtype (MU, mycolactone active) and mutant (MUlac-, mycolactone inactive). Both qualitative and quantitative differences in volatile organic compounds' (VOCs) profiles of MU and MUlac- were determined by GC-MS. Additionally, we evaluated the interplay between Ae. aegypti proximity and M. ulcerans mRNA expression. The results showed that mosquito attraction was significantly greater (126.0%) to an artificial host treated with MU than MUlac-. We found that MU and MUlac produced differential profiles of VOCs associated with a wide range of biological importance from quorum sensing (QS) to human odor components. RT-qPCR assays showed that mycolactone upregulation was 24-fold greater for MU exposed to Ae. aegypti in direct proximity. Transcriptome data indicated significant induction of ten chromosomal genes of MU involved in stress responses and membrane protein, compared to MUlac- when directly having access to or in near mosquito proximity. Our study provides evidence of possible interkingdom interactions between unicellular and multicellular species that MU present on human skin is capable of interreacting with unrelated species (i.e., mosquitoes), altering its gene expression when mosquitoes are in direct contact or proximity, potentially impacting the production of its VOCs, and consequently leading to the stronger attraction of mosquitoes toward human hosts. This study elucidates interkingdom interactions between viable M. ulcerans bacteria and Ae. aegypti mosquitoes, which rarely have been explored in the past. Our finding opens new doors for future research in terms of disease ecology, prevalence, and pathogen dispersal outside of the M. ulcerans system.
Collapse
Affiliation(s)
- Dongmin Kim
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Tawni L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, Texas, United States of America
| | - Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Pablo J Delclos
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas, United States of America
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| |
Collapse
|
20
|
Zhou M, Yao Y, Wang X, Zha L, Chen Y, Li Y, Wang M, Yu C, Zhou Y, Li Q, Cao Z, Wu J, Shi S, Jiang D, Long D, Wang J, Wang Q, Cheng X, Liao Y, Tu X. Crosstalk between KIF1C and PRKAR1A in left atrial myxoma. Commun Biol 2023; 6:724. [PMID: 37452081 PMCID: PMC10349109 DOI: 10.1038/s42003-023-05094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Cardiac myxoma (CM) is the most common benign cardiac tumor, and most CMs are left atrial myxomas (LAMs). Six variations of KIF1C, c.899 A > T, c.772 T > G, c.352 A > T, c.2895 C > T, c.3049 G > A, and c.*442_*443dup in left atrial myxoma tissues are identified by whole-exome sequencing (WES) and Sanger sequencing. RNA-seq and function experiments show the reduction of the expression of KIF1C and PRKAR1A caused by rare variations of KIF1C. KIF1C is observed to be located in the nucleus, bind to the promoter region of PRKAR1A, and regulate its transcription. Reduction of KIF1C decreases PRKAR1A expression and activates the PKA, which causes an increase in ERK1/2 phosphorylation and SRC-mediated STAT3 activation, a reduction of CDH1, TP53, CDKN1A, and BAX, and eventually promotes tumor formation both in vitro and in vivo. The results suggest that inhibition of KIF1C promotes the pathogenesis of LAM through positive feedback formed by the crosstalk between KIF1C and PRKAR1A.
Collapse
Affiliation(s)
- Mengchen Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Xiangyi Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yilin Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanze Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qianqian Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhubing Cao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shumei Shi
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Deyong Long
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jiangang Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
21
|
Islam A, Chakraborty A, Gambardella S, Campopiano R, Sarker AH, Boldogh I, Hazra T. Functional analysis of a conserved site mutation in the DNA end processing enzyme PNKP leading to ataxia with oculomotor apraxia type 4 in humans. J Biol Chem 2023; 299:104714. [PMID: 37061005 PMCID: PMC10197107 DOI: 10.1016/j.jbc.2023.104714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Polynucleotide kinase 3'-phosphatase (PNKP), an essential DNA end-processing enzyme in mammals with 3'-phosphatase and 5'-kinase activities, plays a pivotal role in multiple DNA repair pathways. Its functional deficiency has been etiologically linked to various neurological disorders. Recent reports have shown that mutation at a conserved glutamine (Gln) in PNKP leads to late-onset ataxia with oculomotor apraxia type 4 (AOA4) in humans and embryonic lethality in pigs. However, the molecular mechanism underlying such phenotypes remains elusive. Here, we report that the enzymatic activities of the mutant versus WT PNKP are comparable; however, cells expressing mutant PNKP and peripheral blood mononuclear cells (PBMCs) of AOA4 patients showed a significant amount of DNA double-strand break accumulation and consequent activation of the DNA damage response. Further investigation revealed that the nuclear localization of mutant PNKP is severely abrogated, and the mutant proteins remain primarily in the cytoplasm. Western blot analysis of AOA4 patient-derived PBMCs also revealed the presence of mutated PNKP predominantly in the cytoplasm. To understand the molecular determinants, we identified that mutation at a conserved Gln residue impedes the interaction of PNKP with importin alpha but not with importin beta, two highly conserved proteins that mediate the import of proteins from the cytoplasm into the nucleus. Collectively, our data suggest that the absence of PNKP in the nucleus leads to constant activation of the DNA damage response due to persistent accumulation of double-strand breaks in the mutant cells, triggering death of vulnerable brain cells-a potential cause of neurodegeneration in AOA4 patients.
