1
|
Dimaria G, Sicilia A, Modica F, Russo M, Bazzano MC, Massimino ME, Piero ARL, Bella P, Catara V. Biocontrol efficacy of Pseudomonas mediterranea PVCT 3C against Plenodomus tracheiphilus: In vitro and in planta mechanisms at early disease stages. Microbiol Res 2024; 287:127833. [PMID: 39032265 DOI: 10.1016/j.micres.2024.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.
Collapse
Affiliation(s)
- Giulio Dimaria
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Francesco Modica
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | | | | | - Maria Elena Massimino
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Vittoria Catara
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy.
| |
Collapse
|
2
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
3
|
Albert D, Zboralski A, Ciotola M, Cadieux M, Biessy A, Blom J, Beaulieu C, Filion M. Identification and genomic characterization of Pseudomonas spp. displaying biocontrol activity against Sclerotinia sclerotiorum in lettuce. Front Microbiol 2024; 15:1304682. [PMID: 38516010 PMCID: PMC10955138 DOI: 10.3389/fmicb.2024.1304682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Lettuce is an economically major leafy vegetable that is affected by numerous diseases. One of the most devastating diseases of lettuce is white mold caused by Sclerotinia sclerotiorum. Control methods for this fungus are limited due to the development of genetic resistance to commonly used fungicides, the large number of hosts and the long-term survival of sclerotia in soil. To elaborate a new and more sustainable approach to contain this pathogen, 1,210 Pseudomonas strains previously isolated from agricultural soils in Canada were screened for their antagonistic activity against S. sclerotiorum. Nine Pseudomonas strains showed strong in vitro inhibition in dual-culture confrontational assays. Whole genome sequencing of these strains revealed their affiliation with four phylogenomic subgroups within the Pseudomonas fluorescens group, namely Pseudomonas corrugata, Pseudomonas asplenii, Pseudomonas mandelii, and Pseudomonas protegens. The antagonistic strains harbor several genes and gene clusters involved in the production of secondary metabolites, including mycin-type and peptin-type lipopeptides, and antibiotics such as brabantamide, which may be involved in the inhibitory activity observed against S. sclerotiorum. Three strains also demonstrated significant in planta biocontrol abilities against the pathogen when either inoculated on lettuce leaves or in the growing substrate of lettuce plants grown in pots. They however did not impact S. sclerotiorum populations in the rhizosphere, suggesting that they protect lettuce plants by altering the fitness and the virulence of the pathogen rather than by directly impeding its growth. These results mark a step forward in the development of biocontrol products against S. sclerotiorum.
Collapse
Affiliation(s)
- Daphné Albert
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Antoine Zboralski
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Marie Ciotola
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Mélanie Cadieux
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Adrien Biessy
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Carole Beaulieu
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
4
|
Evidente A. Bioactive Lipodepsipeptides Produced by Bacteria and Fungi. Int J Mol Sci 2022; 23:12342. [PMID: 36293201 PMCID: PMC9659194 DOI: 10.3390/ijms232012342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 10/05/2024] Open
Abstract
Natural products are a vital source for agriculture, medicine, cosmetics and other fields. Lipodepsipeptides (LPDs) are a wide group of natural products distributed among living organisms such as bacteria, fungi, yeasts, virus, insects, plants and marine organisms. They are a group of compounds consisting of a lipid connected to a peptide, which are able to self-assemble into several different structures. They have shown different biological activities such as phytotoxic, antibiotic, antiviral, antiparasitic, antifungal, antibacterial, immunosuppressive, herbicidal, cytotoxic and hemolytic activities. Their biological activities seem to be due to their interactions with the plasma membrane (MP) because they are able to mimic the architecture of the native membranes interacting with their hydrophobic segment. LPDs also have surfactant properties. The review has been focused on the lipodepsipeptides isolated from fungal and bacterial sources, on their biological activity, on the structure-activity relationships of some selected LPD subgroups and on their potential application in agriculture and medicine. The chemical and biological characterization of lipodepsipeptides isolated in the last three decades and findings that resulted from SCI-FINDER research are reported. A critical evaluation of the most recent reviews dealing with the same argument has also been described.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
5
|
Castaldi S, Cimmino A, Masi M, Evidente A. Bacterial Lipodepsipeptides and Some of Their Derivatives and Cyclic Dipeptides as Potential Agents for Biocontrol of Pathogenic Bacteria and Fungi of Agrarian Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4591-4598. [PMID: 35395154 PMCID: PMC9026286 DOI: 10.1021/acs.jafc.1c08139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 06/02/2023]
Abstract
