1
|
de Sousa GC, Cruz FF, Heil LB, Sobrinho CJS, Saddy F, Knibel FP, Pereira JB, Schultz MJ, Pelosi P, Gama de Abreu M, Silva PL, Rocco PRM. Intraoperative immunomodulatory effects of sevoflurane versus total intravenous anesthesia with propofol in bariatric surgery (the OBESITA trial): study protocol for a randomized controlled pilot trial. Trials 2019; 20:300. [PMID: 31138279 PMCID: PMC6540380 DOI: 10.1186/s13063-019-3399-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Obesity is associated with a chronic systemic inflammatory process. Volatile or intravenous anesthetic agents may modulate immune function, and may do so differentially in obesity. However, no study has evaluated whether these potential immunomodulatory effects differ according to type of anesthesia in obese patients undergoing laparoscopic bariatric surgery. Methods/design The OBESITA trial is a prospective, nonblinded, single-center, randomized, controlled clinical pilot trial. The trial will include 48 patients with a body mass index ≥ 35 kg/m2, scheduled for laparoscopic bariatric surgery using sleeve or a Roux-en-Y gastric bypass technique, who will be allocated 1:1 to undergo general inhalational anesthesia with sevoflurane or total intravenous anesthesia (TIVA) with propofol. The primary endpoint is the difference in plasma interleukin (IL)-6 levels when comparing the two anesthetic agents. Blood samples will be collected prior to anesthesia induction (baseline), immediately after anesthetic induction, and before endotracheal extubation. Levels of other proinflammatory and anti-inflammatory cytokines, neutrophil chemotaxis, macrophage differentiation, phagocytosis, and occurrence of intraoperative and postoperative complications will also be evaluated. Discussion To our knowledge, this is the first randomized clinical trial designed to compare the effects of two different anesthetics on immunomodulation in obese patients undergoing laparoscopic bariatric surgery. Our hypothesis is that anesthesia with sevoflurane will result in a weaker proinflammatory response compared to anesthesia with propofol, with lower circulating levels of IL-6 and other proinflammatory mediators, and increased macrophage differentiation into the M2 phenotype in adipose tissue. Trial registration Registro Brasileiro de Ensaios Clínicos, RBR-77kfj5. Registered on 25 July 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3399-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giselle Carvalho de Sousa
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.,Department of Anesthesiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Luciana Boavista Heil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | | | - Felipe Saddy
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.,Institute D'Or of Research and Teaching, Rio de Janeiro, Brazil
| | | | | | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
2
|
Mahdy MAA, Warita K, Hosaka YZ. Effects of transforming growth factor-β1 treatment on muscle regeneration and adipogenesis in glycerol-injured muscle. Anim Sci J 2017; 88:1811-1819. [PMID: 28585769 DOI: 10.1111/asj.12845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Transforming growth factor (TGF)-β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF-β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF-β1 on muscle regeneration and adipogenesis in glycerol-injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF-β1 was either co-injected with glycerol, as an 'early treatment' group, or injected at day 4 after glycerol, as a 'late treatment' group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol-injured group (without TGF-β1 treatment). Moreover, the Oil red O-positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol-injured group. Furthermore, TGF-β1 treatment increased endomysial fibrosis and induced immunostaining of α-smooth muscle actin. The greater inhibitory effects of early TGF-β1 treatment than that of late TGF-β1 treatment during regeneration in glycerol-injured muscle suggest a more potent effect of TGF-β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF-β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Hommerding CJ, Childs BG, Baker DJ. The Role of Stem Cell Genomic Instability in Aging. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Regulation of lipid accumulation in 3T3-L1 cells: insulin-independent and combined effects of fatty acids and insulin. Animal 2012; 2:92-9. [PMID: 22444967 DOI: 10.1017/s1751731107000936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The insulin-independent and combined effects of fatty acids (FA; linoleic and oleic acids) and insulin in modulating lipid accumulation and adipogenesis in 3T3-L1 cells was investigated using a novel protocol avoiding the effects of a complex hormone 'induction' mixture. 3T3-L1 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) plus serum (control) or in DMEM plus either 0.3 mmol/l linoleic or oleic acids with 0.3 mmol/l FA-free bovine serum albumin in the presence or absence of insulin. Cells were cultured for 4 to 8 days and cell number, lipid accumulation, peroxisome proliferator-activated receptor-gamma (PPAR-γ) and glucose transporter 4 (GLUT-4) protein expression were determined. Cell number appeared to be decreased in comparison with control cultures. In both oleic acid and linoleic acid-treated cells, notably in the absence (and presence) of insulin, oil-red O stain-positive cells showed abundant lipid. The percentage of cells showing lipid accumulation was greater in FA-treated cultures compared with control cells grown in DMEM plus serum (P < 0.001). Treatment with both linoleic and oleic acid-containing media evoked higher levels of PPAR-γ than observed in control cultures (P < 0.05). GLUT-4 protein also increased in response to treatment with both linoleic and oleic acid-containing media (P < 0.001). Lipid accumulation in 3T3-L1 cells occurs in response to either oleic or linoleic acids independently of the presence of insulin. Both PPAR-γ and GLUT-4 protein expression were stimulated. Both proteins are considered markers of adipogenesis, and these observations suggest that these cells had entered the physiological state broadly accepted as differentiated. Furthermore, 3T3-L1 cells can be induced to accumulate lipid in a serum-free medium supplemented with FA, without the use of induction protocols using complex hormone mixtures. We have demonstrated a novel model for the study of lipid accumulation that will improve the understanding of adipogenesis in adipocyte lineage cells.
Collapse
|
5
|
mt-COX1, mt-ND1 and CREBP are indicators of intramuscular fat content in Hanwoo (Korean cattle). Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lee SH, Gondro C, van der Werf J, Kim NK, Lim DJ, Park EW, Oh SJ, Gibson JP, Thompson JM. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC Genomics 2010; 11:623. [PMID: 21062493 PMCID: PMC3018137 DOI: 10.1186/1471-2164-11-623] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 11/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marbling (intramuscular fat) is a valuable trait that impacts on meat quality and an important factor determining price of beef in the Korean beef market. Animals that are destined for this high marbling market are fed a high concentrate ration for approximately 30 months in the Korean finishing farms. However, this feeding strategy leads to inefficiencies and excessive fat production. This study aimed to identify candidate genes and pathways associated with intramuscular fat deposition on highly divergent marbling phenotypes in adult Hanwoo cattle. RESULTS Bovine genome array analysis was conducted to detect differentially expressed genes (DEGs) in m. longissimus with divergent marbling phenotype (marbling score 2 to 7). Three data-processing methods (MAS5.0, GCRMA and RMA) were used to test for differential expression (DE). Statistical analysis identified 21 significant transcripts from at least two data-processing methods (P < 0.01). All 21 differentially expressed genes were validated by real-time PCR. Results