Collapse
Affiliation(s)
- Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stefano Gambardella
- IRCCS Neuromed & Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Rosa Campopiano
- IRCCS Neuromed & Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Altaf H Sarker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tapas Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
22
|
Wang Q. The role of forkhead-associated (FHA)-domain proteins in plant biology. PLANT MOLECULAR BIOLOGY 2023; 111:455-472. [PMID: 36849846 DOI: 10.1007/s11103-023-01338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The forkhead-associated (FHA) domain, a well-characterized small protein module that mediates protein-protein interactions by targeting motifs containing phosphothreonine, is present in many regulatory molecules like protein kinase, phosphatases, transcription factors, and other functional proteins. FHA-domain containing proteins in yeast and human are involved in a large variety of cellular processes such as DNA repair, cell cycle arrest, or pre-mRNA processing. Since the first FHA-domain protein, kinase-associated protein phosphatase (KAPP) was found in plants, the interest in plant FHA-containing proteins has increased dramatically, mainly due to the important role of FHA domain-containing proteins in plant growth and development. In this review, we provide a comprehensive overview of the fundamental properties of FHA domain-containing proteins in plants, and systematically summarized and analyzed the research progress of proteins containing the FHA domain in plants. We also emphasized that AT5G47790 and its homologs may play an important role as the regulatory subunit of protein phosphatase 1 (PP1) in plants.
Collapse
Affiliation(s)
- Qiuling Wang
- Institute of Future Agriculture, State Key Laboratory of Crop Stress Biology for Arid Areas, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
23
|
Zhang L, Stauffer WT, Wang JS, Wu F, Yu Z, Liu C, Kim HJ, Dernburg AF. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. eLife 2023; 12:e84492. [PMID: 36700544 PMCID: PMC9998088 DOI: 10.7554/elife.84492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Meiotic chromosome segregation relies on synapsis and crossover (CO) recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break (DSB) induction. Inactivation of CHK-2 terminates DSB formation and enables CO designation and cell cycle progression. These findings illuminate how meiotic cells ensure CO formation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Weston T Stauffer
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - John S Wang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Fan Wu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Chenshu Liu
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
24
|
Law HCH, Noe D, Woods NT. Interactome Profiling of DNA Damage Response (DDR) Mediators with Immunoprecipitation-Mass Spectrometry. Methods Mol Biol 2023; 2701:185-197. [PMID: 37574483 DOI: 10.1007/978-1-0716-3373-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Immunoprecipitation-mass spectrometry (IP-MS) is a versatile tool to probe for global protein-protein interactions (PPIs) in biological samples. Such interactions coordinate complex biological processes, such as the DNA damage response (DDR). Induction of DNA damage activates signaling networks where posttranslational modifications cause PPI that facilitate DNA repair and cell cycle coordination. Protein interactome profiling of DDR sensors, transducers, and effectors has the potential to identify novel DDR mechanisms that could advance our understanding and treatment of diseases associated with DDR defects, such as cancer. The protocol described here is a routine PPI analysis procedure that can be performed on samples stimulated with DNA damage. All processes and reagents are optimized for maximum sensitivity on the interactome and minimal contamination for the mass spectrometer.
Collapse
Affiliation(s)
- Henry C-H Law
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dragana Noe
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Current address: Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Molecular convergence by differential domain acquisition is a hallmark of chromosomal passenger complex evolution. Proc Natl Acad Sci U S A 2022; 119:e2200108119. [PMID: 36227914 DOI: 10.1073/pnas.2200108119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin, and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Arabidopsis Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal and a reduced expression of BORIs causes severe developmental defects. Similar to Survivin, we find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized Survivin orthologs but by an FHA domain, a widely conserved phosphate-binding module. We find that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation with the other two scaffold components and that the addition of a phosphate-binding domain, necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups. Using sensitive similarity searches, we find conservation of this helical domain between animals and plants and identify the missing CPC component in most eukaryotic supergroups. Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, likely reflecting the situation in the last eukaryotic common ancestor.
Collapse
|
26
|
The Antibacterial Type VII Secretion System of Bacillus subtilis: Structure and Interactions of the Pseudokinase YukC/EssB. mBio 2022; 13:e0013422. [PMID: 36154281 PMCID: PMC9600267 DOI: 10.1128/mbio.00134-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Type VIIb secretion systems (T7SSb) were recently proposed to mediate different aspects of Firmicutes physiology, including bacterial pathogenicity and competition. However, their architecture and mechanism of action remain largely obscure. Here, we present a detailed analysis of the T7SSb-mediated bacterial competition in Bacillus subtilis, using the effector YxiD as a model for the LXG secreted toxins. By systematically investigating protein-protein interactions, we reveal that the membrane subunit YukC contacts all T7SSb components, including the WXG100 substrate YukE and the LXG effector YxiD. YukC’s crystal structure shows unique features, suggesting an intrinsic flexibility that is required for T7SSb antibacterial activity. Overall, our results shed light on the role and molecular organization of the T7SSb and demonstrate the potential of B. subtilis as a model system for extensive structure-function studies of these secretion machineries.
Collapse
|
27
|
Shen R, Zheng K, Zhou Y, Chi X, Pan H, Wu C, Yang Y, Zheng Y, Pan D, Liu B. A dRASSF-STRIPAK-Imd-JAK/STAT axis controls antiviral immune response in Drosophila. Cell Rep 2022; 40:111143. [PMID: 35905720 DOI: 10.1016/j.celrep.2022.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.