Biotic stresses (fungi, bacteria, insects, weeds, etc.) are some of the most important causes of the decrease in the quality and quantity of crops that could become an emergency due to a noteworthy increase in the world population. Thus, to overcome these problems, massive use of chemical pesticides has been carried out with heavy consequences for environmental pollution and food safety. An eco-friendly alternative can be using natural compound-based biopesticides with high efficacy and selectivity. Some bacterial lipodepsipeptides (tolaasins I, II, A, D, and E and WLIP together with hexacetyl- and tetrahydro-tolaasin I and WLIP methyl ester) and cyclic dipeptides (cyclo(l-Pro-l-Tyr), cyclo(d-Pro-l-Tyr), cyclo(l-Pro-l-Val), and cyclo(l-Pro-l-Leu)) were assayed against several pathogenic bacteria and fungi of important agrarian plants. Lipodepsipeptides showed strong growth inhibition of all microorganisms tested in the range of 0.1-0.8 μg/mL, while cyclodipeptides, despite preserving this ability, showed a noteworthily reduced antimicrobial activity being active only in the range of 15-900 μg/mL. Among the lipodepsipeptides and cyclic dipeptides assayed, tolaasin d and cyclo(l-Pro-l-Tyr) (also named maculosin-1) appeared to be the most toxic compounds. Some structure-activity relationships of lipodepsipeptides were also discussed along with their practical application as biopesticides in agriculture.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department
of Biology, University of Naples Federico
II, Complesso Universitario
Monte S. Angelo, 80126 Napoli, Italy
| | - Alessio Cimmino
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario Monte S. Angelo, 80126 Napoli, Italy
| | - Marco Masi
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario Monte S. Angelo, 80126 Napoli, Italy
| | - Antonio Evidente
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso
Universitario Monte S. Angelo, 80126 Napoli, Italy
| |
Collapse
|
6
|
Oni FE, Esmaeel Q, Onyeka JT, Adeleke R, Jacquard C, Clement C, Gross H, Ait Barka E, Höfte M. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022; 27:372. [PMID: 35056688 PMCID: PMC8777863 DOI: 10.3390/molecules27020372] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host-microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy-molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant-pathogen interactions and in the enhancement of plant innate immunity.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
- Department of Biological Sciences, Faculty of Science, Anchor University, Ayobo P.M.B 00001, Lagos State, Nigeria
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Joseph Tobias Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike 440001, Abia State, Nigeria;
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Cedric Jacquard
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Christophe Clement
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tubingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Q.E.); (C.J.); (C.C.); (E.A.B.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| |
Collapse
|
7
|
Abstract
Some Bacillus species, such as B. velezensis, are important members of the plant-associated microbiome, conferring protection against phytopathogens. However, our knowledge about multitrophic interactions determining the ecological fitness of these biocontrol bacteria in the competitive rhizosphere niche is still limited. Here, we investigated molecular mechanisms underlying interactions between B. velezensis and Pseudomonas as a soil-dwelling competitor. Upon their contact-independent in vitro confrontation, a multifaceted macroscopic outcome was observed and characterized by Bacillus growth inhibition, white line formation in the interaction zone, and enhanced motility. We correlated these phenotypes with the production of bioactive secondary metabolites and identified specific lipopeptides as key compounds involved in the interference interaction and motile response. Bacillus mobilizes its lipopeptide surfactin not only to enhance motility but also to act as a chemical trap to reduce the toxicity of lipopeptides formed by Pseudomonas. We demonstrated the relevance of these unsuspected roles of lipopeptides in the context of competitive tomato root colonization by the two bacterial genera. IMPORTANCE Plant-associated Bacillus velezensis and Pseudomonas spp. represent excellent model species as strong producers of bioactive metabolites involved in phytopathogen inhibition and the elicitation of plant immunity. However, the ecological role of these metabolites during microbial interspecies interactions and the way their expression may be modulated under naturally competitive soil conditions has been poorly investigated. Through this work, we report various phenotypic outcomes from the interactions between B. velezensis and 10 Pseudomonas strains used as competitors and correlate them with the production of specific metabolites called lipopeptides from both species. More precisely, Bacillus overproduces surfactin to enhance motility, which also, by acting as a chemical trap, reduces the toxicity of other lipopeptides formed by Pseudomonas. Based on data from interspecies competition on plant roots, we assume this would allow Bacillus to gain fitness and persistence in its natural rhizosphere niche. The discovery of new ecological functions for Bacillus and Pseudomonas secondary metabolites is crucial to rationally design compatible consortia, more efficient than single-species inoculants, to promote plant health and growth by fighting economically important pathogens in sustainable agriculture.
