1
|
Gallo PN, Mihelc E, Eisert R, Bradshaw GA, Dimek F, Leffler A, Kalocsay M, Moiseenkova-Bell V. The dynamic TRPV2 ion channel proximity proteome reveals functional links of calcium flux with cellular adhesion factors NCAM and L1CAM in neurite outgrowth. Cell Calcium 2024; 121:102894. [PMID: 38728789 PMCID: PMC11456977 DOI: 10.1016/j.ceca.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.
Collapse
Affiliation(s)
- Pamela N Gallo
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA
| | - Elaine Mihelc
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA
| | - Robyn Eisert
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA, USA
| | - Gary A Bradshaw
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, USA
| | - Florian Dimek
- Hannover Medical School, Department of Anesthesiology and Intensive Care Medicine, Hannover, Germany
| | - Andreas Leffler
- Hannover Medical School, Department of Anesthesiology and Intensive Care Medicine, Hannover, Germany
| | - Marian Kalocsay
- The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Houston, TX, USA.
| | - Vera Moiseenkova-Bell
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Jiao L, Junfang Z, Yanna L, Caixia J, Chen Z, Song J, Jie X, Xiaoli Y, Xin G, Libo X, Feng W, lixia L, Chunli X, Lei X. miR-153 promotes neural differentiation by activating the cell adhesion/Ca 2+ signaling pathway and targeting ion channel activity in HT-22 cells by bioinformatic analysis. Heliyon 2024; 10:e30204. [PMID: 38694121 PMCID: PMC11061740 DOI: 10.1016/j.heliyon.2024.e30204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
MicroRNAs have been studied extensively in neurodegenerative diseases. In a previous study, miR-153 promoted neural differentiation and projection formation in mouse hippocampal HT-22 cells. However, the pathways and molecular mechanism underlying miR-153-induced neural differentiation remain unclear. To explore the molecular mechanism of miR-153 on neural differentiation, we performed RNA sequencing on miR-153-overexpressed HT-22 cells. Based on RNA sequencing, differentially expressed genes (DEGs) and pathways in miR-153-overexpressed cells were identified. The Database for Annotation, Visualization and Integrated Discovery and Gene Set Enrichment Analysis were used to perform functional annotation and enrichment analysis of DEGs. Targetscan predicted the targets of miR-153. The Search Tool for the Retrieval of Interacting Genes and Cytoscape, were used to construct protein-protein interaction networks and identify hub genes. Q-PCR was used to detect mRNA expression of the identified genes. The expression profiles of the identified genes were compared between embryonic days 9.5 (E9.5) and E11.5 in the embryotic mouse brain of the GDS3442 dataset. Cell Counting Kit-8 assay was used to determine cell proliferation and cellular susceptibility to amyloid β-protein (Aβ) toxicity in miR-153-overexpressed cells. The results indicated that miR-153 increased cell adhesion/Ca2+ (Cdh5, Nrcam, and P2rx4) and Bdnf/Ntrk2 neurotrophic signaling pathway, and decreased ion channel activity (Kcnc3, Kcna4, Clcn5, and Scn5a). The changes in the expression of the identified genes in miR-153-overexpressed cells were consistent with the expression profile of GDS3442 during neural differentiation. In addition, miR-153 overexpression decreased cellular susceptibility to Aβ toxicity in HT-22 cells. In conclusion, miR-153 overexpression may promote neural differentiation by inducing cell adhesion and the Bdnf/Ntrk2 pathway, and regulating electrophysiological maturity by targeting ion channels. MiR-153 may play an important role in neural differentiation; the findings provide a useful therapeutic direction for neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Jiao
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Zhang Junfang
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Li Yanna
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Jin Caixia
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zhang Chen
- Department of Laboratory Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jia Song
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Xu Jie
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Xiaoli
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Gui Xin
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xing Libo
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wang Feng
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu lixia
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Xu Chunli
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Lei
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Hough RA, McClellan AD. Spinal cord injury significantly alters the properties of reticulospinal neurons: delayed repolarization mediated by potassium channels. J Neurophysiol 2023; 130:1265-1281. [PMID: 37820016 PMCID: PMC10994645 DOI: 10.1152/jn.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.