Collapse
Affiliation(s)
- Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
28
|
Bezerra RP, Conniff AS, Uversky VN. Comparative study of structures and functional motifs in lectins from the commercially important photosynthetic microorganisms. Biochimie 2022; 201:63-74. [PMID: 35839918 DOI: 10.1016/j.biochi.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Photosynthetic microorganisms, specifically cyanobacteria and microalgae, can synthesize a vast array of biologically active molecules, such as lectins, that have great potential for various biotechnological and biomedical applications. However, since the structures of these proteins are not well established, likely due to the presence of intrinsically disordered regions, our ability to better understand their functionality is hampered. We embarked on a study of the carbohydrate recognition domain (CRD), intrinsically disordered regions (IDRs), amino acidic composition, as well as and functional motifs in lectins from cyanobacteria of the genus Arthrospira and microalgae Chlorella and Dunaliella genus using a combination of bioinformatics techniques. This search revealed the presence of five distinctive CRD types differently distributed between the genera. Most CRDs displayed a group-specific distribution, except to C. sorokiniana possessing distinctive CRD probably due to its specific lifestyle. We also found that all CRDs contain short IDRs. Bacterial lectin of Arthrospira prokarionte showed lower intrinsic disorder and proline content when compared to the lectins from the eukaryotic microalgae (Chlorella and Dunaliella). Among the important functions predicted in all lectins were several specific motifs, which directly interacts with proteins involved in the cell-cycle control and which may be used for pharmaceutical purposes. Since the aforementioned properties of each type of lectin were investigated in silico, they need experimental confirmation. The results of our study provide an overview of the distribution of CRD, IDRs, and functional motifs within lectin from the commercially important microalgae.
Collapse
Affiliation(s)
- Raquel P Bezerra
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Dom Manoel de Medeiros Ave, Recife, PE, 52171-900, Brazil.
| | - Amanda S Conniff
- Department of Medical Engineering, Morsani College of Medicine and College of Engineering, University of South Florida, Tampa, FL, 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
29
|
Bobrovskyy M, Oh SY, Missiakas D. Contribution of the EssC ATPase to the assembly of the type 7b secretion system in Staphylococcus aureus. J Biol Chem 2022; 298:102318. [PMID: 35921891 PMCID: PMC9436818 DOI: 10.1016/j.jbc.2022.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Secretion systems utilize ATPase activity to facilitate the translocation of proteins into and across membranes. In bacteria, the universally conserved SecA ATPase binds a large repertoire of preproteins and interacts with the SecYEG translocon. In contrast, the type 7b secretion system (T7bSS) of Staphylococcus aureus supports the secretion of a restricted subset of proteins. T7bSSs are found in several Firmicutes as gene clusters encoding secreted WXG100 proteins and FtsK/SpoIIIE-like ATPase. In S. aureus, this ATPase is called EssC and comprises two cytosolic forkhead-associated domains (FHA1–2), two membrane-spanning segments (TM1–2), and four cytosolic modules named DUF (domain of unknown function) and ATPases1-3 (D1D2D3). However, a detailed understanding of the interactions of EssC in the T7bSS is not clear. Here, we tagged EssC and performed affinity chromatography of detergent-solubilized extracts of wild type and isogenic mutants of S. aureus. We found that EssC recruits EsaA, EssA, and EssB in a complex referred to as the ESS (ESAT-6 like secretion system) translocon, and secreted substrates were not required for translocon assembly. Furthermore, deletions of FHA1 and DUF rendered EssC unstable, whereas FHA2 was required for association with EssB. This interaction was independent of EsaA, but EsaA was required to recruit EssA to the EssC–EssB complex. Finally, we show that assembly of the ESS translocon was impaired upon mutation of D2 structural motifs. Together, our data indicate that the ESS translocon is maintained fully assembled at the plasma membrane and that D2 is fundamental in sustaining the integrity of this complex.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA; Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, Illinois, USA.
| |
Collapse
|
30
|
A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling. PLoS Pathog 2022; 18:e1010514. [PMID: 35675371 PMCID: PMC9236257 DOI: 10.1371/journal.ppat.1010514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/27/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed. Trypanosoma brucei is the causative agent of African trypanosomiasis (sleeping sickness) in humans and nagana in cattle. Its unusual genomic organisation featuring large polycistronic units requires a general mechanism of transcription initiation, because individual gene promoters are mostly absent. Despite the fact that the histone variant H2A.Z has previously been identified as a key player of transcription regulation, the complex responsible for correct H2A.Z incorporation at transcription start sites (TSS) remains elusive. In other eukaryotes, SWR1, a SNF2 ATPase-associated chromatin remodelling complex, is responsible for correct incorporation of this histone variant. This study identified a SWR1-like complex in T. brucei. Depletion of the SNF2 ATPase resulted in a reduction of H2A.Z incorporation at the TSS and decreased steady-state mRNA levels accompanied by chromatin condensation. In addition to the SWR1-like complex, we also identified a trypanosome-specific HAT2 complex that includes the histone acetyltransferases HAT2, a key player in the H2A.Z incorporation process. This complex has a trypanosome-specific composition that is different from the NuA4/TIP60 complex in Saccharomyces cerevisiae.