Collapse
|
8
|
Transporter Gene-mediated Typing for Detection and Genome Mining of Lipopeptide-producing Pseudomonas. Appl Environ Microbiol 2021; 88:e0186921. [PMID: 34731056 PMCID: PMC8788793 DOI: 10.1128/aem.01869-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas lipopeptides (LPs) are involved in diverse ecological functions and have biotechnological application potential associated with their antimicrobial and/or antiproliferative activities. They are synthesized by multimodular nonribosomal peptide synthetases which, together with transport and regulatory proteins, are encoded by large biosynthetic gene clusters (BGCs). These secondary metabolites are classified in distinct families based on the sequence and length of the oligopeptide and size of the macrocycle, if present. The phylogeny of PleB, the MacB-like transporter that is part of a dedicated ATP-dependent tripartite efflux system driving export of Pseudomonas LPs, revealed a strong correlation with LP chemical diversity. As each LP BGC carries its cognate pleB, PleB is suitable as a diagnostic sequence for genome mining, allowing assignment of the putative metabolite to a particular LP family. In addition, pleB proved to be a suitable target gene for an alternative PCR method for detecting LP-producing Pseudomonas sp. and did not rely on amplification of catalytic domains of the biosynthetic enzymes. Combined with amplicon sequencing, this approach enabled typing of Pseudomonas strains as potential producers of a LP belonging to one of the known LP families, underscoring its value for strain prioritization. This finding was validated by chemical characterization of known LPs from three different families secreted by novel producers isolated from the rice or maize rhizosphere, namely, the type strains of Pseudomonas fulva (putisolvin), Pseudomonas zeae (tensin), and Pseudomonas xantholysinigenes (xantholysin). In addition, a new member of the Bananamide family, prosekin, was discovered in the type strain of Pseudomonas prosekii, which is an Antarctic isolate. IMPORTANCEPseudomonas spp. are ubiquitous bacteria able to thrive in a wide range of ecological niches, and lipopeptides often support their lifestyle but also their interaction with other micro- and macro-organisms. Therefore, the production of lipopeptides is widespread among Pseudomonas strains. Consequently, Pseudomonas lipopeptide research not only affects chemists and microbiologists but also touches a much broader audience, including biochemists, ecologists, and plant biologists. In this study, we present a reliable transporter gene-guided approach for the detection and/or typing of Pseudomonas lipopeptide producers. Indeed, it allows us to readily assess the lipopeptide diversity among sets of Pseudomonas isolates and differentiate strains likely to produce known lipopeptides from producers of potentially novel lipopeptides. This work provides a valuable tool that can also be integrated in a genome mining strategy and adapted for the typing of other specialized metabolites.
Collapse
|
9
|
Zhou L, de Jong A, Yi Y, Kuipers OP. Identification, Isolation, and Characterization of Medipeptins, Antimicrobial Peptides From Pseudomonas mediterranea EDOX. Front Microbiol 2021; 12:732771. [PMID: 34594316 PMCID: PMC8477016 DOI: 10.3389/fmicb.2021.732771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
The plant microbiome is a vastly underutilized resource for identifying new genes and bioactive compounds. Here, we used Pseudomonas sp. EDOX, isolated from the leaf endosphere of a tomato plant grown on a small farm in the Netherlands. To get more insight into its biosynthetic potential, the genome of Pseudomonas sp. EDOX was sequenced and subjected to bioinformatic analyses. The genome sequencing analysis identified strain EDOX as a member of the Pseudomonas mediterranea. In silico analysis for secondary metabolites identified a total of five non-ribosomally synthesized peptides synthetase (NRPS) gene clusters, related to the biosynthesis of syringomycin, syringopeptin, anikasin, crochelin A, and fragin. Subsequently, we purified and characterized several cyclic lipopeptides (CLPs) produced by NRPS, including some of the already known ones, which have biological activity against several plant and human pathogens. Most notably, mass spectrometric analysis led to the discovery of two yet unknown CLPs, designated medipeptins, consisting of a 22 amino acid peptide moiety with varying degrees of activity against Gram-positive and Gram-negative pathogens. Furthermore, we investigated the mode of action of medipeptin A. The results show that medipeptin A acts as a bactericidal antibiotic against Gram-positive pathogens, but as a bacteriostatic antibiotic against Gram-negative pathogens. Medipeptin A exerts its potent antimicrobial activity against Gram-positive bacteria via binding to both lipoteichoic acid (LTA) and lipid II as well as by forming pores in membranes. Collectively, our study provides important insights into the biosynthesis and mode of action of these novel medipeptins from P. mediterranea EDOX.