showed a high concordance in the gene expression fold change between the microarrays and the real time PCR data. Gene Ontology (GO) and pathway analysis demonstrated that some genes (ADAMTS4, CYP51A and SQLE) over expressed in high marbled animals are involved in a protein catabolic process and a cholesterol biosynthesis process. In addition, pathway analysis also revealed that ADAMTS4 is activated by three regulators (IL-17A, TNFα and TGFβ1). QRT-PCR was used to investigate gene expression of these regulators in muscle with divergent intramuscular fat contents. The results demonstrate that ADAMTS4 and TGFβ1 are associated with increasing marbling fat. An ADAMTS4/TGFβ1 pathway seems to be associated with the phenotypic differences between high and low marbled groups. CONCLUSIONS Marbling differences are possibly a function of complex signaling pathway interactions between muscle and fat. These results suggest that ADAMTS4, which is involved in connective tissue degradation, could play a role in an important biological pathway for building up marbling in cattle. Moreover, ADAMTS4 and TGFβ1could potentially be used as an early biological marker for marbling fat content in the early stages of growth.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, Suwon 441-706, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jin Q, Zhang F, Yan T, Liu Z, Wang C, Ge X, Zhai Q. C/EBPalpha regulates SIRT1 expression during adipogenesis. Cell Res 2010; 20:470-9. [PMID: 20157332 DOI: 10.1038/cr.2010.24] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SIRT1 plays an important role in adipogenesis, but how SIRT1 is regulated in adipogenesis is largely unknown. In this study, we show that both SIRT1 protein and mRNA levels were increased along with CCAAT/enhancer-binding protein alpha (C/EBPalpha) during adipocyte differentiation. C/EBPalpha, but not C/EBPalphap30, activated SIRT1 promoter in both HeLa cells and 3T3-L1 preadipocytes. Furthermore, C/EBPalpha upregulated SIRT1 mRNA and protein levels in HeLa cells and increased SIRT1 expression in a p53-independent manner in Soas2 cells. In preadipocytes, ectopic expression of C/EBPalpha upregulated SIRT1 protein level and knockdown of C/EBPalpha led to the decrease of SIRT1 protein level. Moreover, by promoter deletion analysis, gel shift assay and chromatin immunoprecipitation, we found that C/EBPalpha bound to the SIRT1 promoter at a consensus C/EBPalpha binding site. These data demonstrate that C/EBPalpha regulates SIRT1 expression during adipogenesis by directly binding to the SIRT1 promoter.
Collapse
Affiliation(s)
- Qihuang Jin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Tchoukalova YD, Nathanielsz PW, Conover CA, Smith SR, Ravussin E. Regional variation in adipogenesis and IGF regulatory proteins in the fetal baboon. Biochem Biophys Res Commun 2009; 380:679-83. [PMID: 19285021 DOI: 10.1016/j.bbrc.2009.01.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Intrauterine growth rate is associated with body distribution in adulthood suggesting differential response of fetal fat depots to nutritional modifications. We hypothesize that there is regional differences in fetal adipogenesis, in part, due to depot-specific regulation of the availability of insulin growth factors. In near-term baboon fetuses (n=3-5), the subcutaneous abdominal vs. omental preadipocytes had (1) more extensive lipid accumulation as assessed by BODIPY (lipid staining) to DAPI (nuclei) absorbance ratios (mean+/-SEM; 0.51+/-0.21, 0.35+/-0.09, p<0.05), (2) lower (p<0.05) secretion of IGF-binding protein 4 (9.6+/-1.2 vs. 17.4+/-2.8 ng/ml) and its protease pregnancy associated plasma protein A (24.6+/-1.9 vs. 39.1+/-6.3 microIU/ml), (3) lower protein expression of IGF2 "clearance" receptor in cell lysate (0.28+/-0.03 vs. 0.53+/-0.02 OD U/mm(2), p<0.05); all variables were intermediate in femoral preadipocytes. The regional variation of the adipogenesis and the IGF regulatory pathway set the stage for differential responsiveness of fat depots to external signals.