Collapse
|
31
|
Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci 2022; 135:275629. [PMID: 35674256 DOI: 10.1242/jcs.258932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
What do we know about Ki-67, apart from its usefulness as a cell proliferation biomarker in histopathology? Discovered in 1983, the protein and its regulation of expression and localisation throughout the cell cycle have been well characterised. However, its function and molecular mechanisms have received little attention and few answers. Although Ki-67 has long been thought to be required for cell proliferation, recent genetic studies have conclusively demonstrated that this is not the case, as loss of Ki-67 has little or no impact on cell proliferation. In contrast, Ki-67 is important for localising nucleolar material to the mitotic chromosome periphery and for structuring perinucleolar heterochromatin, and emerging data indicate that it also has critical roles in cancer development. However, its mechanisms of action have not yet been fully identified. Here, we review recent findings and propose the hypothesis that Ki-67 is involved in structuring cellular sub-compartments that assemble by liquid-liquid phase separation. At the heterochromatin boundary, this may control access of chromatin regulators, with knock-on effects on gene expression programmes. These changes allow adaptation of the cell to its environment, which, for cancer cells, is a hostile one. We discuss unresolved questions and possible avenues for future exploration.
Collapse
Affiliation(s)
- Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Liliana Krasinska
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
32
|
Wang G, Fan C, Wang H, Jia C, Li X, Yang J, Zhang T, Gao S, Min X, Huang J. Type VI secretion system-associated FHA domain protein TagH regulates the hemolytic activity and virulence of Vibrio cholerae. Gut Microbes 2022; 14:2055440. [PMID: 35383540 PMCID: PMC8993066 DOI: 10.1080/19490976.2022.2055440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The type VI secretion system (T6SS) and hemolysin HlyA are important virulence factors in Vibrio cholerae. The forkhead-associated (FHA) domain is a conserved phosphopeptide binding domain that exists in many regulatory modules. The FHA domain protein-encoding gene is conserved in the T6SS gene cluster and regulates the assembly and secretion of the T6SS. This study shows for the first time that the FHA domain protein TagH plays a role in controlling the hemolytic activity of V. cholerae, in addition to regulating the T6SS. TagH negatively regulates HlyA expression at the transcriptional and post-translational levels. The phosphopeptide binding sites of the FHA domain of TagH play a key role in the regulation of hemolytic activity. The deletion of tagH enhances the intestinal pathogenicity and extraintestinal invasion ability of V. cholerae, which mainly depend on the expression of HlyA. This study provides evidence that helps unravel the novel regulatory role of TagH in HlyA and provides critical insights which will aid in the development of strategies to manage HlyA.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chan Fan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengyi Jia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoting Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China,CONTACT Xun Min Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China,Jian Huang School of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi,Guizhou, China
| |
Collapse
|
33
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules 2022; 12:biom12020210. [PMID: 35204711 PMCID: PMC8961621 DOI: 10.3390/biom12020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
TOR and PKA signaling are the major growth-regulatory nutrient-sensing pathways in S. cerevisiae. A number of experimental findings demonstrated a close relationship between these pathways: Both are responsive to glucose availability. Both regulate ribosome production on the transcriptional level and repress autophagy and the cellular stress response. Sch9, a major downstream effector of TORC1 presumably shares its kinase consensus motif with PKA, and genetic rescue and synthetic defects between PKA and Sch9 have been known for a long time. Further, studies in the first decade of this century have suggested direct regulation of PKA by TORC1. Nonetheless, the contribution of a potential direct cross-talk vs. potential sharing of targets between the pathways has still not been completely resolved. What is more, other findings have in contrast highlighted an antagonistic relationship between the two pathways. In this review, I explore the association between TOR and PKA signaling, mainly by focusing on proteins that are commonly referred to as shared TOR and PKA targets. Most of these proteins are transcription factors which to a large part explain the major transcriptional responses elicited by TOR and PKA upon nutrient shifts. I examine the evidence that these proteins are indeed direct targets of both pathways and which aspects of their regulation are targeted by TOR and PKA. I further explore if they are phosphorylated on shared sites by PKA and Sch9 or when experimental findings point towards regulation via the PP2ASit4/PP2A branch downstream of TORC1. Finally, I critically review data suggesting direct cross-talk between the pathways and its potential mechanism.
Collapse
|
35
|
Han Y, Peng Y, Liu S, Wang X, Cai C, Guo C, Chen Y, Gao L, Huang Q, He M, Shen E, Long J, Yu J, Shen H, Zeng S. tRF3008A suppresses the progression and metastasis of colorectal cancer by destabilizing FOXK1 in an AGO-dependent manner. J Exp Clin Cancer Res 2022; 41:32. [PMID: 35065674 PMCID: PMC8783529 DOI: 10.1186/s13046-021-02190-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
tRNA-derived fragments (tRFs) have been shown to have critical regulatory roles in cancer biology. However, the contributions of tRFs to colorectal cancer (CRC) remain largely unknown.
Methods
tRF3008A (a tRFRNA derived from tRNAVal) was identified by RNA sequencing and validated by quantitative reverse transcription PCR. The role of tRF3008A in CRC progression was assessed both in vitro and in vivo, and its downstream target genes were identified and validated in CRC cells. RNA pull-down with mass spectrometry and AGO-RIP were used to confirm the interaction of tRF3008A and AGO proteins. The clinical implications of tRF3008A were assessed in CRC tissues and blood samples.