Collapse
Affiliation(s)
| | | | | | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Girard L, Höfte M, De Mot R. Lipopeptide families at the interface between pathogenic and beneficial Pseudomonas-plant interactions. Crit Rev Microbiol 2020; 46:397-419. [PMID: 32885723 DOI: 10.1080/1040841x.2020.1794790] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipopeptides (LPs) are a prominent class of molecules among the steadily growing spectrum of specialized metabolites retrieved from Pseudomonas, in particular soil-dwelling and plant-associated isolates. Among the multiple LP families, pioneering research focussed on phytotoxic and antimicrobial cyclic lipopeptides (CLPs) of the ubiquitous plant pathogen Pseudomonas syringae (syringomycin and syringopeptin). Their non-ribosomal peptide synthetases (NRPSs) are embedded in biosynthetic gene clusters (BGCs) that are tightly co-clustered on a pathogenicity island. Other members of the P. syringae group (Pseudomonas cichorii) and some species of the Pseudomonas asplenii group and Pseudomonas fluorescens complex have adopted these biosynthetic strategies to co-produce their own mycin and peptin variants, in some strains supplemented with an analogue of the P. syringae linear LP (LLP), syringafactin. This capacity is not confined to phytopathogens but also occurs in some biocontrol strains, which indicates that these LP families not solely function as general virulence factors. We address this issue by scrutinizing the structural diversity and bioactivities of LPs from the mycin, peptin, and factin families in a phylogenetic and evolutionary perspective. BGC functional organization (including associated regulatory and transport genes) and NRPS modular architectures in known and candidate LP producers were assessed by genome mining.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee-Leuven, Belgium
| | - Monica Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee-Leuven, Belgium
| |
Collapse
|
11
|
Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens. J Med Microbiol 2020; 69:347-360. [DOI: 10.1099/jmm.0.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas brassicacearum
is one of over fifty species of bacteria classified into the
P. fluorescens
group. Generally considered a harmless commensal, these bacteria are studied for their plant-growth promotion (PGP) and biocontrol characteristics. Intriguingly,
P. brassicacearum
is closely related to
P. corrugata
, which is classified as an opportunistic phytopathogen. Twenty-one
P. brassicacearum
genomes have been sequenced to date. In the current review, genomes of
P. brassicacearum
and strains from the
P. corrugata
clade were mined for regions associated with PGP, biocontrol and pathogenicity. We discovered that ‘beneficial’ bacteria and those classified as plant pathogens have many genes in common; thus, only a fine line separates beneficial/harmless commensals from those capable of causing disease in plants. The genotype and physiological state of the plant, the presence of biotic/abiotic stressors, and the ability of bacteria to manipulate the plant immune system collectively contribute to how the bacterial-plant interaction plays out. Because production of extracellular metabolites is energetically costly, these compounds are expected to impart a fitness advantage to the producer.
P. brassicacearum
is able to reduce the threat of nematode predation through release of metabolites involved in biocontrol. Moreover this bacterium has the unique ability to form biofilms on the head of Caenorhabditis elegans, as a second mechanism of predator avoidance. Rhizobacteria, plants, fungi, and microfaunal predators have occupied a shared niche for millions of years and, in many ways, they function as a single organism. Accordingly, it is essential that we appreciate the dynamic interplay among these members of the community.