Collapse
Affiliation(s)
- Ryan A Hough
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Andrew D McClellan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
5
|
Lauzon MA, Faucheux N. A small peptide derived from BMP-9 can increase the effect of bFGF and NGF on SH-SY5Y cells differentiation. Mol Cell Neurosci 2018; 88:83-92. [PMID: 29341901 DOI: 10.1016/j.mcn.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The current aging of the world population will increase the number of people suffering from brain degenerative diseases such as Alzheimer's disease (AD). There are evidence showing that the use of growth factors such as BMP-9 could restored cognitive function as it acts on many AD hallmarks at the same time. However, BMP-9 is a big protein expensive to produce that can hardly access the central nervous system. We have therefore developed a small peptide, SpBMP-9, derived from the knuckle epitope of BMP-9 and showed its therapeutic potential in a previous study. Since it is known that the native protein, BMP-9, can act in synergy with other growth factors in the context of AD, here we study the potential synergistic effect of various combinations of SpBMP-9 with bFGF, EGF, IGF-2 or NGF on the cholinergic differentiation of human neuroblastoma cells SH-SY5Y. We found that, in opposition to IGF-2 or EGF, the combination of SpBMP-9 with bFGF or NGF can stimulate to a greater extent the neurite outgrowth and neuronal differentiation toward the cholinergic phenotype as shown by expression and localization of the neuronal markers NSE and VAchT and the staining of intracellular calcium. Those results strongly suggest that SpBMP-9 plus NGF or bFGF are promising therapeutic combinations against AD that required further attention.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke, 12e Avenue N, Sherbrooke, Québec J1H 5N4, Canada; Pharmacology Institute of Sherbrooke, 12e Avenue N, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
6
|
Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ 2016; 23:1749-1764. [PMID: 27518433 PMCID: PMC5071567 DOI: 10.1038/cdd.2016.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Transthyretin (TTR) is a protein whose function has been associated to binding and distribution of thyroid hormones in the body and brain. However, little is known regarding the downstream signaling pathways triggered by wild-type TTR in the CNS either in neuroprotection of cerebral ischemia or in physiological conditions. In this study, we investigated how TTR affects hippocampal neurons in physiologic/pathologic conditions. Recombinant TTR significantly boosted neurite outgrowth in mice hippocampal neurons, both in number and length, independently of its ligands. This TTR neuritogenic activity is mediated by the megalin receptor and is lost in megalin-deficient neurons. We also found that TTR activates the mitogen-activated protein kinase (MAPK) pathways (ERK1/2) and Akt through Src, leading to the phosphorylation of transcription factor CREB. In addition, TTR promoted a transient rise in intracellular calcium through NMDA receptors, in a Src/megalin-dependent manner. Moreover, under excitotoxic conditions, TTR stimulation rescued cell death and neurite loss in TTR KO hippocampal neurons, which are more sensitive to excitotoxic degeneration than WT neurons, in a megalin-dependent manner. CREB was also activated by TTR under excitotoxic conditions, contributing to changes in the balance between Bcl2 protein family members, toward anti-apoptotic proteins (Bcl2/BclXL versus Bax). Finally, we clarify that TTR KO mice subjected to pMCAO have larger infarcts than WT mice, because of TTR and megalin neuronal downregulation. Our results indicate that TTR might be regarded as a neurotrophic factor, because it stimulates neurite outgrowth under physiological conditions, and promotes neuroprotection in ischemic conditions.
Collapse
|
7
|
Sheng L, Leshchyns'ka I, Sytnyk V. Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 2013; 11:94. [PMID: 24330678 PMCID: PMC3878801 DOI: 10.1186/1478-811x-11-94] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
Collapse
Affiliation(s)
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
8
|
Basille-Dugay M, Vaudry H, Fournier A, Gonzalez B, Vaudry D. Activation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels. Front Endocrinol (Lausanne) 2013; 4:56. [PMID: 23675369 PMCID: PMC3650316 DOI: 10.3389/fendo.2013.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/25/2013] [Indexed: 11/13/2022] Open
Abstract
High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) and a high density of PACAP binding sites have been detected in the developing rat cerebellum. In particular, PACAP receptors are actively expressed in immature granule cells, where they activate both adenylyl cyclase and phospholipase C. The aim of the present study was to investigate the ability of PACAP to induce calcium mobilization in cerebellar granule neurons. Administration of PACAP-induced a transient, rapid, and monophasic rise of the cytosolic calcium concentration ([Ca(2+)]i), while vasoactive intestinal peptide was devoid of effect, indicating the involvement of the PAC1 receptor in the Ca(2+) response. Preincubation of granule cells with the Ca(2+) ATPase inhibitor, thapsigargin, or the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor antagonist, 2-aminoethoxydiphenyl borate, markedly reduced the stimulatory effect of PACAP on [Ca(2+)]i. Furthermore, addition of the calcium chelator, EGTA, or exposure of cells to the non-selective Ca(2+) channel blocker, NiCl2, significantly attenuated the PACAP-evoked [Ca(2+)]i increase. Preincubation of granule neurons with the N-type Ca(2+) channel blocker, ω-conotoxin GVIA, decreased the PACAP-induced [Ca(2+)]i response, whereas the L-type Ca(2+) channel blocker, nifedipine, and the P- and Q-type Ca(2+) channel blocker, ω-conotoxin MVIIC, had no effect. Altogether, these findings indicate that PACAP, acting through PAC1 receptors, provokes an increase in [Ca(2+)]i in granule neurons, which is mediated by both mobilization of calcium from IP3-sensitive intracellular stores and activation of N-type Ca(2+) channel. Some of the activities of PACAP on proliferation, survival, migration, and differentiation of cerebellar granule cells could thus be mediated, at least in part, through these intracellular and/or extracellular calcium fluxes.