Results
The expression of tRF3008A was reduced in colorectal cancer, and its reduction was significantly correlated with advanced and metastatic disease in CRC. Patients with low tRF3008A expression showed significantly shorter DFS, and multivariate analysis identified tRF3008A as an independent prognostic biomarker in CRC. Functionally, tRF3008A inhibits the proliferation and migration of CRC in vivo and in vitro by repressing endogenous FOXK1, a positive regulator of the Wnt/β-catenin pathway. Mechanistically, tRF3008A binds to AGO proteins as a guide to destabilize oncogenic FOXK1 transcript.
Conclusions
tRF3008A suppresses the metastasis and progression of colorectal cancer by destabilizing FOXK1 in an AGO-dependent manner.
Collapse
|
36
|
Yang GH, Fontaine DA, Lodh S, Blumer JT, Roopra A, Davis DB. TCF19 Impacts a Network of Inflammatory and DNA Damage Response Genes in the Pancreatic β-Cell. Metabolites 2021; 11:metabo11080513. [PMID: 34436454 PMCID: PMC8400192 DOI: 10.3390/metabo11080513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.
Collapse
Affiliation(s)
- Grace H. Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Danielle A. Fontaine
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Sukanya Lodh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Joseph T. Blumer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
37
|
Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021; 11:210120. [PMID: 34375547 PMCID: PMC8354752 DOI: 10.1098/rsob.210120] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Ki-67 is one of the most famous marker proteins used by histologists to identify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed on PubMed. Here, we review some of the current literature regarding the protein. Despite its clinical importance, our knowledge of the molecular biology and biochemistry of Ki-67 is far from complete, and its exact molecular function(s) remain enigmatic. Furthermore, reports describing Ki-67 function are often contradictory, and it has only recently become clear that this proliferation marker is itself dispensable for cell proliferation. We discuss the unusual organization of the protein and its mRNA and how they relate to various models for its function. In particular, we focus on ways in which the intrinsically disordered structure of Ki-67 might aid in the assembly of the still-mysterious mitotic chromosome periphery compartment by controlling liquid-liquid phase separation of nucleolar proteins and RNAs.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Y. Kochanova
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Caitlin Reid
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
38
|
Hoggard T, Hollatz AJ, Cherney RE, Seman MR, Fox CA. The Fkh1 Forkhead associated domain promotes ORC binding to a subset of DNA replication origins in budding yeast. Nucleic Acids Res 2021; 49:10207-10220. [PMID: 34095951 PMCID: PMC8501964 DOI: 10.1093/nar/gkab450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The pioneer event in eukaryotic DNA replication is binding of chromosomal DNA by the origin recognitioncomplex (ORC). The ORC-DNA complex directs the formation of origins, the specific chromosomal regions where DNA synthesis initiates. In all eukaryotes, incompletely understood features of chromatin promote ORC-DNA binding. Here, we uncover a role for the Fkh1 (Forkhead homolog) protein and its forkhead associated (FHA) domain in promoting ORC-origin binding and origin activity at a subset of origins in Saccharomyces cerevisiae. Several of the FHA-dependent origins examined required a distinct Fkh1 binding site located 5′ of and proximal to their ORC sites (5′-FKH-T site). Genetic and molecular experiments provided evidence that the Fkh1-FHA domain promoted origin activity directly through Fkh1 binding to this 5′ FKH-T site. Nucleotide substitutions within two relevant origins that enhanced their ORC-DNA affinity bypassed the requirement for their 5′ FKH-T sites and for the Fkh1-FHA domain. Significantly, assessment of ORC-origin binding by ChIPSeq provided evidence that this mechanism was relevant at ∼25% of yeast origins. Thus, the FHA domain of the conserved cell-cycle transcription factor Fkh1 enhanced origin selection in yeast at the level of ORC-origin binding.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Allison J Hollatz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Rachel E Cherney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Melissa R Seman
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
39
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
40
|
Yoblinski AR, Chung S, Robinson SB, Forester KE, Strahl BD, Dronamraju R. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100721. [PMID: 33933452 PMCID: PMC8165551 DOI: 10.1016/j.jbc.2021.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the deleterious lesions that are both endogenous and exogenous in origin and are repaired by nonhomologous end joining or homologous recombination. However, the molecular mechanisms responsible for maintaining genome stability remain incompletely understood. Here, we investigate the role of two E3 ligases, Dma1 and Dma2 (homologs of human RNF8), in the maintenance of genome stability in budding yeast. Using yeast spotting assays, chromatin immunoprecipitation and plasmid and chromosomal repair assays, we establish that Dma1 and Dma2 act in a redundant and a catalysis-dependent manner in the maintenance of genome stability, as well as localize to transcribed regions of the genome and increase in abundance upon phleomycin treatment. In addition, Dma1 and Dma2 are required for the normal kinetics of histone H4 acetylation under DNA damage conditions, genetically interact with RAD9 and SAE2, and are in a complex with Rad53 and histones. Taken together, our results demonstrate the requirement of Dma1 and Dma2 in regulating DNA repair pathway choice, preferentially affecting homologous recombination over nonhomologous end joining, and open up the possibility of using these candidates in manipulating the repair pathways toward precision genome editing.