Collapse
|
12
|
Götze S, Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org Biomol Chem 2020; 18:1710-1727. [DOI: 10.1039/c9ob02539a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We provide a summary of the tools, which allow elucidate the structures of nonribosomal lipopetides.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
13
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
14
|
Pseudomonas sp. COW3 Produces New Bananamide-Type Cyclic Lipopeptides with Antimicrobial Activity against Pythium myriotylum and Pyricularia oryzae. Molecules 2019; 24:molecules24224170. [PMID: 31744250 PMCID: PMC6891508 DOI: 10.3390/molecules24224170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas species are metabolically robust, with capacity to produce secondary metabolites including cyclic lipopeptides (CLPs). Herein we conducted a chemical analysis of a crude CLP extract from the cocoyam rhizosphere-derived biocontrol strain Pseudomonas sp. COW3. We performed in silico analyses on its whole genome, and conducted in vitro antagonistic assay using the strain and purified CLPs. Via LC-MS and NMR, we elucidated the structures of four novel members of the bananamide group, named bananamides D-G. Besides variability in fatty acid length, bananamides D-G differ from previously described bananamides A-C and MD-0066 by the presence of a serine and aspartic acid at position 6 and 2, respectively. In addition, bananamide G has valine instead of isoleucine at position 8. Kendrick mass defect (KMD) allowed the assignment of molecular formulae to bananamides D and E. We unraveled a non-ribosomal peptide synthetase cluster banA, banB and banC which encodes the novel bananamide derivatives. Furthermore, COW3 displayed antagonistic activity and mycophagy against Pythium myriotylum, while it mainly showed mycophagy on Pyricularia oryzae. Purified bananamides D-G inhibited the growth of P. myriotylum and P. oryzae and caused hyphal distortion. Our study shows the complementarity of chemical analyses and genome mining in the discovery and elucidation of novel CLPs. In addition, structurally diverse bananamides differ in their antimicrobial activity.
Collapse
|
15
|
Production of Polyhydroxyalkanoates and Extracellular Products Using Pseudomonas Corrugata and P. Mediterranea: A Review. Bioengineering (Basel) 2019; 6:bioengineering6040105. [PMID: 31739507 PMCID: PMC6955742 DOI: 10.3390/bioengineering6040105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022] Open
Abstract
Some strains of Pseudomonas corrugata (Pco) and P. mediterranea (Pme) efficiently synthesize medium-chain-length polyhydroxyalkanoates elastomers (mcl-PHA) and extracellular products on related and unrelated carbon sources. Yield and composition are dependent on the strain, carbon source, fermentation process, and any additives. Selected Pco strains produce amorphous and sticky mcl-PHA, whereas strains of Pme produce, on high grade and partially refined biodiesel glycerol, a distinctive filmable PHA, very different from the conventional microbial mcl-PHA, suitable for making blends with polylactide acid. However, the yields still need to be improved and production costs lowered. An integrated process has been developed to recover intracellular mcl-PHA and extracellular bioactive molecules. Transcriptional regulation studies during PHA production contribute to understanding the metabolic potential of Pco and Pme strains. Data available suggest that pha biosynthesis genes and their regulations will be helpful to develop new, integrated strategies for cost-effective production.
Collapse
|
16
|
Horak J, Lämmerhofer M. Derivatize, Racemize, and Analyze—an Easy and Simple Procedure for Chiral Amino Acid Standard Preparation for Enantioselective Metabolomics. Anal Chem 2019; 91:7679-7689. [DOI: 10.1021/acs.analchem.9b00666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jeannie Horak
- Eberhard-Karls-University Tuebingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8 (Haus B), 72076 Tuebingen, Germany
| | - Michael Lämmerhofer
- Eberhard-Karls-University Tuebingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8 (Haus B), 72076 Tuebingen, Germany
| |
Collapse
|
17
|
Komatsu H, Shirakawa T, Uchiyama T, Hoshino T. Chemical structure of cichorinotoxin, a cyclic lipodepsipeptide that is produced by Pseudomonas cichorii and causes varnish spots on lettuce. Beilstein J Org Chem 2019; 15:299-309. [PMID: 30800180 PMCID: PMC6369977 DOI: 10.3762/bjoc.15.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas cichorii, which causes varnish spots on lettuce and seriously damages lettuce production during the summer season in the highland areas of Japan (e.g., Nagano and Iwate prefectures) was isolated. The structure of a toxin produced by this organism was analyzed based on the detailed evaluation of its 2D NMR and FABMS spectra, and this compound has not been reported previously. We propose the name cichorinotoxin for this toxin. In conjunction with the D or L configurations of each amino acid, which were determined by Marfey's method, we propose the structure of cichorinotoxin to be as follows: 3-hydroxydecanoyl-(Z)-dhThr1-D-Pro2-D-Ala3-D-Ala4-D-Ala5-D-Val6-D-Ala7-(Z)-dhThr8-Ala9-Val10-D-Ile11-Ser12-Ala13-Val14-Ala15-Val16-(Z)-dhThr17-D-alloThr18-Ala19-L-Dab20-Ser21-Val22, and an ester linkage is present between D-alloThr18 and Val22 (dhThr: 2-aminobut-2-enoic acid; Dab: 2,4-diaminobutanoic acid). Thus, the toxin is a lipodepsipeptide with 22 amino acids. The mono- and tetraacetate derivatives and two alkaline hydrolysates, compounds A and B, were prepared. We discuss here the structure-activity relationships between the derivatives and their necrotic activities toward lettuce.
