1
|
Su Y, Michimori Y, Fukuyama Y, Shimamura S, Nunoura T, Atomi H. TK2268 encodes the major aminotransferase involved in the conversion from oxaloacetic acid to aspartic acid in Thermococcus kodakarensis. Appl Environ Microbiol 2025; 91:e0201724. [PMID: 39992121 PMCID: PMC11921379 DOI: 10.1128/aem.02017-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
Amino acid metabolism in archaea in many cases differs from those reported in bacteria and eukaryotes. The hyperthermophilic archaeon Thermococcus kodakarensis possesses an incomplete tricarboxylic cycle, and the biosynthesis pathway of aspartate is unknown. Here, four Class I aminotransferases in T. kodakarensis encoded by TK0186, TK0548, TK1094, and TK2268 were examined to identify the enzyme(s) responsible for the conversion of oxaloacetate to aspartate. Among the four proteins, the TK2268 protein (TK2268p) was the only protein to recognize oxaloacetate as the amino acceptor. With oxaloacetate, TK2268p only recognized glutamate as the amino donor. The protein also catalyzed the reverse reaction, the transamination between aspartate and 2-oxoglutarate. Substrate inhibition was observed in the presence of high concentrations of oxaloacetate or 2-oxoglutarate. Aminotransferase activity between oxaloacetate and glutamate was observed in cell extracts of the T. kodakarensis host strain KU216. Among the individual gene disruption strains of the four aminotransferases, a significant decrease in activity was only observed in the ΔTK2268 strain. T. kodakarensis KU216 does not display growth in synthetic amino acid medium when aspartate/asparagine are absent. Growth was restored upon the addition of both oxaloacetate and glutamate. Although this restoration in growth was maintained in ΔTK0186, ΔTK0548, and ΔTK1094, growth was not observed in the ΔTK2268 strain. Our results suggest that TK2268p is the predominant aminotransferase responsible for the conversion of oxaloacetate to aspartate. The growth experiments and tracer-based metabolomics using 13C3-pyruvate indicated that pyruvate is a precursor of aspartate and that this conversion is dependent on TK2268p. IMPORTANCE Based on genome sequence, the hyperthermophilic archaeon Thermococcus kodakarensis possesses an incomplete tricarboxylic cycle, raising questions on how this organism carries out the biosynthesis of aspartate and glutamate. The results of this study clarify two main points related to aspartate biosynthesis. We show that aspartate can be produced from oxaloacetate and identify TK2268p as the aminotransferase responsible for this reaction. The other point demonstrated in this study is that pyruvate can act as the precursor for oxaloacetate synthesis. Together with previous results, we can propose some of the roles of the individual aminotransferases in T. kodakarensis. TK0548p and TK0186p are involved in amino acid catabolism, with the latter along with TK1094p involved in the conversion of glyoxylate to glycine. TK2268p is responsible for the biosynthesis of aspartate from oxaloacetate.
Collapse
Affiliation(s)
- Yu Su
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuto Fukuyama
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Shigeru Shimamura
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Xu S, Li ZL, Li ZM, Liu HL. Mining unique cysteine synthetases and computational study on thoroughly eliminating feedback inhibition through tunnel engineering. Protein Sci 2024; 33:e5160. [PMID: 39275998 PMCID: PMC11400630 DOI: 10.1002/pro.5160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
L-cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O-phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from Acetobacterium sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L-cysteine, exhibiting an IC50 value of merely 1.2 mM. A semi-rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSSA218R was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSSA218R with L-cys was altered, leading to a reduced affinity between L-cysteine and the active pocket. Tunnel analysis revealed that the AsOPSSA218R variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L-cysteine was produced in vitro within 2 h using the AsOPSSA218R variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L-cysteine production.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zong-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Min Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hong-Lai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Sowerby K, Freitag-Pohl S, Murillo AM, Silber AM, Pohl E. Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallogr D Struct Biol 2023; 79:518-530. [PMID: 37204818 PMCID: PMC10233618 DOI: 10.1107/s2059798323003613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
Chagas disease is a neglected tropical disease (NTD) caused by Trypanosoma cruzi, whilst leishmaniasis, which is caused by over 20 species of Leishmania, represents a group of NTDs endemic to most countries in the tropical and subtropical belt of the planet. These diseases remain a significant health problem both in endemic countries and globally. These parasites and other trypanosomatids, including T. theileri, a bovine pathogen, rely on cysteine biosynthesis for the production of trypanothione, which is essential for parasite survival in hosts. The de novo pathway of cysteine biosynthesis requires the conversion of O-acetyl-L-serine into L-cysteine, which is catalysed by cysteine synthase (CS). These enzymes present potential for drug development against T. cruzi, Leishmania spp. and T. theileri. To enable these possibilities, biochemical and crystallographic studies of CS from T. cruzi (TcCS), L. infantum (LiCS) and T. theileri (TthCS) were conducted. Crystal structures of the three enzymes were determined at resolutions of 1.80 Å for TcCS, 1.75 Å for LiCS and 2.75 Å for TthCS. These three homodimeric structures show the same overall fold and demonstrate that the active-site geometry is conserved, supporting a common reaction mechanism. Detailed structural analysis revealed reaction intermediates of the de novo pathway ranging from an apo structure of LiCS and holo structures of both TcCS and TthCS to the substrate-bound structure of TcCS. These structures will allow exploration of the active site for the design of novel inhibitors. Additionally, unexpected binding sites discovered at the dimer interface represent new potential for the development of protein-protein inhibitors.