Collapse
Affiliation(s)
- Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seoyoung Chung
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sophie B Robinson
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kaitlyn E Forester
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
41
|
Aref R, Sanad MNME, Schüller HJ. Forkhead transcription factor Fkh1: insights into functional regulatory domains crucial for recruitment of Sin3 histone deacetylase complex. Curr Genet 2021; 67:487-499. [PMID: 33635403 PMCID: PMC8139909 DOI: 10.1007/s00294-021-01158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/05/2022]
Abstract
Transcription factors are inextricably linked with histone deacetylases leading to compact chromatin. The Forkhead transcription factor Fkh1 is mainly a negative transcriptional regulator which affects cell cycle control, silencing of mating-type cassettes and induction of pseudohyphal growth in the yeast Saccharomyces cerevisiae. Markedly, Fkh1 impinges chromatin architecture by recruiting large regulatory complexes. Implication of Fkh1 with transcriptional corepressor complexes remains largely unexplored. In this work we show that Fkh1 directly recruits corepressors Sin3 and Tup1 (but not Cyc8), providing evidence for its influence on epigenetic regulation. We also identified the specific domain of Fkh1 mediating Sin3 recruitment and substantiated that amino acids 51–125 of Fkh1 bind PAH2 of Sin3. Importantly, this part of Fkh1 overlaps with its Forkhead-associated domain (FHA). To analyse this domain in more detail, selected amino acids were replaced by alanine, revealing that hydrophobic amino acids L74 and I78 are important for Fkh1-Sin3 binding. In addition, we could prove Fkh1 recruitment to promoters of cell cycle genes CLB2 and SWI5. Notably, Sin3 is also recruited to these promoters but only in the presence of functional Fkh1. Our results disclose that recruitment of Sin3 to Fkh1 requires precisely positioned Fkh1/Sin3 binding sites which provide an extended view on the genetic control of cell cycle genes CLB2 and SWI5 and the mechanism of transcriptional repression by modulation of chromatin architecture at the G2/M transition.
Collapse
Affiliation(s)
- Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Shoubra El-Khaymah, Cairo, 11241, Egypt. .,Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik Und Infektionsbiologie, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| | - Marwa N M E Sanad
- Department of Genetics and Cytology, National Research Centre, Cairo, Dokki, Egypt
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik Und Infektionsbiologie, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| |
Collapse
|
42
|
D AK, Shrivastava D, Sahasrabuddhe AA, Habib S, Trivedi V. Plasmodium falciparum FIKK9.1 is a monomeric serine-threonine protein kinase with features to exploit as a drug target. Chem Biol Drug Des 2021; 97:962-977. [PMID: 33486853 DOI: 10.1111/cbdd.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
FIKK-9.1 is essential for parasite survival, but its structural and biochemical characterization will enable us to understand its role in the parasite life cycle. The recombinant FIKK9.1 kinase is monomeric with a native molecular weight of 60 ± 1.6 kDa. Structural characterization of FIKK9.1 kinase reveals that it consists of two domains: N-terminal FHA like domain and C-terminal kinase domain. The C-terminal domain has a well-defined pocket, but it displayed RMSD deviation of 1.38-3.2 Å from host kinases. ITC analysis indicates that ATP binds to the protein with a Kd of 45.6 ± 2.4 µM. Mutational studies confirm the role of Val-244, Met-245, Lys-320, 324, and Glu-366 for ATP binding. Co-localization studies revealed FIKK9.1 in the parasite cytosol with a component trafficked to the apicoplast and also to IRBC. FIKK9.1 has 23 pockets to serve as potential docking sites for substrates. Correlation analysis of peptides from the combinatorial library concluded that peptide P277 (MFDFHYTLGPMWGTL) was fitting nicely into the binding pocket. The peptide P277 picked up candidates from parasite and key players from RBC cytoskeleton. Interestingly, FIKK9.1 is phosphorylating spectrin, ankyrin, and band-3 from RBC cytoskeleton. Our study highlights the structural and biochemical features of FIKK9.1 to exploit it as a drug target.