Collapse
Affiliation(s)
- Magali Basille-Dugay
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of RouenMont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, University of RouenMont-Saint-Aignan, France
- PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, University of RouenMont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of RouenMont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, University of RouenMont-Saint-Aignan, France
- PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, University of RouenMont-Saint-Aignan, France
| | - Alain Fournier
- International Associated Laboratory Samuel de Champlain, University of RouenMont-Saint-Aignan, France
- Institut National de la Recherche Scientifique-Institut Armand Frappier, University of QuébecLaval, QC, Canada
| | - Bruno Gonzalez
- Institute for Research and Innovation in Biomedicine, University of RouenMont-Saint-Aignan, France
- Région INSERM ERI28, Laboratory of Microvascular Endothelium and Neonate Lesions, University of RouenRouen, France
| | - David Vaudry
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of RouenMont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, University of RouenMont-Saint-Aignan, France
- PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, University of RouenMont-Saint-Aignan, France
- *Correspondence: David Vaudry, INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, International Associated Laboratory Samuel de Champlain, University of Rouen, 76821 Mont-Saint-Aignan, Rouen, France. e-mail:
| |
Collapse
|
9
|
Wang W, Wang L, Luo J, Xi Z, Wang X, Chen G, Chu L. Role of a neural cell adhesion molecule found in cerebrospinal fluid as a potential biomarker for epilepsy. Neurochem Res 2012; 37:819-25. [PMID: 22219127 DOI: 10.1007/s11064-011-0677-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/06/2011] [Accepted: 12/15/2011] [Indexed: 12/31/2022]
Abstract
The neural cell adhesion molecule (NCAM-1) plays an important role in cell adhesion and synaptic plasticity. We designed this study to evaluate NCAM-1 as a potential biomarker for epilepsy. We performed a quantitative evaluation of the levels of NCAM-1 in cerebrospinal fluid (CSF) and serum and noted differences in patients with epilepsy compared to control subjects. We used sandwich enzyme-linked immunosorbent assays to measure NCAM-1 concentrations in CSF and serum samples of 76 epileptic patients (subdivided into the following subgroups: drug-refractory epilepsy, DRE; first-diagnosis epilepsy, FDE; and drug-effective epilepsy, DEE) and 44 control subjects. Our results show that cerebrospinal fluid-NCAM-1 (CSF-NCAM-1) concentrations and NCAM-1 Indices in the epileptic group were lower than in the control group. Both the CSF-NCAM-1 concentration and the NCAM-1 Indices in the drug-refractory epilepsy group were lower than in the drug-effective epilepsy group. These differences were statistically significant (P < 0.05). However, serum-NCAM-1 levels were not statistically different when comparing the epilepsy group to the control group (P > 0.05). Our results indicate that CSF-NCAM-1 is a potential biomarker for drug-effective epilepsy and drug-refractory epilepsy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, The Affiliated Hospital of Guiyang Medical College, 28 Gui Yi Street, Guiyang, 550004 Guizhou Province, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Owczarek S, Soroka V, Kiryushko D, Larsen MH, Yuan Q, Sandi C, Berezin V, Bock E. Neuroplastin-65 and a mimetic peptide derived from its homophilic binding site modulate neuritogenesis and neuronal plasticity. J Neurochem 2011; 117:984-94. [DOI: 10.1111/j.1471-4159.2011.07269.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Signaling pathways involved in NCAM-induced neurite outgrowth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:151-68. [PMID: 20017021 DOI: 10.1007/978-1-4419-1170-4_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Lu CB, Fu W, Xu X, Mattson MP. Numb-mediated neurite outgrowth is isoform-dependent, and requires activation of voltage-dependent calcium channels. Neuroscience 2009; 161:403-12. [PMID: 19344753 PMCID: PMC2692829 DOI: 10.1016/j.neuroscience.2009.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 01/05/2023]
Abstract
Numb is an evolutionarily conserved protein that controls the differentiation of neuronal progenitor cells by unknown mechanisms. Here we report that the neural cells expressing Numb isoforms with short phosphotyrosine-binding (SPTB) domain undergo extensive neurite outgrowth, an effect that can be blocked by voltage-gated Ca2+ channel (VGCC) inhibitor or by Ca2+ chelator. In contrast, tyrosine kinase inhibitor, genistein, and selective receptor tyrosine kinase (TrkA) inhibitor, K252alpha did not affect SPTB Numb-mediated neurite outgrowth. MAP kinase inhibitor, PD98059 partially reduced SPTB Numb-mediated neurite outgrowth. Cells expressing SPTB Numbs exhibit increased whole-cell Ca2+ current densities (ICa) which can be prevented by preincubation of either nifedipine or PD98095. Cells expressing LPTB Numbs expressed little ICa (density) and were not able to grow neurites. Our results indicate that Ca2+ influx through VGCC may be required for SPTB Numb-mediated neurite outgrowth, suggesting that Numb promotes neuronal differentiation by a mechanism involving PTB domain-specific regulation of Ca2+ influx and MAP kinase activation.