Collapse
Affiliation(s)
- Kate Sowerby
- Department of Chemistry, Durham University, Durham, United Kingdom
| | | | | | | | - Ehmke Pohl
- Department of Chemistry, Durham University, Durham, United Kingdom
| |
Collapse
|
4
|
Salazar OR, N. Arun P, Cui G, Bay LK, van Oppen MJH, Webster NS, Aranda M. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. SCIENCE ADVANCES 2022; 8:eabq0304. [PMID: 36149959 PMCID: PMC9506716 DOI: 10.1126/sciadv.abq0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine β-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.
Collapse
Affiliation(s)
- Octavio R. Salazar
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Prasanna N. Arun
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Australia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Identification and Enzymatic Analysis of an Archaeal ATP-Dependent Serine Kinase from the Hyperthermophilic Archaeon Staphylothermus marinus. J Bacteriol 2021; 203:e0002521. [PMID: 34096778 DOI: 10.1128/jb.00025-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Serine kinase catalyzes the phosphorylation of free serine (Ser) to produce O-phosphoserine (Sep). An ADP-dependent Ser kinase in the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-SerK) is involved in cysteine (Cys) biosynthesis and most likely Ser assimilation. An ATP-dependent Ser kinase in the mesophilic bacterium Staphylococcus aureus is involved in siderophore biosynthesis. Although proteins displaying various degrees of similarity with Tk-SerK are distributed in a wide range of organisms, it is unclear if they are actually Ser kinases. Here, we examined proteins from Desulfurococcales species in Crenarchaeota that display moderate similarity with Tk-SerK from Euryarchaeota (42 to 45% identical). Tk-serK homologs from Staphylothermus marinus (Smar_0555), Desulfurococcus amylolyticus (DKAM_0858), and Desulfurococcus mucosus (Desmu_0904) were expressed in Escherichia coli. All three partially purified recombinant proteins exhibited Ser kinase activity utilizing ATP rather than ADP as a phosphate donor. Purified Smar_0555 protein displayed activity for l-Ser but not other compounds, including d-Ser, l-threonine, and l-homoserine. The enzyme utilized ATP, UTP, GTP, CTP, and the inorganic polyphosphates triphosphate and tetraphosphate as phosphate donors. Kinetic analysis indicated that the Smar_0555 protein preferred nucleoside 5'-triphosphates over triphosphate as a phosphate donor. Transcript levels and Ser kinase activity in S. marinus cells grown with or without serine suggested that the Smar_0555 gene is constitutively expressed. The genes encoding Ser kinases examined here form an operon with genes most likely responsible for the conversion between Sep and 3-phosphoglycerate of central sugar metabolism, suggesting that the ATP-dependent Ser kinases from Desulfurococcales play a role in the assimilation of Ser. IMPORTANCE Homologs of the ADP-dependent Ser kinase from the archaeon Thermococcus kodakarensis (Tk-SerK) include representatives from all three domains of life. The results of this study show that even homologs from the archaeal order Desulfurococcales, which are the most structurally related to the ADP-dependent Ser kinases from the Thermococcales, are Ser kinases that utilize ATP, and in at least some cases inorganic polyphosphates, as the phosphate donor. The differences in properties between the Desulfurococcales and Thermococcales enzymes raise the possibility that Tk-SerK homologs constitute a group of kinases that phosphorylate free serine with a wide range of phosphate donors.
