1
|
Kern B, Jain U, Utsch C, Otto A, Busch B, Jiménez-Soto L, Becher D, Haas R. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes. Cell Microbiol 2015; 17:1811-32. [PMID: 26078003 DOI: 10.1111/cmi.12474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.
Collapse
Affiliation(s)
- Beate Kern
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Utkarsh Jain
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ciara Utsch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Luisa Jiménez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
2
|
Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol 2012; 20:165-74. [PMID: 22364673 DOI: 10.1016/j.tim.2012.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 02/09/2023]
Abstract
VacA toxin from the cancer-inducing bacterium Helicobacter pylori is currently classified as a pore-forming toxin but is also considered a multifunctional toxin, apparently causing many pleiotropic cell effects. However, an increasing body of evidence suggests that VacA could be the prototype of a new class of monofunctional A-B toxins in which the A subunit exhibits pore-forming instead of enzymatic activity. Thus, VacA may use a peculiar mechanism of action, allowing it to intoxicate the human stomach. By combining the action of a cell-binding domain, a specific intracellular trafficking pathway and a novel mitochondrion-targeting sequence, the VacA pore-forming domain is selectively delivered to the inner mitochondrial membrane to efficiently kill target epithelial cells by apoptosis.
Collapse
Affiliation(s)
- Patrice Boquet
- Department of Clinical Bacteriology, Nice University Hospital, 151 Route de Saint Antoine de Ginestière, 06202 Nice Cedex 03, France.
| | | |
Collapse
|
3
|
Ooi Y, Daikoku E, Wu H, Aoki H, Morita C, Nakano T, Kohno T, Takasaki T, Sano K. Morphology and infectivity of virus that persistently caused infection in an AGS cell line. Med Mol Morphol 2011; 44:213-20. [PMID: 22179184 DOI: 10.1007/s00795-010-0530-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/13/2010] [Indexed: 12/13/2022]
Abstract
A recent report has indicated that proteins and genes of simian virus 5 (SV5) are detected in a human gastric adenocarcinoma (AGS) cell line, which is widely provided for oncology, immunology, and microbiology research. However, the production of infective virions has not been determined in this cell line. In this study, the morphology and infectivity of the virus particles of the AGS cell line were studied by light and electron microscopy and virus transmission assay. The virus particles were approximately 176.0 ± 41.1 nm in diameter. The particles possessed projections 8-12 nm long on the surface and contained a nucleocapsid determined to be 13-18 nm in width and less than 1,000 nm in length. The virus was transmissible to the Vero cell line, induced multinuclear giant cell formation, and reproduced the same shape of antigenic virions. In this study, the persistently infected virus in the AGS cell line was determined to be infective and form reproducible virions, and a new morphological feature of SV5 was determined.
Collapse
Affiliation(s)
- Yukimasa Ooi
- Department of Microbiology and Infection Control, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Helicobacter pylori secretes an approximately 88 kDa VacA toxin that is considered to be an important virulence factor in the pathogenesis of peptic ulcer disease. Over the past decade, research on the molecular mechanisms and biological functions of VacA has generated a complex and often puzzling scenario. VacA is secreted into the extracellular space and also is partially retained on the bacterial cell surface, exists in monomeric and oligomeric forms, and binds to multiple eukaryotic cell-surface receptors. The cellular effects induced by VacA include vacuolation, alteration of endo-lysosomal function, pore formation in the plasma membrane, apoptosis, and epithelial monolayer permeabilisation. VacA has been reported to target several different cell components, including endocytic vesicles, mitochondria, the cytoskeleton, and epithelial cell-cell junctions. It remains unclear whether VacA should be classified as an A/B type toxin, a channel-forming toxin, or both. This review is intended to summarise our current knowledge about VacA, and to orient the reader to this fascinating and challenging research area.
Collapse
Affiliation(s)
- E Papini
- Department of Biomedical Science and Human Oncology, Section of General Pathology, University of Bari, P.zza G. Cesare 11, 70124, Bari, Italy.
| | | | | |
Collapse
|
5
|
Ricci V, Sommi P, Romano M. The vacuolating toxin of Helicobacter pylori: a few answers, many questions. Dig Liver Dis 2000; 32 Suppl 3:S178-81. [PMID: 11245288 DOI: 10.1016/s1590-8658(00)80271-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- V Ricci
- Institute of Human Physiology, University of Pavia, Italy.