Collapse
Affiliation(s)
- Cheng B. Lu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- IMSB, University of Leeds, United Kingdom
| | - Weiming Fu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Xiangru Xu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| |
Collapse
|
13
|
Hansen SMM, Køhler LB, Li S, Kiselyov V, Christensen C, Owczarek S, Bock E, Berezin V. NCAM-derived peptides function as agonists for the fibroblast growth factor receptor. J Neurochem 2008; 106:2030-41. [PMID: 18624916 DOI: 10.1111/j.1471-4159.2008.05544.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The neural cell adhesion molecule (NCAM) directly interacts with the fibroblast growth factor receptor (FGFR). Both fibronectin type III (FN3) modules of NCAM are involved in this interaction. One of the NCAM-FGFR contact sites has been localized recently to the upper N-terminal part of the second NCAM FN3 module encompassing the F and G beta-strands and the interconnecting loop region. Here, we investigated whether any of the six putative strand-loop-strand regions in the first NCAM FN3 module are involved in FGFR interactions. Peptide sequences encompassing these regions, termed encamins, were synthesized and tested for their ability to bind and activate FGFR. Encamins localized to the N-terminal part of the first FN3 module did not interact with FGFR, whereas encamins localized to the C-terminal part, termed EncaminA, C and E, bound to and activated FGFR. The encamins induced FGFR-dependent neurite outgrowth, and EncaminC and E promoted neuronal survival and enhanced pre-synaptic function. In conclusion, the interaction between NCAM and FGFR probably involves multiple contact sites at an interface formed by the two NCAM FN3 modules and FGFR, and encamins could constitute important pharmacological tools for the study of specific functional aspects of NCAM, including neuroprotection and modulation of plasticity.
Collapse
Affiliation(s)
- Stine M M Hansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Ditlevsen DK, Povlsen GK, Berezin V, Bock E. NCAM-induced intracellular signaling revisited. J Neurosci Res 2008; 86:727-43. [DOI: 10.1002/jnr.21551] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Kiryushko D, Bock E, Berezin V. Pharmacology of cell adhesion molecules of the nervous system. Curr Neuropharmacol 2007; 5:253-67. [PMID: 19305742 PMCID: PMC2644493 DOI: 10.2174/157015907782793658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
17
|
Hansen RK, Christensen C, Korshunova I, Kriebel M, Burkarth N, Kiselyov VV, Olsen M, Ostergaard S, Holm A, Volkmer H, Walmod PS, Berezin V, Bock E. Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway. J Neurochem 2007; 103:1396-407. [PMID: 17854387 DOI: 10.1111/j.1471-4159.2007.04894.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I-F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2 and ENFIN11) were confirmed to bind to F3I-F3II of NCAM by surface plasmon resonance. The peptides induced neurite outgrowth in primary cerebellar neurons and PC12E2 cells, but had no apparent neuroprotective properties. NCAM is known to activate different intracellular pathways, including signaling through the fibroblast growth factor receptor, the Src-related non-receptor tyrosine kinase Fyn, and heterotrimeric G-proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin, an inhibitor of certain heterotrimeric G-proteins. Neurite outgrowth induced by trans-homophilic NCAM was unaffected by the peptides, whereas knockdown of NCAM completely abrogated ENFIN2- and ENFIN11-induced neuritogenesis. These observations suggest that ENFIN2 and ENFIN11 induce neurite outgrowth in an NCAM-dependent manner through G-protein-coupled signal transduction pathways. Thus, ENFIN2 and ENFIN11 may be valuable for exploring this particular type of NCAM-mediated signaling.
Collapse
Affiliation(s)
- Raino Kristian Hansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Ditlevsen DK, Berezin V, Bock E. Signalling pathways underlying neural cell adhesion molecule-mediated survival of dopaminergic neurons. Eur J Neurosci 2007; 25:1678-84. [PMID: 17408429 DOI: 10.1111/j.1460-9568.2007.05436.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stimulation of the neural cell adhesion molecule (NCAM) by homophilic interactions is known to lead to neurite outgrowth as well as to neuronal survival. Whereas a complex network of signalling molecules is known to be of importance to NCAM-mediated neurite extension, only limited information is available regarding signalling underlying NCAM-mediated neuroprotection. Here, we present data suggesting a difference in the signalling events required for survival of rat dopaminergic neurons as compared with neurite outgrowth from the same cell type. Whereas Fyn, fibroblast growth factor receptor, mitogen-activated protein and ERK kinase, protein kinase A and protein kinase C are required for both responses to NCAM-induced signalling, phospholipase C and Ca(2+)-calmodulin-dependent kinase II are only necessary for the neurite outgrowth response, but dispensable for neuroprotection.