Collapse
|
6
|
Identification of amino acid residues important for recognition of O-phospho-l-serine substrates by cysteine synthase. J Biosci Bioeng 2021; 131:483-490. [PMID: 33563496 DOI: 10.1016/j.jbiosc.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/18/2023]
Abstract
Pyridoxal-5'-phosphate-dependent cysteine synthases synthesize l-cysteine from their primary substrates, O-acetyl-l-serine (OAS) and O-phospho-l-serine (OPS), and their secondary substrate, sulfide. The mechanism by which cysteine synthases recognize OPS remains unclear; hence, we investigated the OPS recognition mechanism of the OPS sulfhydrylase obtained from Aeropyrum pernix K1 (ApOPSS) and the OAS sulfhydrylase-B obtained from Escherichia coli (EcOASS-B), using protein engineering methods. From the amino acid sequence alignment data, we found that some OPS sulfhydrylases (OPSSs) had a Tyr corresponding to the Phe225 and Phe141 residues in ApOPSS and EcOASS-B, respectively, and that the Tyr residue could facilitate OPS recognition. The enzymatic activity of the ApOPSS F225Y mutant toward OPS decreased compared with that of the wild-type; the kcat value decreased 2.3-fold during cysteine synthesis. X-ray crystallography results of the complex of ApOPSS F225Y and F225Y/R297A mutants bound to OPS and l-cysteine showed that kcat might have decreased because of the stronger interactions of the reaction product phosphate with Tyr225, Thr203, and Arg297, and that of the l-cysteine with Tyr225. The specific activity of the EcOASS-B F141Y mutant toward OPS increased by 50-fold compared with that of the wild-type. Thus, a Tyr within a cysteine synthase corresponding to the Phe225 in ApOPSS and Phe141 in EcOASS-B could act as a key residue for classifying an unknown cysteine synthase as an OPSS. The elucidation of the substrate recognition system of cysteine synthases would enable us to effectively classify cysteine synthases and develop pathogen-specific drug targets, as OPSS is absent in mammalian hosts.
Collapse
|
7
|
Metabolomic analysis of lung cancer patients with chronic obstructive pulmonary disease using gas chromatography-mass spectrometry. J Pharm Biomed Anal 2020; 190:113524. [PMID: 32795777 DOI: 10.1016/j.jpba.2020.113524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by intermittent exacerbations and clinical subphenotypes like emphysema and chronic bronchitis, poses a significant risk of lung cancer (LC) development. Metabolomic studies of COPD are scarce, and those of LC patients with COPD subphenotypes have not been investigated. To study metabolite profile alteration in LC patients with different COPD subphenotypes, lung paracancer tissue from 10 LC (CON) patients, 10 LC patients with emphysema (E), and 9 LC patients with chronic bronchitis (CB) were analyzed using gas chromatography-mass spectrometry. Multivariate analysis indicated a distinct separation between LC patients with COPD subphenotypes and LC patients. Overall, 60, 55, 33 and 63 differential metabolites (DM) were identified in comparisons between CB vs CON, E vs CON, CB vs E, and CB + E vs CON, respectively, and of these, 8 DM were shared in all comparisons. Among the high altered metabolites, E samples showed higher 'acetol' than CON samples, and lower 'azelaic acid', '3-methylglutaric acid' and 'allose'. CB samples showed higher 'turanose' and 'o-phosphoserine' and lower 'anandamide' than CON and E samples. In CB and E samples, 'galactonic acid', '2-mercaptoethanesulfonic acid', 'D-alanyl-D-alanine' '3-methylglutaric acid', 'glycine', 'L-4-Hydroxyphenylglycine' and 'O-phosphonothreonine' had common alteration trends compared with those of CON samples. 'Glycine', 'L-4-Hydroxyphenylglycine' and 'O-phosphonothreonine' were significantly enriched in glycine, serine and threonine metabolism pathways. The total differential metabolites detected were remarkably altered in pyrimidine, beta-alanine and purine metabolism. Our study provided altered DM patterns of lung paracancer tissue, the key metabolites and their enriched metabolic pathways in LC patients with different COPD subphenotypes.
Collapse
|
8
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Hanatani Y, Imura M, Taniguchi H, Okano K, Toya Y, Iwakiri R, Honda K. In vitro production of cysteine from glucose. Appl Microbiol Biotechnol 2019; 103:8009-8019. [PMID: 31396682 DOI: 10.1007/s00253-019-10061-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Cysteine is a commercially valuable amino acid with an increasing demand in the food, cosmetic, and pharmaceutical industries. Although cysteine is conventionally manufactured by extraction from animal proteins, this method has several problems, such as troublesome waste-water treatment and incompatibility with some dietary restrictions. Fermentative production of cysteine from plant-derived substrates is a promising alternative for the industrial production of cysteine. However, it often suffers from low product yield as living organisms are equipped with various regulatory systems to control the intracellular cysteine concentration at a moderate level. In this study, we constructed an in vitro cysteine biosynthetic pathway by assembling 11 thermophilic enzymes. The in vitro pathway was designed to be insensitive to the feedback regulation by cysteine and to balance the intra-pathway consumption and regeneration of cofactors. A kinetic model for the in vitro pathway was built using rate equations of individual enzymes and used to optimize the loading ratio of each enzyme. Consequently, 10.5 mM cysteine could be produced from 20 mM glucose through the optimized pathway. However, the observed yield and production rate of the assay were considerably lower than those predicted by the model. Determination of cofactor concentrations in the reaction mixture indicated that the inconsistency between the model and experimental assay could be attributed to the depletion of ATP and ADP, likely due to host-derived, thermo-stable enzyme(s). Based on these observations, possible approaches to improve the feasibility of cysteine production through an in vitro pathway have been discussed.