Collapse
Affiliation(s)
- Anil Kumar D
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| | - Deepti Shrivastava
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Saman Habib
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| |
Collapse
|
43
|
Woo TT, Chuang CN, Wang TF. Budding yeast Rad51: a paradigm for how phosphorylation and intrinsic structural disorder regulate homologous recombination and protein homeostasis. Curr Genet 2021; 67:389-396. [PMID: 33433732 PMCID: PMC8139929 DOI: 10.1007/s00294-020-01151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
The RecA-family recombinase Rad51 is the central player in homologous recombination (HR), the faithful pathway for repairing DNA double-strand breaks (DSBs) during both mitosis and meiosis. The behavior of Rad51 protein in vivo is fine-tuned via posttranslational modifications conducted by multiple protein kinases in response to cell cycle cues and DNA lesions. Unrepaired DSBs and ssDNA also activate Mec1ATR and Tel1ATM family kinases to initiate the DNA damage response (DDR) that safeguards genomic integrity. Defects in HR and DDR trigger genome instability and result in cancer predisposition, infertility, developmental defects, neurological diseases or premature aging. Intriguingly, yeast Mec1ATR- and Tel1ATM-dependent phosphorylation promotes Rad51 protein stability during DDR, revealing how Mec1ATR can alleviate proteotoxic stress. Moreover, Mec1ATR- and Tel1ATM-dependent phosphorylation also occurs on DDR-unrelated proteins, suggesting that Mec1ATR and Tel1ATM have a DDR-independent function in protein homeostasis. In this minireview, we first describe how human and budding yeast Rad51 are phosphorylated by multiple protein kinases at different positions to promote homology-directed DNA repair and recombination (HDRR). Then, we discuss recent findings showing that intrinsic structural disorder and Mec1ATR/Tel1ATM-dependent phosphorylation are coordinated in yeast Rad51 to regulate both HR and protein homeostasis.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Huang Q, Lin Z, Wu P, Ni J, Shen Y. Phosphoproteomic Analysis Reveals Rio1-Related Protein Phosphorylation Changes in Response to UV Irradiation in Sulfolobus islandicus REY15A. Front Microbiol 2020; 11:586025. [PMID: 33343525 PMCID: PMC7744417 DOI: 10.3389/fmicb.2020.586025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
DNA damage response (DDR) in eukaryotes is largely regulated by protein phosphorylation. In archaea, many proteins are phosphorylated, however, it is unclear how the cells respond to DNA damage through global protein phosphorylation. We previously found that Δrio1, a Rio1 kinase homolog deletion strain of Sulfolobus islandicus REY15A, was sensitive to UV irradiation. In this study, we showed that Δrio1 grew faster than the wild type. Quantitative phosphoproteomic analysis of the wild type and Δrio1, untreated and irradiated with UV irradiation, revealed 562 phosphorylated sites (with a Ser/Thr/Tyr ratio of 65.3%/23.8%/10.9%) of 333 proteins in total. The phosphorylation levels of 35 sites of 30 proteins changed with >1.3-fold in the wild type strain upon UV irradiation. Interestingly, more than half of the UV-induced changes in the wild type did not occur in the Δrio1 strain, which were mainly associated with proteins synthesis and turnover. In addition, a protein kinase and several transcriptional regulators were differentially phosphorylated after UV treatment, and some of the changes were dependent on Rio1. Finally, many proteins involved in various cellular metabolisms exhibited Riol-related and UV-independent phosphorylation changes. Our results suggest that Rio1 is involved in the regulation of protein recycling and signal transduction in response to UV irradiation, and plays regulatory roles in multiple cellular processes in S. islandicus.
Collapse
Affiliation(s)
- Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
45
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Curr Med Chem 2020; 27:6306-6355. [DOI: 10.2174/0929867326666190620101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Background:
Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs).
Objective:
This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.
Method:
Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed.
Results and Conclusion:
PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
46
|
The FHA domain of PNKP is essential for its recruitment to DNA damage sites and maintenance of genome stability. Mutat Res 2020; 822:111727. [PMID: 33220551 DOI: 10.1016/j.mrfmmm.2020.111727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Polynucleotide kinase phosphatase (PNKP) has dual enzymatic activities as kinase and phosphatase for DNA ends, which are the prerequisite for the ligation, and thus is involved in base excision repair, single-strand break repair and non-homologous end joining for double-strand break (DSB) repair. In this study, we examined mechanisms for the recruitment of PNKP to DNA damage sites by laser micro-irradiation and live-cell imaging analysis using confocal microscope. We show that the forkhead-associated (FHA) domain of PNKP is essential for the recruitment of PNKP to DNA damage sites. Arg35 and Arg48 within the FHA domain are required for interactions with XRCC1 and XRCC4. PNKP R35A/R48A mutant failed to accumulate on the laser track and siRNA-mediated depletion of XRCC1 and/or XRCC4 reduced PNKP accumulation on the laser track, indicating that PNKP is recruited to DNA damage sites via the interactions between its FHA domain and XRCC1 or XRCC4. Furthermore, cells expressing PNKP R35A/R48A mutant exhibited increased sensitivity toward ionizing radiation in association with delayed SSB and DSB repair and genome instability, represented by micronuclei and chromosome bridges. Taken together, these findings revealed the importance of PNKP recruitment to DNA damage sites via its FHA domain for DNA repair and maintenance of genome stability.
Collapse
|
47
|
Niederkorn M, Agarwal P, Starczynowski DT. TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol 2020; 90:18-29. [PMID: 32910997 DOI: 10.1016/j.exphem.2020.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Forkhead-associated (FHA) domain-containing proteins are widely expressed across eubacteria and in eukaryotes. FHA domains contain phosphopeptide recognition motifs, which operate in a variety of phosphorylation-dependent and -independent biological processes, including the DNA damage response, signal transduction, and regulation of the cell cycle. More recently, two FHA domain-containing proteins were discovered in mammalian cells as tumor necrosis factor receptor-associated factor (TRAF)-interacting proteins: TIFA and TIFAB. TIFA and TIFAB are important modifiers of the innate immune signaling through their regulation of TRAF proteins. Recent studies have also revealed distinct roles for TIFA and TIFAB in the context of immune cell function, chronic inflammation, hematopoiesis, and hematologic disorders. Collectively, these studies indicate the important role of TIFA- and TIFAB-dependent signaling in hematopoietic cells and their dysregulation in several human diseases. In this review, we summarize the molecular mechanisms and biological role of these FHA-domain homologues, placing them into the context of human disease.