Collapse
Affiliation(s)
- Dorte Kornerup Ditlevsen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Panum Institute 6.2, Blegdamsvej 3, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Geninatti Crich S, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 2006; 66:9196-201. [PMID: 16982763 DOI: 10.1158/0008-5472.can-06-1728] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor vessel imaging could be useful in identifying angiogenic blood vessels as well as being a potential predictive marker of antiangiogenic treatment response. We recently reported the expression of the neural cell adhesion molecule (NCAM) in the immature and tumor endothelial cell (TEC) lining vessels of human carcinomas. Exploiting an in vivo model of human tumor angiogenesis obtained by implantation of TEC in Matrigel in severe combined immunodeficiency mice, we aimed to image angiogenesis by detecting the expression of NCAM with magnetic resonance imaging. The imaging procedure consisted of (a) targeting NCAMs with a biotinylated derivative of C3d peptide that is known to have high affinity for these epitopes and (b) delivery of a streptavidin/gadolinium (Gd)-loaded apoferritin 1:1 adduct at the biotinylated target sites. The remarkable relaxation enhancement ability of the Gd-loaded apoferritin system allowed the visualization of TEC both in vitro and in vivo when organized in microvessels connected to the mouse vasculature. Gd-loaded apoferritin displayed good in vivo stability and tolerability. The procedure reported herein may be easily extended to the magnetic resonance visualization of other epitopes suitably targeted by proper biotinylated vectors.
Collapse
|
21
|
Petersen LG, Størling J, Heding P, Li S, Berezin V, Saldeen J, Billestrup N, Bock E, Mandrup-Poulsen T. IL-1beta-induced pro-apoptotic signalling is facilitated by NCAM/FGF receptor signalling and inhibited by the C3d ligand in the INS-1E rat beta cell line. Diabetologia 2006; 49:1864-75. [PMID: 16718462 DOI: 10.1007/s00125-006-0296-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/10/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS IL-1beta released from immune cells induces beta cell pro-apoptotic signalling via mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB). In neurons, the neural cell adhesion molecule (NCAM) signals to several elements involved in IL-1beta-induced pro-apoptotic signalling in beta cells. Pancreatic beta cells express NCAM, but its biological effects in these cells are unclear. The aim of this study was to investigate whether there is cross-talk between NCAM signalling and cytokine-induced pro-apoptotic signalling. MATERIALS AND METHODS Western blotting was used to investigate levels of NCAM and inducible nitric oxide synthase, phosphorylation of Src and MAPKs, and cleavage of caspase-3. MAPK activity was investigated with an in vitro kinase assay. Apoptosis was detected by cleaved caspase-3 and a Cell Death Detection ELISA(plus) assay. NCAM-induced fibroblast growth factor receptor (FGFR) activation was investigated in NCAM(-/-) Trex293 cells where FGFR phosphorylation was measured by Western blotting after NCAM transfection. RESULTS Pre-exposure of INS-1E cells to the FGFR-inhibitor SU5402, but not to the Src-inhibitor PP2, dose-dependently inhibited IL-1beta-mediated MAPK activity. A synthetic peptide, C3d, reported to bind NCAM, did not activate MAPK or Akt as reported in neurons but inhibited IL-1beta-induced MAPK activity, thereby mimicking the effect of SU5402. Furthermore, C3d inhibited NCAM-induced FGFR phosphorylation and apoptosis induced by IL-1beta plus IFN-gamma, but did not affect IL-1beta-induced NF-kappaB signalling. CONCLUSIONS/INTERPRETATION We suggest that NCAM signalling through FGFR is required for efficient IL-1beta pro-apoptotic signalling by facilitating IL-1beta-induced MAPK activation downstream of the NF-kappaB-MAPK branching point. Further, these data identify a novel function of C3d as an inhibitor of NCAM-induced FGFR activity and of IL-1beta-induced MAPK activation in beta cells.