Collapse
Affiliation(s)
- Yohei Hanatani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Makoto Imura
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan
| | - Ryo Iwakiri
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Nakamura T, Kunimoto K, Yuki T, Ishikawa K. Unnatural Amino Acid Synthesis by Thermostable O-Phospho-l-serine Sulfhydrylase from Hyperthermophilic Archaeon Aeropyrum pernix K1. CHEM LETT 2017. [DOI: 10.1246/cl.170822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Nakamura
- Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829
| | - Kohei Kunimoto
- Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829
| | - Toru Yuki
- Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577
| |
Collapse
|
11
|
Nagata R, Fujihashi M, Kawamura H, Sato T, Fujita T, Atomi H, Miki K. Structural Study on the Reaction Mechanism of a Free Serine Kinase Involved in Cysteine Biosynthesis. ACS Chem Biol 2017; 12:1514-1523. [PMID: 28358477 DOI: 10.1021/acschembio.7b00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A free serine kinase (SerK) is involved in l-cysteine biosynthesis in the hyperthermophilic archaeon Thermococcus kodakarensis. The enzyme converts ADP and l-serine (Ser) into AMP and O-phospho-l-serine (Sep), which is a precursor of l-cysteine. SerK is the first identified enzyme that phosphorylates free serine, while serine/threonine protein kinases have been well studied. SerK displays low sequence similarities to known kinases, suggesting that its reaction mechanism is different from those of known kinases. Here, we determined the crystal structures of SerK from T. kodakarensis (Tk-SerK). The overall structure is divided into two domains. A large cleft is found between the two domains in the AMP complex and in the ADP complex. The cleft is closed in the ternary product complex (Sep, AMP, and Tk-SerK) and may also be in the ternary substrate complex (Ser, ADP, and Tk-SerK). The closure may reorient the carboxyl group of E30 near to the Oγ atom of Ser. The Oγ atom is considered to be deprotonated by E30 and to attack the β-phosphate of ADP to form Sep. The substantial decrease in the activity of the E30A mutant is consistent with this mechanism. Our structures also revealed the residues that contribute to the ligand binding. The conservation of these residues in uncharacterized proteins from bacteria may raise the possibility of the presence of free Ser kinases not only in archaea but also in bacteria.
Collapse
Affiliation(s)
- Ryuhei Nagata
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Fujihashi
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroki Kawamura
- Department of Synthetic Chemistry and Biological
Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological
Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST, CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Takayuki Fujita
- Department of Synthetic Chemistry and Biological
Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological
Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST, CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kunio Miki
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- JST, CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
12
|
An archaeal ADP-dependent serine kinase involved in cysteine biosynthesis and serine metabolism. Nat Commun 2016; 7:13446. [PMID: 27857065 PMCID: PMC5120207 DOI: 10.1038/ncomms13446] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/05/2016] [Indexed: 01/14/2023] Open
Abstract
Routes for cysteine biosynthesis are still unknown in many archaea. Here we find that the hyperthermophilic archaeon Thermococcus kodakarensis generates cysteine from serine via O-phosphoserine, in addition to the classical route from 3-phosphoglycerate. The protein responsible for serine phosphorylation is encoded by TK0378, annotated as a chromosome partitioning protein ParB. The TK0378 protein utilizes ADP as the phosphate donor, but in contrast to previously reported ADP-dependent kinases, recognizes a non-sugar substrate. Activity is specific towards free serine, and not observed with threonine, homoserine and serine residues within a peptide. Genetic analyses suggest that TK0378 is involved in serine assimilation and clearly responsible for cysteine biosynthesis from serine. TK0378 homologs, present in Thermococcales and Desulfurococcales, are most likely not ParB proteins and constitute a group of kinases involved in serine utilization. Archaea metabolism has unique adaptations to hostile environments. Here Makino et al. describe an unusual ADP-dependent kinase that phosphorylates free serine to O-phosphoserine and participates in an additional cysteine biosynthetic pathway in the archaeon Thermococcus kodakarensis.