Collapse
Affiliation(s)
- Hidekazu Komatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Takashi Shirakawa
- Department of Planning and General Administration, Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
| | - Takeo Uchiyama
- Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Tsutomu Hoshino
- Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
18
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Licciardello G, Caruso A, Bella P, Gheleri R, Strano CP, Anzalone A, Trantas EA, Sarris PF, Almeida NF, Catara V. The LuxR Regulators PcoR and RfiA Co-regulate Antimicrobial Peptide and Alginate Production in Pseudomonas corrugata. Front Microbiol 2018; 9:521. [PMID: 29662475 PMCID: PMC5890197 DOI: 10.3389/fmicb.2018.00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/08/2018] [Indexed: 02/02/2023] Open
Abstract
Cyclic lipopeptides (CLPs) are considered as some of the most important secondary metabolites in different plant-associated bacteria, thanks to their antimicrobial, cytotoxic, and surfactant properties. In this study, our aim was to investigate the role of the Quorum Sensing (QS) system, PcoI/PcoR, and the LuxR-type transcriptional regulator RfiA in CLP production in the phytopatogenic bacterium, Pseudomonas corrugata based on our previous work where we reported that the pcoR and rfiA mutants were devoid of the CLPs cormycin and corpeptin production. Due to the close genetic link between the QS system and the RfiA (rfiA is co-transcribed with pcoI), it was difficult to ascertain the specific regulatory role in the expression of target genes. A transcriptional approach was undertaken to identify the specific role of the PcoR and RfiA transcriptional regulators for the expression of genes involved in CLP production. The RNA-seq-based transcriptional analysis of the wild-type (WT) strain CFBP 5454 in comparison with GL2 (pcoR mutant) and GLRFIA (rfiA mutant) was performed in cultural conditions favoring CLP production. Differential gene expression revealed that 152 and 130 genes have significantly different levels of expression in the pcoR and rfiA mutants, respectively. Of these, the genes linked to the biosynthesis of CLPs and alginate were positively controlled by both PcoR and RfiA. Blast homology analysis showed that 19 genes in a large CLP biosynthetic cluster involved in the production of three antimicrobial peptides, which span approximately 3.5% of the genome, are strongly over-expressed in the WT strain. Thus, PcoR and RfiA function mainly as activators in the production of bioactive CLPs, in agreement with phenotype analysis of mutants. RNA-seq also revealed that almost all the genes in the structural/biosynthetic cluster of alginate exopolysaccharide (EPS) are under the control of the PcoR-RfiA regulon, as supported by the 10-fold reduction in total EPS yield isolated in both mutants in comparison to the parent strain. A total of 68 and 38 gene expressions was independently regulated by PcoR or RfiA proteins, respectively, but at low level. qPCR experiments suggest that growth medium and plant environment influence the expression of CLP and alginate genes.