Collapse
Affiliation(s)
- Yourka D Tchoukalova
- Pennington Biomedical Research Center, Department of Human Physiology, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | | | |
Collapse
|
9
|
Tan JTM, McLennan SV, Song WW, Lo LWY, Bonner JG, Williams PF, Twigg SM. Connective tissue growth factor inhibits adipocyte differentiation. Am J Physiol Cell Physiol 2008; 295:C740-51. [PMID: 18596209 DOI: 10.1152/ajpcell.00333.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipocyte differentiation is a key process implicated in the pathogenesis of obesity and insulin resistance. Its regulation is triggered by a cascade of transcription factors, including the CCAAT/enhancer binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-gamma (PPARgamma). Growth factors such as transforming growth factor-beta1 (TGF-beta1) are known to inhibit adipocyte differentiation in vitro, via the C/EBP pathway, and in vivo, but whether a downstream mediator of TGF-beta1, connective tissue growth factor (CTGF), also known as CCN2, has a similar role is unknown. Mouse 3T3-L1 cells were differentiated into adipocytes by using standard methods, and effects and regulation of CTGF were studied. Intervention with recombinant human CTGF during differing stages of differentiation caused an inhibition in the development of the adipocyte phenotype, according to the gene expression of the differentiation markers adiponectin and PPARgamma, as well as suppression of lipid accumulation and expression of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. Whereas CTGF gene expression promptly fell by 90% as 3T3-L1 preadipocytes differentiated into mature adipocytes, CTGF mRNA expression was induced by added TGF-beta1. CTGF applied to cells early in the course of differentiation inhibited total cell protein levels and nuclear localization of the beta-isoform of C/EBP (C/EBP-beta) and, subsequently, total cell C/EBP-alpha levels. CTGF also inhibited the adipocyte differentiation program in primary cultures of mouse preadipocytes. Expression of CTGF mRNA was twofold higher in the central fat depots of mice compared with subcutaneous fat, suggesting a potential role for CTGF in vivo. In summary, these data show that CTGF inhibits the adipocyte differentiation program.
Collapse
Affiliation(s)
- Joanne T M Tan
- Discipline of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Rhodes NP. Inflammatory signals in the development of tissue-engineered soft tissue. Biomaterials 2007; 28:5131-6. [PMID: 17709136 DOI: 10.1016/j.biomaterials.2007.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/02/2007] [Indexed: 11/27/2022]
Abstract
Scaffolds with 400 microm pores constructed from hyaluronan modified by benzyl esterification of the carboxylic acid groups (HYAFF-11) and viscous gels created from dodecyl-amidation of hyaluronan (HYADD-3) were implanted subcutaneously into rats for periods of up to 26 and 12 weeks, respectively. Tissue explants were infiltrated with methacrylate resin, sectioned and stained with a broad panel of inflammatory markers in addition to conventional histological stains. Both gels and sponges became rapidly infiltrated by cells that, in the case of HYAFF sponges, did not differentiate, whilst mature adipocytes were only observed at the margins of the sponges. This was combined with sustained inflammatory antigen expression. Conversely, in the HYADD gels, only moderate inflammatory staining was observed at 4 weeks which had diminished completely by 8 weeks. Mature and maturing adipocytes were observed deep within the gels. It is hypothesised that the gels present an excellent inflammatory cytokine profile which induces macrophage infiltration, proliferation then differentiation into adipocytes and is responsible for the generation of neoadipogenesis.
Collapse
Affiliation(s)
- Nicholas P Rhodes
- UK Centre for Tissue Engineering, Division of Clinical Engineering, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, UK.
| |
Collapse
|
11
|
Avram MM, Avram AS, James WD. Subcutaneous fat in normal and diseased states. J Am Acad Dermatol 2007; 56:472-92. [PMID: 17317490 DOI: 10.1016/j.jaad.2006.06.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 05/10/2006] [Accepted: 06/19/2006] [Indexed: 12/15/2022]
Abstract
The quest for effective strategies to treat obesity has propelled fat research into an exploration of the molecular processes that drive adipocyte formation, and hence body fat mass. The development of obesity is dependent on the coordinated interplay of adipocyte hypertrophy (increased fat cell size), adipocyte hyperplasia (increased fat cell number), and angiogenesis. Evidence suggests that adipocyte hyperplasia, or adipogenesis, occurs throughout life, both in response to normal cell turnover as well as in response to the need for additional fat mass stores that arises when caloric intake exceeds nutritional requirements. Adipogenesis involves two major events-the recruitment and proliferation of adipocyte precursor cells, called preadipocytes, followed by the subsequent conversion of preadipocytes, or differentiation, into mature fat cells. In vitro studies using experimental and primary preadipocyte cell lines have uncovered the mechanisms that drive the adipogenic process, a tightly controlled sequence of events guided by the strict temporal regulation of multiple inhibitory and stimulatory signaling events involving regulators of cell-cycle functions and differentiation factors. This article reviews the current understanding of adipogenesis with emphasis on the various stages of adipocyte development; on key hormonal, nutritional, paracrine, and neuronal control signals; as well as on the components involved in cell-cell or cell-matrix interactions that are pivotal in regulating fat cell formation. Special consideration is given to clinical applications derived from adipogenesis research with impact on medical, surgical and cosmetic fields.