Collapse
|
13
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
14
|
Takeda E, Kunimoto K, Kawai Y, Kataoka M, Ishikawa K, Nakamura T. Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1. Extremophiles 2016; 20:733-45. [DOI: 10.1007/s00792-016-0862-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
|
15
|
Kobylarz MJ, Grigg JC, Liu Y, Lee MSF, Heinrichs DE, Murphy MEP. Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis. Biochemistry 2016; 55:927-39. [PMID: 26794841 PMCID: PMC5084695 DOI: 10.1021/acs.biochem.5b01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Staphylococcus aureus assembles the siderophore,
staphyloferrin B, from l-2,3-diaminopropionic acid (l-Dap), α-ketoglutarate, and citrate. Recently, SbnA and SbnB
were shown to produce l-Dap and α-ketoglutarate from O-phospho-l-serine (OPS) and l-glutamate.
SbnA is a pyridoxal 5′-phosphate (PLP)-dependent enzyme with
homology to O-acetyl-l-serine sulfhydrylases;
however, SbnA utilizes OPS instead of O-acetyl-l-serine (OAS), and l-glutamate serves as a nitrogen
donor instead of a sulfide. In this work, we examined how SbnA dictates
substrate specificity for OPS and l-glutamate using a combination
of X-ray crystallography, enzyme kinetics, and site-directed mutagenesis.
Analysis of SbnA crystals incubated with OPS revealed the structure
of the PLP-α-aminoacrylate intermediate. Formation of the intermediate
induced closure of the active site pocket by narrowing the channel
leading to the active site and forming a second substrate binding
pocket that likely binds l-glutamate. Three active site residues
were identified: Arg132, Tyr152, Ser185 that were essential for OPS
recognition and turnover. The Y152F/S185G SbnA double mutant was completely
inactive, and its crystal structure revealed that the mutations induced
a closed form of the enzyme in the absence of the α-aminoacrylate
intermediate. Lastly, l-cysteine was shown to be a competitive
inhibitor of SbnA by forming a nonproductive external aldimine with
the PLP cofactor. These results suggest a regulatory link between
siderophore and l-cysteine biosynthesis, revealing a potential
mechanism to reduce iron uptake under oxidative stress.
Collapse
Affiliation(s)
- Marek J Kobylarz
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z3
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z3
| | - Yunan Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z3
| | - Mathew S F Lee
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z3
| | | | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
16
|
Nakamura T, Asai S, Nakata K, Kunimoto K, Oguri M, Ishikawa K. Thermostability and reactivity in organic solvent of O-phospho-l-serine sulfhydrylase from hyperthermophilic archaeon Aeropyrum pernix K1. Biosci Biotechnol Biochem 2015; 79:1280-6. [DOI: 10.1080/09168451.2015.1020753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
O-phospho-l-serine sulfhydrylase (OPSS) from archaeon Aeropyrum pernix K1 is able to synthesize l-cysteine even at 80 °C. In this article, we compared thermal stability and reactivity in organic solvent of OPSS with those of O-acetyl-l-serine sulfhydrylase B (OASS-B) from Escherichia coli. As a result, the thermostability of OPSS was much higher than that of OASS-B. Moreover, the activity of OPSS increased in the reaction mixture containing the organic solvent, such as N, N′-dimethyl formamide and 1,4-dioxane, whereas that of OASS-B gradually decreased as the content of organic solvent increased. From the crystal structural analysis, the intramolecular electrostatic interactions of N-terminal domain in OPSS seemed to be correlated with the tolerance of OPSS to high temperature and organic solvent. These results indicate that OPSS is more superior to OASS-B for the industrial production of l-cysteine and unnatural amino acids that are useful pharmaceuticals in the presence of organic solvent.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Bioscience, Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Shinji Asai
- Faculty of Bioscience, Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kaori Nakata
- Faculty of Bioscience, Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kohei Kunimoto
- Faculty of Bioscience, Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Masateru Oguri
- Faculty of Bioscience, Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kazuhiko Ishikawa
- National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| |
Collapse
|
17
|
Busch F, Rajendran C, Mayans O, Löffler P, Merkl R, Sterner R. TrpB2 Enzymes are O-Phospho-l-serine Dependent Tryptophan Synthases. Biochemistry 2014; 53:6078-83. [DOI: 10.1021/bi500977y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Busch
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Olga Mayans
- Institute
of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Patrick Löffler
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
18
|
Vozdek R, Hnízda A, Krijt J, Será L, Kožich V. Biochemical properties of nematode O-acetylserine(thiol)lyase paralogs imply their distinct roles in hydrogen sulfide homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2691-701. [PMID: 24100226 DOI: 10.1016/j.bbapap.2013.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