Collapse
Affiliation(s)
- L G Petersen
- Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kiryushko D, Novitskaya V, Soroka V, Klingelhofer J, Lukanidin E, Berezin V, Bock E. Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein. Mol Cell Biol 2006; 26:3625-38. [PMID: 16612001 PMCID: PMC1447425 DOI: 10.1128/mcb.26.9.3625-3638.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/13/2005] [Accepted: 02/08/2006] [Indexed: 12/14/2022] Open
Abstract
The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We present evidence that both S100A4-induced Ca(2+) signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca(2+) entry via nonselective cation channels and via T- and L-type voltage-gated Ca(2+) channels. We demonstrate that S100A4-induced neurite outgrowth is not mediated by the receptor for advanced glycation end products, a known target for other extracellular S100 proteins. However, S100A4-induced signaling depends on interactions with heparan sulfate proteoglycans at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Panum Institute, Blegdamsvej 3C, Bld. 6.2, Copenhagen 2200N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
23
|
Venero C, Herrero AI, Touyarot K, Cambon K, López-Fernández MA, Berezin V, Bock E, Sandi C. Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory. Eur J Neurosci 2006; 23:1585-95. [PMID: 16553622 DOI: 10.1111/j.1460-9568.2006.04663.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Memory formation has been associated with structural and functional modifications of synapses. Cell adhesion molecules are prominent modulators of synaptic plasticity. Here, we investigated the involvement of the cell adhesion molecules, NCAM, its polysialylated state (PSA-NCAM) and L1 in spatial learning-induced synaptic remodeling and memory storage. A differential regulation of these adhesion molecules was found in the hippocampus of rats submitted to one training session in the spatial, but not cued, version of the Morris water maze. Twenty-four hours after training, synaptic expression of NCAM and PSA-NCAM was increased, whereas L1 appeared markedly decreased. The regulation of these molecules was spatial learning-specific, except for L1 reduction, which could be attributed to swimming under stressful conditions rather than to learning. Subsequent psychopharmacological experiments were performed to address the functional role of NCAM and PSA-NCAM in the formation of spatial memories. Rats received an intracerebroventricular injection of either a synthetic peptide (C3d) aimed to interfere with NCAM function, or endoneuraminidase, an enzyme that cleaves polysialic acid from NCAM. Both treatments affected acquisition of spatial information and lead to impaired spatial memory abilities, supporting a critical role of the observed learning-induced up-regulation of synaptic NCAM expression and polysialylation on spatial learning and memory. Therefore, our findings highlight NCAM as a learning-modulated molecule critically involved in the hippocampal remodeling processes underlying spatial memory formation.
Collapse
Affiliation(s)
- César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Juan del Rosal 10, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kiryushko D, Korshunova I, Berezin V, Bock E. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis. Mol Biol Cell 2006; 17:2278-86. [PMID: 16510522 PMCID: PMC1446100 DOI: 10.1091/mbc.e05-10-0987] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been shown to affect and be dependent on the cytoplasmic Ca2+ concentration ([Ca2+]i). However, the molecular basis of this remains unclear. In this study, we determined [Ca2+]i regulating mechanisms involved in intracellular signaling induced by NCAM. To mimic the effect of homophilic NCAM interaction on [Ca2+]i in vitro, we used a peptide derived from a homophilic binding site of NCAM, termed P2, which triggers signaling cascades similar to those activated by NCAM-NCAM interaction. We found that P2 increased [Ca2+]i in primary hippocampal neurons. This effect depended on two signaling pathways. The first pathway was associated with activation of FGFR, phospholipase Cgamma, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca2+ entry required activation of nonselective cation and T-type voltage-gated Ca2+ channels. These channels, together with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
25
|
Bussolati B, Grange C, Bruno S, Buttiglieri S, Deregibus MC, Tei L, Aime S, Camussi G. Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp Cell Res 2006; 312:913-24. [PMID: 16406048 DOI: 10.1016/j.yexcr.2005.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 12/26/2022]
Abstract
The neural cell adhesion molecule (NCAM) is widely expressed during embryogenesis, down-regulated in the course of differentiation to be re-expressed during progression of some tumors. We here found that renal tumor-derived endothelial cells (TEC) but not normal endothelial cells (HMEC) expressed NCAM. In TEC, NCAM expression was regulated by the renal embryonic transcription factor PAX2, as transfection with PAX2 antisense abrogated NCAM expression. NCAM stimulation with an agonistic synthetic NCAM peptide enhanced apoptosis resistance and increased ability of TEC to organize in vessel-like structures. The angiogenic effect of NCAM peptide was, at least in part, mediated by the association of NCAM and FGFR1. HMEC transiently acquired NCAM when organized in vessel-like structures after VEGF stimulation or when transfected with PAX2 gene. During the process of VEGF-induced endothelial differentiation of renal stem cells and of circulating endothelial progenitors, NCAM was transiently expressed to disappear at complete endothelial maturation. Targeting NCAM with a saporin-conjugated peptide induced a cytotoxic effect on TEC but not on HMEC. In conclusion, we identified a new role of NCAM in tumor neo-angiogenesis relevant for endothelial cell organization into capillary-like structures. In addition, we found that NCAM expression was associated with an immature phenotype of endothelial cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Cattedra di Nefrologia, Dipartimento di Medicina Interna and Centro Ricerca Medicina Sperimentale (CeRMS), University of Torino, Ospedale Maggiore S. Giovanni Battista, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Berezin V, Bock E. NCAM mimetic peptides: Pharmacological and therapeutic potential. J Mol Neurosci 2004; 22:33-39. [PMID: 14742908 DOI: 10.1385/jmn:22:1-2:33] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Accepted: 08/11/2003] [Indexed: 11/11/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays an important role in neuronal differentiation and synaptic plasticity, making it an attractive target for the development of drugs for the treatment of neurodegenerative disorders. NCAM binds to itself (homophilic binding) and to a series of counter-receptors, including the fibroblast growth factor receptor (FGFR), other adhesion molecules, and various extracellular matrix components (heterophilic binding). By means of combinatorial chemistry and based on the unraveling of the structure of NCAM, it has been possible to develop a number of peptides that mimic NCAM homophilic binding. These peptides interfere with cell adhesion and promote differentiation and cell survival. Recently, a peptide mimicking the heterophilic binding to FGFR has also been identified. It binds and activates the receptor, thereby modulating neurite extension and synaptic plasticity.