Collapse
Affiliation(s)
- Mathew M Avram
- Massachusetts General Hospital Dermatology Laser and Cosmetic Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
12
|
Kim KY, Kim HY, Kim JH, Lee CH, Kim DH, Lee YH, Han SH, Lim JS, Cho DH, Lee MS, Yoon S, Kim KI, Yoon DY, Yang Y. Tumor necrosis factor-α and interleukin-1β increases CTRP1 expression in adipose tissue. FEBS Lett 2006; 580:3953-60. [PMID: 16806199 DOI: 10.1016/j.febslet.2006.06.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/02/2006] [Accepted: 06/14/2006] [Indexed: 11/16/2022]
Abstract
CTRP1, a member of the CTRP superfamily, consists of an N-terminal signal peptide sequence followed by a variable region, a collagen repeat domain, and a C-terminal globular domain. CTRP1 is expressed at high levels in adipose tissues of LPS-stimulated Sprague-Dawley rats. The LPS-induced increase in CTRP1 gene expression was found to be mediated by TNF-alpha and IL-1beta. Also, a high level of expression of CTRP1 mRNA was observed in adipose tissues of Zucker diabetic fatty (fa/fa) rats, compared to Sprague-Dawley rats in the absence of LPS stimulation. These findings indicate that CTRP1 expression may be associated with a low-grade chronic inflammation status in adipose tissues.
Collapse
Affiliation(s)
- Kun-yong Kim
- Department of Life Science, Research Center for Women's Diseases, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fain JN, Tichansky DS, Madan AK. Transforming growth factor beta1 release by human adipose tissue is enhanced in obesity. Metabolism 2005; 54:1546-51. [PMID: 16253647 DOI: 10.1016/j.metabol.2005.05.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 05/23/2005] [Indexed: 01/04/2023]
Abstract
The present studies examined the effect of obesity in humans on the release of transforming growth factor beta1 (TGF-beta1) by human adipose tissue. The regulation of TGF-beta1 release by adipose tissue as well as the question of whether its release is due to the adipocytes or the nonfat cells in adipose tissue was also examined. There was a statistically significant (r=0.50) correlation between the body mass index of the fat donors and the subsequent release of TGF-beta1 release by subcutaneous adipose tissue. There was also a positive correlation between total TGF-beta1 release by adipose tissue explants and body fat content (r=0.69). The question of whether tumor necrosis factor alpha (TNF-alpha) and/or interleukin 1 beta (IL-1 beta) regulate the release of TGF-beta1 was investigated by incubation of adipose tissue explants with a soluble human TNF-alpha receptor (etanercept) and a neutralizing antihuman IL-1 beta antibody. The release of TGF-beta1 over 48 hours by adipose tissue explants was significantly enhanced in the presence of both the inhibitor of TNF-alpha and of IL-1 beta. It is of interest, in view of the elevated circulating insulin in blood of morbidly obese women, that the release of TGF-beta1 by adipose tissue was enhanced in the presence of insulin. The question of whether the release of TGF-beta1 by human adipose tissue explants was primarily due to adipocytes, as is the case for leptin, or the nonfat cells present in human adipose tissue, as is the case for IL-8 and prostaglandin E(2), was examined. The release of TGF-beta1 was primarily by the nonfat cells of human adipose tissue because release by adipocytes was less than 10% of that by the nonfat cells of adipose tissue.