Abstract
O-Acetylserine(thiol)lyases (OAS-TLs) play a pivotal role in a sulfur assimilation pathway incorporating sulfide into amino acids in microorganisms and plants, however, these enzymes have not been found in the animal kingdom. Interestingly, the genome of the roundworm Caenorhabditis elegans contains three expressed genes predicted to encode OAS-TL orthologs (cysl-1-cysl-3), and a related pseudogene (cysl-4); these genes play different roles in resistance to hypoxia, hydrogen sulfide and cyanide. To get an insight into the underlying molecular mechanisms we purified the three recombinant worm OAS-TL proteins, and we determined their enzymatic activities, substrate binding affinities, quaternary structures and the conformations of their active site shapes. We show that the nematode OAS-TL orthologs can bind O-acetylserine and catalyze the canonical reaction although this ligand may more likely serve as a competitive inhibitor to natural substrates instead of being a substrate for sulfur assimilation. In addition, we propose that S-sulfocysteine may be a novel endogenous substrate for these proteins. However, we observed that the three OAS-TL proteins are conformationally different and exhibit distinct substrate specificity. Based on the available evidences we propose the following model: CYSL-1 interacts with EGL-9 and activates HIF-1 that upregulates expression of genes detoxifying sulfide and cyanide, the CYSL-2 acts as a cyanoalanine synthase in the cyanide detoxification pathway and simultaneously produces hydrogen sulfide, while the role of CYSL-3 remains unclear although it exhibits sulfhydrylase activity in vitro. All these data indicate that C. elegans OAS-TL paralogs have distinct cellular functions and may play different roles in maintaining hydrogen sulfide homeostasis.
Collapse
Affiliation(s)
- Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
The cysteine regulatory complex from plants and microbes: what was old is new again. Curr Opin Struct Biol 2013; 23:302-10. [DOI: 10.1016/j.sbi.2013.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
|
20
|
Nakamura T, Kawai Y, Kunimoto K, Iwasaki Y, Nishii K, Kataoka M, Ishikawa K. Structural Analysis of the Substrate Recognition Mechanism in O-Phosphoserine Sulfhydrylase from the Hyperthermophilic Archaeon Aeropyrum pernix K1. J Mol Biol 2012; 422:33-44. [DOI: 10.1016/j.jmb.2012.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
21
|
Abstract
Studies on sulfur metabolism in archaea have revealed many novel enzymes and pathways and have advanced our understanding on metabolic processes, not only of the archaea, but of biology in general. A variety of dissimilatory sulfur metabolisms, i.e. reactions used for energy conservation, are found in archaea from both the Crenarchaeota and Euryarchaeota phyla. Although not yet fully characterized, major processes include aerobic elemental sulfur (S(0)) oxidation, anaerobic S(0) reduction, anaerobic sulfate/sulfite reduction and anaerobic respiration of organic sulfur. Assimilatory sulfur metabolism, i.e. reactions used for biosynthesis of sulfur-containing compounds, also possesses some novel features. Cysteine biosynthesis in some archaea uses a unique tRNA-dependent pathway. Fe-S cluster biogenesis in many archaea differs from that in bacteria and eukaryotes and requires unidentified components. The eukaryotic ubiquitin system is conserved in archaea and involved in both protein degradation and biosynthesis of sulfur-containing cofactors. Lastly, specific pathways are utilized for the biosynthesis of coenzyme M and coenzyme B, the sulfur-containing cofactors required for methanogenesis.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
22
|
Mozzarelli A, Bettati S, Campanini B, Salsi E, Raboni S, Singh R, Spyrakis F, Kumar VP, Cook PF. The multifaceted pyridoxal 5'-phosphate-dependent O-acetylserine sulfhydrylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1497-510. [PMID: 21549222 DOI: 10.1016/j.bbapap.2011.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 12/14/2022]
Abstract
Cysteine is the final product of the reductive sulfate assimilation pathway in bacteria and plants and serves as the precursor for all sulfur-containing biological compounds, such as methionine, S-adenosyl methionine, iron-sulfur clusters and glutathione. Moreover, in several microorganisms cysteine plays a role as a reducing agent, eventually counteracting host oxidative defense strategies. Cysteine is synthesized by the PLP-dependent O-acetylserine sulfhydrylase, a dimeric enzyme belonging to the fold type II, catalyzing a beta-replacement reaction. In this review, the spectroscopic properties, catalytic mechanism, three-dimensional structure, conformational changes accompanying catalysis, determinants of enzyme stability, role of selected amino acids in catalysis, and the regulation of enzyme activity by ligands and interaction with serine acetyltransferase, the preceding enzyme in the biosynthetic pathway, are described. Given the key biological role played by O-acetylserine sulfhydrylase in bacteria, inhibitors with potential antibiotic activity have been developed. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schnell R, Schneider G. Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2010; 396:33-8. [PMID: 20494107 DOI: 10.1016/j.bbrc.2010.02.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis poses a serious threat to human health and has led to world-wide efforts focusing on the development of novel vaccines and antibiotics against this pathogen. Sulphur metabolism in this organism has been linked to essential processes such as virulence and redox defence. The cysteine biosynthetic pathway is up-regulated in models of persistent M. tuberculosis infections and provides potential targets for novel anti-mycobacterial agents, directed specifically toward the pathogen in its persistent phase. Functional and structural characterization of enzymes from sulfur metabolism establishes a necessary framework for the design of strong binding inhibitors that might be developed into new drugs. This review summarizes recent progress in the elucidation of the structural enzymology of the sulphate reduction and cysteine biosynthesis pathways.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | |
Collapse
|
24
|
Ishikawa K, Mino K, Nakamura T. New function and application of the cysteine synthase from archaea. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J 2009; 424:467-78. [PMID: 19761441 DOI: 10.1042/bj20090999] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway. An adjacent gene, at locus MA3297, encodes one of the organism's two threonine synthase homologues. When both paralogues from this organism were expressed in an Escherichia coli threonine synthase mutant, the MA1610 gene complemented the thrC mutation, whereas the MA3297 gene did not. Both PLP (pyridoxal 5'-phosphate)-dependent proteins were heterologously expressed and purified, but only the MA1610 protein catalysed the canonical threonine synthase reaction. The MA3297 protein specifically catalysed a new beta-replacement reaction that converted L-phosphoserine and sulfite into L-cysteate and inorganic phosphate. This oxygen-independent mode of sulfonate biosynthesis exploits the facile nucleophilic addition of sulfite to an alpha,beta-unsaturated intermediate (PLP-bound dehydroalanine). An amino acid sequence comparison indicates that cysteate synthase evolved from an ancestral threonine synthase through gene duplication, and the remodelling of active site loop regions by amino acid insertion and substitutions. The cysteate product can be converted into sulfopyruvate by an aspartate aminotransferase enzyme, establishing a new convergent pathway for coenzyme M biosynthesis that appears to function in members of the orders Methanosarcinales and Methanomicrobiales. These differences in coenzyme M biosynthesis afford the opportunity to develop methanogen inhibitors that discriminate between the classes of methanogenic archaea.
Collapse
|
26
|
Ågren D, Schnell R, Schneider G. The C-terminal of CysM fromMycobacterium tuberculosisprotects the aminoacrylate intermediate and is involved in sulfur donor selectivity. FEBS Lett 2008; 583:330-6. [DOI: 10.1016/j.febslet.2008.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
27
|
Ågren D, Schnell R, Oehlmann W, Singh M, Schneider G. Cysteine Synthase (CysM) of Mycobacterium tuberculosis Is an O-Phosphoserine Sulfhydrylase. J Biol Chem 2008; 283:31567-74. [DOI: 10.1074/jbc.m804877200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
O'Leary SE, Jurgenson CT, Ealick SE, Begley TP. O-phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 2008; 47:11606-15. [PMID: 18842002 DOI: 10.1021/bi8013664] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetic pathway of CysM, a cysteine synthase from Mycobacterium tuberculosis, was studied by transient-state kinetic techniques. The expression of which is upregulated under conditions of oxidative stress. This enzyme exhibits extensive homology with the B-isozymes of the well-studied O-acetylserine sulfhydrylase family and employs a similar chemical mechanism involving a stable alpha-aminoacrylate intermediate. However, we show that specificity of CysM for its amino acid substrate is more than 500-fold greater for O-phospho-L-serine than for O-acetyl-L-serine, suggesting that O-phospho-L-serine is the likely substrate in vivo. We also investigated the kinetics of the carbon-sulfur bond-forming reaction between the CysM-bound alpha-aminoacrylate intermediate and the thiocarboxylated sulfur carrier protein, CysO-COSH. The specificity of CysM for this physiological sulfide equivalent is more than 3 orders of magnitude greater than that for bisulfide. Moreover, the kinetics of this latter reaction are limited by association of the proteins, while the reaction with bisulfide is consistent with a rapid equilibrium binding model. We interpret this finding to suggest that the CysM active site with the bound aminoacrylate intermediate is protected from solvent and that binding of CysO-COSH produces a conformational change allowing rapid sulfur transfer. This study represents the first detailed kinetic characterization of sulfide transfer from a sulfide carrier protein.