Collapse
Affiliation(s)
- Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
48
|
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X, Chen J. FOXK1 Participates in DNA Damage Response by Controlling 53BP1 Function. Cell Rep 2020; 32:108018. [PMID: 32783940 PMCID: PMC7458625 DOI: 10.1016/j.celrep.2020.108018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/28/2023] Open
Abstract
53BP1 plays a central role in dictating DNA repair choice between non-homologous end joining (NHEJ) and homologous recombination (HR), which is important for the sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPis) of BRCA1-deficient cancers. In this study, we show that FOXK1 associates with 53BP1 and regulates 53BP1-dependent functions. FOXK1-53BP1 interaction is significantly enhanced upon DNA damage during the S phase in an ATM/CHK2-dependent manner, which reduces the association of 53BP1 with its downstream factors RIF1 and PTIP. Depletion of FOXK1 impairs DNA repair and induces compromised cell survival upon DNA damage. Overexpression of FOXK1 diminishes 53BP1 foci formation, which leads to resistance to PARPis and elevation of HR in BRCA1-deficient cells and decreased telomere fusion in TRF2-depleted cells. Collectively, our findings demonstrate that FOXK1 negatively regulates 53BP1 function by inhibiting 53BP1 localization to sites of DNA damage, which alters the DSB-induced protein complexes centering on 53BP1 and thus influences DNA repair choice.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xu Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Kuang J, Min L, Liu C, Chen S, Gao C, Ma J, Wu X, Li W, Wu L, Zhu L. RNF8 Promotes Epithelial-Mesenchymal Transition in Lung Cancer Cells via Stabilization of Slug. Mol Cancer Res 2020; 18:1638-1649. [PMID: 32753472 DOI: 10.1158/1541-7786.mcr-19-1211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
RNF8 (ring finger protein 8), a RING finger E3 ligase best characterized for its role in DNA repair and sperm formation via ubiquitination, has been found to promote tumor metastasis in breast cancer recently. However, whether RNF8 also plays a role in other types of cancer, especially in lung cancer, remains unknown. We show here that RNF8 expression levels are markedly increased in human lung cancer tissues and negatively correlated with the survival time of patients. Overexpression of RNF8 promotes the EMT process and migration ability of lung cancer cells, while knockdown of RNF8 demonstrates the opposite effects. In addition, overexpression of RNF8 activates the PI3K/Akt signaling pathway, knockdown of RNF8 by siRNA inhibits this activation, and pharmacologic inhibition of PI3K/Akt in RNF8-overexpressing cells also reduces the expression of EMT markers and the ability of migration. Furthermore, RNF8 is found to directly interact with Slug and promoted the K63-Ub of Slug, and knockdown of Slug disrupts RNF8-dependent EMT in A549 cells, whereas overexpression of Slug rescues RNF8-dependent MET in H1299 cells, and depletion of RNF8 expression by shRNA inhibits metastasis of lung cancer cells in vivo. Taken together, these results indicate that RNF8 is a key regulator of EMT process in lung cancer and suggest that inhibition of RNF8 could be a useful strategy for lung cancer treatment. IMPLICATIONS: This study provides a new mechanistic insight into the novel role of RNF8 and identifies RNF8 as a potential new therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Si Chen
- Department of pathology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Changsong Gao
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Jiaxin Ma
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Xiaomin Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lei Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China. .,Hunan Engineering Research Center for Intelligent Decision Making and Big Data on Industrial Development, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China.
| |
Collapse
|
50
|
Guo X, Zhao B, Zhou X, Ni X, Lu D, Chen T, Chen Y, Xiao D. Increased RNA production in Saccharomyces cerevisiae by simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1. Appl Microbiol Biotechnol 2020; 104:7901-7913. [PMID: 32715361 DOI: 10.1007/s00253-020-10784-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022]
Abstract
Ribonucleic acid (RNA) and its degradation products are widely used in the food industry. In this study, we constructed Saccharomyces cerevisiae mutants with FHL1, IFH1, SSF1, and SSF2 overexpression and HRP1 deletion, individually to evaluate the effect on RNA production. The RNA content of recombinant strains W303-1a-FHL1, W303-1a-SSF2, and W303-1a-ΔHRP1 was increased by 14.94%, 24.4%, and 19.36%, respectively, compared with the RNA content of the parent strain. However, W303-1a-IFH1 and W303-1a-SSF1 showed no significant change in RNA production compared with the parent strain. IFH1 and FHL1 encode Ifh1p and Fhl1p, respectively, which combine to form a complex that plays a key role in the transcription of the ribosomal protein (RP) gene. Ssf2p, encoded by SSF2, plays an important role in ribosome biosynthesis and Hrp1p is a negative regulator of cell growth in S. cerevisiae. Subsequently, a high RNA production strain, W112, was constructed by simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1. The RNA content of W112 was 38.8% higher than the parent strain. The growth performance, RP transcription levels, and rRNA content were also investigated in the recombinant strains. This study provides a new strategy for the construction of S. cerevisiae strains containing large amounts of RNA, and it will make a significant contribution to progress in the nucleic acid industry. KEY POINTS: • Simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1 can significantly increases RNA production. • The production of RNA increased by 38.8% in Saccharomyces cerevisiae. • The cell size and growth rate of the strains with higher RNA content also increased.
Collapse
Affiliation(s)
- Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China.
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, China.
- Department of Fermentation Engineering, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Bin Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Xinran Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Xiaofeng Ni
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Dongxia Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
| | - Tingli Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, China
| |
Collapse
|