| | | | | |
Collapse
|
6
|
Wessler S, Höcker M, Fischer W, Wang TC, Rosewicz S, Haas R, Wiedenmann B, Meyer TF, Naumann M. Helicobacter pylori activates the histidine decarboxylase promoter through a mitogen-activated protein kinase pathway independent of pathogenicity island-encoded virulence factors. J Biol Chem 2000; 275:3629-36. [PMID: 10652359 DOI: 10.1074/jbc.275.5.3629] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori infection of the gastric mucosa is accompanied by an activated histamine metabolism. Histamine plays a central role in the regulation of gastric acid secretion and is involved in the pathogenesis of gastroduodenal ulcerations. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production, and its activity is regulated through transcriptional mechanisms. The present study investigated the effect of H. pylori infection on the transcriptional activity of the human HDC (hHDC) promoter in a gastric epithelial cell line (AGS) and analyzed the underlying molecular mechanisms. Our studies demonstrate that H. pylori infection potently transactivated the hHDC promoter. The H. pylori-responsive element of the hHDC gene was mapped to the sequence +1 to +27 base pairs, which shows no homology to known cis-acting elements and also functions as a gastrin-responsive element. H. pylori regulates the activity of this element via a Raf-1/MEK/ERK pathway, which was activated in a Ras-independent manner. Furthermore, we found that H. pylori-induced transactivation of the hHDC promoter was independent of the cag pathogenicity island and the vacuolating cytotoxin A gene and therefore may be exerted through (a) new virulence factor(s). A better understanding of H. pylori-directed hHDC transcription can provide novel insights into the molecular mechanisms of H. pylori-dependent gene regulation in gastric epithelial cells and may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- S Wessler
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ding SZ, Cho CH, Lam SK. Helicobacter pylori induces interleukin-8 expression in endothelial cells and the signal pathway is protein tyrosine kinase dependent. Biochem Biophys Res Commun 1997; 240:561-5. [PMID: 9398604 DOI: 10.1006/bbrc.1997.7699] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (HP) infection has been shown to increase gastric mucosal interleukin 8 (IL-8) expression, and whether HP or its toxin induces endothelial cell IL-8 expression is unknown. We aimed to compare the IL-8 expression in endothelial cells after stimulation with HP toxin, tumor necrosis factor alpha (TNF-alpha), and lipopolysaccharide (LPS) and to study their signal pathways. HP or its toxin induced significant IL-8 expression in endothelial cells. HP toxin, TNF-alpha, and LPS also showed a time- and dose-dependent increase in IL-8 expression over the control. Both protein kinase C (PKC) and protein kinase A (PKA) inhibitors had no effect on IL-8 response to these stimuli. Protein tyrosine kinase (PTK) inhibitor genistein at concentrations of 150, 300, and 450 microM dose-dependently reduced LPS- and TNF-alpha-induced IL-8 expression by 29.43, 43.8, and 47.3% and 20.5, 49.9, and 61.8% respectively, whereas HP toxin-induced IL-8 secretion could only be reduced at 450 microM by 35.7%. Geldanamycin, a more potent PTK inhibitor, at doses of 0.5, 1, and 2 microM dose-dependently reduced HP toxin induced endothelial cell IL-8 expression by 24.8, 26, and 44.3% respectively. It is concluded that HP and its toxin can increase IL-8 expression in endothelial cells, and the expression of IL-8 elicited by HP toxin, TNF-alpha, and LPS is partially dependent on PTK but not PKA or PKC activation.
Collapse
Affiliation(s)
- S Z Ding
- Department of Medicine, University of Hong Kong, China
| | | | | |
Collapse
|
8
|
Yahiro K, Niidome T, Hatakeyama T, Aoyagi H, Kurazono H, Padilla PI, Wada A, Hirayama T. Helicobacter pylori vacuolating cytotoxin binds to the 140-kDa protein in human gastric cancer cell lines, AZ-521 and AGS. Biochem Biophys Res Commun 1997; 238:629-32. [PMID: 9299564 DOI: 10.1006/bbrc.1997.7345] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigatie a potential mechanism of how Helicobacter pylori establishes infection, we purified a lot of vacuolating toxin (VacA) from supernatant of H. pylori ATCC49503 (tox+ strain 60190). We used an antibody which was prepared by immunizing rabbits with a synthetic peptide consisting of 16 amino acids reflecting a portion (Glu69-Arg83) of amino acid sequence of Vac A. VacA caused vacuoles in human gastric cancer cell lines AZ-521 AGS, and monkey kidney cell line COS-7, but not human promyeloblastic cell line HL-60. By immunoprecipitation analysis using anti VacA antibody, a biotinylated cell surface protein of 140kDa (p140) was precipitated only when the lysates of VacA-susceptible cells were incubated with VacA but not with inactivated VacA, indicating the association of p140 with VacA.
Collapse
Affiliation(s)
- K Yahiro
- Faculty of Engineering, Nagasaki University, Nagasaki, 852, Japan
| | | | | | | | | | | | | | | |
Collapse
|