Collapse
Affiliation(s)
- Seán E O'Leary
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation. Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa-tRNA synthetases. However, in the case of four amino acids (Gln, Asn, Cys and Sec), aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life. The process begins with the charging of noncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNA(Cys) formation or by synthetases with relaxed specificity, such as the non-discriminating glutamyl-tRNA, non-discriminating aspartyl-tRNA and seryl-tRNA synthetases. The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA, which is catalyzed by a group of tRNA-dependent modifying enzymes, such as tRNA-dependent amidotransferases, Sep-tRNA:Cys-tRNA synthase, O-phosphoseryl-tRNA kinase and Sep-tRNA:Sec-tRNA synthase. The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
30
|
Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Söll D. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 2008; 36:1813-25. [PMID: 18252769 PMCID: PMC2330236 DOI: 10.1093/nar/gkn015] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
31
|
Westrop GD, Goodall G, Mottram JC, Coombs GH. Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J Biol Chem 2006; 281:25062-75. [PMID: 16735516 PMCID: PMC2645516 DOI: 10.1074/jbc.m600688200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trichomonas vaginalis is an early divergent eukaryote with many unusual biochemical features. It is an anaerobic protozoan parasite of humans that is thought to rely heavily on cysteine as a major redox buffer, because it lacks glutathione. We report here that for synthesis of cysteine from sulfide, T. vaginalis relies upon cysteine synthase. The enzyme (TvCS1) can use either O-acetylserine or O-phosphoserine as substrates. The K(m) values of the enzyme for sulfide are very low (0.02 mm), suggesting that the enzyme may be a means of ensuring that sulfide in the parasite is maintained at a low level. T. vaginalis appears to lack serine acetyltransferase, the source of O-acetylserine in many cells, but has a functional 3-phosphoglycerate dehydrogenase and an O-phosphoserine aminotransferase that together result in the production of O-phosphoserine, suggesting that this is the physiological substrate. TvCS1 can also use thiosulfate as substrate. Overall, TvCS1 has substrate specificities similar to those reported for cysteine synthases of Aeropyrum pernix and Escherichia coli, and this is reflected by sequence similarities around the active site. We suggest that these enzymes are classified together as type B cysteine synthases, and we hypothesize that the use of O-phosphoserine is a common characteristic of these cysteine synthases. The level of cysteine synthase in T. vaginalis is regulated according to need, such that parasites growing in an environment rich in cysteine have low activity, whereas exposure to propargylglycine results in elevated cysteine synthase activity. Humans lack cysteine synthase; therefore, this parasite enzyme could be an exploitable drug target.
Collapse
Affiliation(s)
| | | | | | - Graham H. Coombs
- To whom all correspondence should be addressed at: Division of Infection & Immunity, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow G12 8TA, UK. Tel: +44 141 330 4777; Fax: +44 141 330 3516; e-mail:
| |
Collapse
|
32
|
Oda Y, Mino K, Ishikawa K, Ataka M. Three-dimensional Structure of a New Enzyme, O-Phosphoserine Sulfhydrylase, Involved in l-Cysteine Biosynthesis by a Hyperthermophilic Archaeon, Aeropyrum pernix K1, at 2.0Å Resolution. J Mol Biol 2005; 351:334-44. [PMID: 16005886 DOI: 10.1016/j.jmb.2005.05.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/18/2005] [Accepted: 05/26/2005] [Indexed: 11/16/2022]
Abstract
O-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase.
Collapse
Affiliation(s)
- Yutaka Oda
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST, Kansai), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | | | | | | |
Collapse
|
33
|
Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR, Ibba M, Söll D. RNA-dependent cysteine biosynthesis in archaea. Science 2005; 307:1969-72. [PMID: 15790858 DOI: 10.1126/science.1108329] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several methanogenic archaea lack cysteinyl-transfer RNA (tRNA) synthetase (CysRS), the essential enzyme that provides Cys-tRNA(Cys) for translation in most organisms. Partial purification of the corresponding activity from Methanocaldococcus jannaschii indicated that tRNA(Cys) becomes acylated with O-phosphoserine (Sep) but not with cysteine. Further analyses identified a class II-type O-phosphoseryl-tRNA synthetase (SepRS) and Sep-tRNA:Cys-tRNA synthase (SepCysS). SepRS specifically forms Sep-tRNA(Cys), which is then converted to Cys-tRNA(Cys) by SepCysS. Comparative genomic analyses suggest that this pathway, encoded in all organisms lacking CysRS, can also act as the sole route for cysteine biosynthesis. This was proven for Methanococcus maripaludis, where deletion of the SepRS-encoding gene resulted in cysteine auxotrophy. As the conversions of Sep-tRNA to Cys-tRNA or to selenocysteinyl-tRNA are chemically analogous, the catalytic activity of SepCysS provides a means by which both cysteine and selenocysteine may have originally been added to the genetic code.
Collapse
Affiliation(s)
- Anselm Sauerwald
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. The LIV-I/LS system as a determinant of azaserine sensitivity of Escherichia coliK-12. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09680.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|