Collapse
Affiliation(s)
- Vladimir Berezin
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Panum Institute 6.2, Blegdamsvej 3, DK-2200 Copenhagen N., Denmark.
| | | |
Collapse
|
27
|
Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 2004; 1014:140-54. [PMID: 15153429 DOI: 10.1196/annals.1294.015] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal differentiation is a fundamental event in the development of the nervous system as well as in the regeneration of damaged nervous tissue. The initiation and guidance of a neurite are accomplished by positive (permissive or attractive), negative (inhibitory or repulsive), or guiding (affecting the advance of the growth cone) signals from the extracellular space. The signals may arise from either the extracellular matrix (ECM) or the surface of other cells, or be diffusible secreted factors. Based on this classification, we briefly describe selected positive, negative, and guiding signaling cues focusing on the role of cell adhesion molecules (CAMs). CAMs not only regulate cell-cell and cell-ECM adhesion "mechanically," they also trigger intracellular signaling cascades launching neurite outgrowth. Here, we describe the structure, function, and signaling of three key CAMs found in the nervous system: N-cadherin and two Ig-CAMs, L1 and the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark
| | | | | |
Collapse
|
28
|
Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 2004; 24:4197-204. [PMID: 15115815 PMCID: PMC6729275 DOI: 10.1523/jneurosci.0436-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/07/2004] [Accepted: 03/07/2004] [Indexed: 11/21/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately after training rats in fear conditioning or water maze learning, induced a long-lasting improvement of memory. In primary cultures of hippocampal neurons, FGL enhanced the presynaptic function through activation of FGFR1 and promoted synapse formation. These results provide the first evidence for a memory-facilitating effect resulting from a treatment that mimics NCAM function. They suggest that increased efficacy of synaptic transmission and formation of new synapses probably mediate the cognition-enhancing properties displayed by the peptide.
Collapse
Affiliation(s)
- Karine Cambon
- Psychobiology Department, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria Sin Numero, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cambon K, Venero C, Berezin V, Bock E, Sandi C. Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience 2003; 122:183-91. [PMID: 14596859 DOI: 10.1016/s0306-4522(03)00597-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays a key role in synaptic plasticity and memory formation. We have recently developed a synthetic peptide, termed C3d, which, through the binding to the first, N-terminal immunoglobulin-like (Ig) module in the extracellular portion of NCAM, has been shown to promote neurite outgrowth and synapse formation in vitro, and to interfere with passive avoidance memory in rats in vivo. In this study, we investigated whether the i.c.v. administration of C3d, either 5.5 h after or 2 days before training, could be effective to modulate the strength at which emotional memory for aversive situations is established into a long-term memory. The effects of the peptide were evaluated in adult male Wistar rats trained in the contextual fear conditioning task. The results indicated that C3d significantly reduced the subsequent long-term retention of the conditioned fear response when administered 5.5 h post-training, as indicated by retention tests performed 2-3 and 7 days post-training. However, this treatment failed to influence conditioning for this task when injected 2 days pre-training. Additional experiments showed that C3d did not influence the emotional or locomotor behaviour of the animals, when tested in the open field task. Furthermore, hippocampal levels of microtubule-associated protein 2 (MAP2), Synaptophysin and NCAM were found unchanged when evaluated by enzyme-linked immunosorbent assay in crude synaptosomal preparations 2 days after peptide i.c.v. injection. Therefore, post-training injection of this synthetic peptide was efficient to attenuate the strength at which memory for contextual fear conditioning was enduringly stored, whilst it did not affect the acquisition of new memories. In addition to further support the view that NCAM is critically involved in memory consolidation, the current findings suggest that the NCAM IgI module is a potential target for the development of therapeutic drugs capable to reduce the cognitive impact induced by exposure to intensive stress experiences.