Collapse
Affiliation(s)
- John N Fain
- Department of Molecular Sciences, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
14
|
Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, Guañabens N, Migone N, Wientroub S, Divizia MT, Bergmann C, Bennett C, Simsek S, Melançon S, Cundy T, Van Hul W. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet 2005; 43:1-11. [PMID: 15894597 PMCID: PMC2564495 DOI: 10.1136/jmg.2005.033522] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Camurati-Engelmann disease (CED) is a rare autosomal dominant type of bone dysplasia. This review is based on the unpublished and detailed clinical, radiological, and molecular findings in 14 CED families, comprising 41 patients, combined with data from 10 other previously reported CED families. For all 100 cases, molecular evidence for CED was available, as a mutation was detected in TGFB1, the gene encoding transforming growth factor (TGF) beta1. Pain in the extremities was the most common clinical symptom, present in 68% of the patients. A waddling gait (48%), easy fatigability (44%), and muscle weakness (39%) were other important features. Radiological symptoms were not fully penetrant, with 94% of the patients showing the typical long bone involvement. A large percentage of the patients also showed involvement of the skull (54%) and pelvis (63%). The review provides an overview of possible treatments, diagnostic guidelines, and considerations for prenatal testing. The detailed description of such a large set of CED patients will be of value in establishing the correct diagnosis, genetic counselling, and treatment.
Collapse
Affiliation(s)
- K Janssens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kokta TA, Dodson MV, Gertler A, Hill RA. Intercellular signaling between adipose tissue and muscle tissue. Domest Anim Endocrinol 2004; 27:303-31. [PMID: 15519037 DOI: 10.1016/j.domaniend.2004.05.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Accepted: 05/12/2004] [Indexed: 11/22/2022]
Abstract
Adipose and muscle tissues undergo regulated growth and differentiation processes that are modulated by a wide range of factors. The interactions between myogenic cells and adipocytes play a significant role in growth and development, including the rate and extent of myogenesis, muscle growth, adipogenesis, lipogenesis/lipolysis, and in the utilization of energy substrates. Important hormones and growth factors involved in the regulation of these processes include glucocorticoids, insulin-like growth factors, various cytokines, insulin, and leptin. Interactions among these axes have important implications in their influence on relative fat and lean deposition and the efficiency of energy utilization in growth and development. As research progresses to better clarify the interactions among adipose tissue depots and muscle of different fiber types, pathways will become better understood, ultimately leading to the optimized management of fat and lean growth in domestic livestock species. This review will focus on elements of intercellular signaling, using data from cell culture studies to illustrate specific examples of signaling pathways between cells.
Collapse
Affiliation(s)
- T A Kokta
- Department of Animal and Veterinary Science, University of Idaho, 311 Agricultural Biotechnology Building, P.O. Box 442330, Moscow, ID 83844-2330, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The use of experimental models is the foundation of experimental biology, so it is important to know how much the models can tell us about actual animals. Inconsistent or contradictory results from in vitro models are often associated with the perception that a particular model or results are somehow wrong and therefore cannot tell us anything important about how an animal works. In fact, in vitro conditions do not create new biology. Differences between in vitro and in vivo behavior can only result from the actual cellular repertoire, which provides a powerful tool to uncover new information. Adipose tissue research provides a useful context for examining this issue because the regulation of adipose growth and metabolism has important economic implications for livestock production. Examples are discussed in which either excess skepticism or narrow interpretation of results slowed progress toward our current understanding of adipose biology. Similarly, contemporary examples using genomics are used to suggest that large inconsistencies are still apparent with in vitro methods. Careful consideration of these inconsistencies may provide new insights.
Collapse
Affiliation(s)
- J Novakofski
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|