Collapse
Affiliation(s)
- K Cambon
- Psychobiology Department, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria s/n, 28040, Madrid Spain
| | | | | | | | | |
Collapse
|
30
|
Kiryushko D, Kofoed T, Skladchikova G, Holm A, Berezin V, Bock E. A synthetic peptide ligand of neural cell adhesion molecule (NCAM), C3d, promotes neuritogenesis and synaptogenesis and modulates presynaptic function in primary cultures of rat hippocampal neurons. J Biol Chem 2003; 278:12325-34. [PMID: 12502709 DOI: 10.1074/jbc.m211628200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a key role in morphogenesis of the nervous system and in remodeling of neuronal connections accompanying regenerative and cognitive processes. Recently, a new synthetic ligand of NCAM, the C3-peptide, which binds to the NCAM IgI module, has been identified by means of combinatorial chemistry (Rønn, L. C. B, Olsen, M., Ostergaard, S., Kiselyov, V., Berezin, V., Mortensen, M. T., Lerche, M. H., Jensen, P. H., Soroka, V., Saffell, J. L., Doherty, P., Poulsen, F. M., Bock, E., Holm, A., and Saffells, J. L. (1999) Nat. Biotechnol. 17, 1000-1005). In vitro, the dendrimeric form of C3, termed C3d, disrupts NCAM-mediated cell adhesion, induces neurite outgrowth, and triggers intracellular signaling cascades similar to those activated by homophilic NCAM binding. The peptide may therefore be expected to regulate regeneration and synaptic plasticity. Here we demonstrate that in primary cultures of hippocampal neurons: 1) C3d induces a sustained neuritogenic response, the neuritogenic activity of the compound being dependent on the dose, starting time, and duration of peptide application; 2) the peptide triggers the neuritogenic response by forming an adhesive substratum necessary for NCAM-mediated neurite formation and elongation; 3) C3d promotes synapse formation; and 4) C3d modulates the presynaptic function, causing a transient increase of the function at low (2 and 5 microm) doses and a reduction when applied at a higher concentration (10 microm). The effect of the peptide is dependent on the activation of the fibroblast growth factor receptor. We suggest that C3d may constitute a useful lead for the development of compounds for treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bldg. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Povlsen GK, Ditlevsen DK, Berezin V, Bock E. Intracellular signaling by the neural cell adhesion molecule. Neurochem Res 2003; 28:127-41. [PMID: 12587671 DOI: 10.1023/a:1021660531484] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell adhesion molecules are known to play far more complex roles than mechanically attaching one cell to an adjacent cell or to components of the extracellular matrix. Thus, important roles for cell adhesion molecules in the regulation of intracellular signaling pathways have been revealed. In this review, we discuss the present knowledge about signaling pathways activated upon homophilic binding of the neural cell adhesion molecule (NCAM). Homophilic NCAM binding leads to activation of a signal transduction pathway involving Ca2+ through activation of the fibroblast growth factor receptor, and to activation of the mitogen-activated protein kinase pathway. In addition, cyclic adenosine monophosphate and protein kinase A are involved in NCAM-mediated signaling. Among these pathways the possibility exists of cross talk or convergence, of which different possible mediators have been suggested. Finally, several downstream effector molecules leading to NCAM-mediated cellular endpoints have been demonstrated, including transcription factors and regulators of the cytoskeleton.
Collapse
Affiliation(s)
- Gro Klitgaard Povlsen
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Abstract
In the past year, significant advances have been made in the synthesis and study of glycodendrimers and peptide dendrimers. Application of these dendrimers to the study of carbohydrate-protein and protein-protein interactions has facilitated the understanding of these processes. In addition, dendrimers show great promise as DNA- and drug-delivery systems.
Collapse
Affiliation(s)
- Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, 108 Gaines Hall, Bozeman, Montana 59717, USA.
| |
Collapse
|
33
|
Rønn LCB, Olsen M, Soroka V, ØStergaard S, Dissing S, Poulsen FM, Holm A, Berezin V, Bock E. Characterization of a novel NCAM ligand with a stimulatory effect on neurite outgrowth identified by screening a combinatorial peptide library. Eur J Neurosci 2002; 16:1720-30. [PMID: 12431225 DOI: 10.1046/j.1460-9568.2002.02242.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural cell adhesion molecule, NCAM, plays a key role in neural development and plasticity mediating cell adhesion and signal transduction. By screening a combinatorial library of synthetic peptides with NCAM purified from postnatal day 10 rat brains, we identified a nonapeptide, termed NCAM binding peptide 10 (NBP10) and showed by nuclear magnetic resonance analysis that it bound the NCAM IgI module of NCAM. NBP10 modulated cell aggregation as well as neurite outgrowth induced specifically by homophilic NCAM binding. Moreover, both monomeric and multimeric forms of NBP10 stimulated neurite outgrowth from primary hippocampal neurons. The neurite outgrowth response to NBP10 was inhibited by a number of compounds previously shown to inhibit neurite outgrowth induced by homophilic NCAM binding, including voltage-dependent calcium channel antagonists, suggesting that NBP10 induced neurite outgrowth by activating a signal transduction pathway similar to that activated by NCAM itself. Moreover, an inhibitor of intracellular calcium mobilization, TMB-8, prevented NBP10-induced neurite outgrowth suggesting that NCAM-dependent neurite outgrowth also requires mobilization of calcium from intracellular calcium stores in addition to calcium influx from extracellular sources. By single-cell calcium imaging we further demonstrated that NBP10 was capable of inducing an increase in intracellular calcium in PC12E2 cells. Thus, the NBP10 peptide is a new tool for the study of molecular mechanisms underlying NCAM-dependent signal transduction and neurite outgrowth, and could prove to be a useful modulator of regenerative processes in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lars C B Rønn
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute 6.2., Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|