Collapse
Affiliation(s)
- Grazia Licciardello
- Parco Scientifico e Tecnologico della Sicilia, Catania, Italy
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Andrea Caruso
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Patrizia Bella
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Rodolpho Gheleri
- School of Computing, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Cinzia P. Strano
- Dipartimento di Agraria, Università degli Studi “Mediterranea” di Reggio Calabria, Reggio Calabria, Italy
| | - Alice Anzalone
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Emmanouil A. Trantas
- Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete, Heraklion, Greece
| | - Panagiotis F. Sarris
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Nalvo F. Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Vittoria Catara
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
20
|
Hennessy RC, Phippen CBW, Nielsen KF, Olsson S, Stougaard P. Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. Microbiologyopen 2017; 6. [PMID: 28782279 PMCID: PMC5727362 DOI: 10.1002/mbo3.516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 12/02/2022] Open
Abstract
Nunamycin and nunapeptin are two antimicrobial cyclic lipopeptides (CLPs) produced by Pseudomonas fluorescens In5 and synthesized by nonribosomal synthetases (NRPS) located on two gene clusters designated the nun–nup regulon. Organization of the regulon is similar to clusters found in other CLP‐producing pseudomonads except for the border regions where putative LuxR‐type regulators are located. This study focuses on understanding the regulatory role of the LuxR‐type‐encoding gene nunF in CLP production of P. fluorescens In5. Functional analysis of nunF coupled with liquid chromatography–high‐resolution mass spectrometry (LC‐HRMS) showed that CLP biosynthesis is regulated by nunF. Quantitative real‐time PCR analysis indicated that transcription of the NRPS genes catalyzing CLP production is strongly reduced when nunF is mutated indicating that nunF is part of the nun–nup regulon. Swarming and biofilm formation was reduced in a nunF knockout mutant suggesting that these CLPs may also play a role in these phenomena as observed in other pseudomonads. Fusion of the nunF promoter region to mCherry showed that nunF is strongly upregulated in response to carbon sources indicating the presence of a fungus suggesting that environmental elicitors may also influence nunF expression which upon activation regulates nunamycin and nunapeptin production required for the growth inhibition of phytopathogens.
Collapse
Affiliation(s)
- Rosanna C Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
| | - Peter Stougaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
22
|
Nguyen DD, Melnik AV, Koyama N, Lu X, Schorn M, Fang J, Aguinaldo K, Lincecum TL, Ghequire MGK, Carrion VJ, Cheng TL, Duggan BM, Malone JG, Mauchline TH, Sanchez LM, Kilpatrick AM, Raaijmakers JM, De Mot R, Moore BS, Medema MH, Dorrestein PC. Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nat Microbiol 2016; 2:16197. [PMID: 27798598 PMCID: PMC5538791 DOI: 10.1038/nmicrobiol.2016.197] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
Abstract
Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule-one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases.
Collapse
Affiliation(s)
- Don D. Nguyen
- Department of Chemistry and Biochemistry, University of California San Diego, CA 92093, USA
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Nobuhiro Koyama
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Xiaowen Lu
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Michelle Schorn
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, CA 92093, USA
| | - Jinshu Fang
- Department of Chemistry and Biochemistry, University of California San Diego, CA 92093, USA
| | - Kristen Aguinaldo
- Ion Torrent by Thermo Fisher, 5781 Van Allen Way, Carlsbad, California, USA
| | - Tommie L. Lincecum
- Ion Torrent by Thermo Fisher, 5781 Van Allen Way, Carlsbad, California, USA
| | | | - Victor J. Carrion
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Tina L. Cheng
- Department of Ecology and Evolutionary Biology, 1156 High Street, University of California, Santa Cruz, CA 95064
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tim H. Mauchline
- Department of AgroEcology, Rothamsted Research, West Common, Harpenden AL5 2JQ, United Kingdom
| | - Laura M. Sanchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, 1156 High Street, University of California, Santa Cruz, CA 95064
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| |
Collapse
|
23
|
Mnif I, Ghribi D. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 2016; 104:129-47. [PMID: 25808118 DOI: 10.1002/bip.22630] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022]
Abstract
Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi, and yeast. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin, and fengycin of Bacillus subtilis are among the most popular lipopeptides. Lipopepetides can be applied in diverse domains as food and cosmetic industries for their emulsification/de-emulsification capacity, dispersing, foaming, moisturizing, and dispersing properties. Also, they are qualified as viscosity reducers, hydrocarbon solubilizing and mobilizing agents, and metal sequestering candidates for application in environment and bioremediation. Moreover, their ability to form pores and destabilize biological membrane permits their use as antimicrobial, hemolytic, antiviral, antitumor, and insecticide agents. Furthermore, lipopeptides can act at the surface and can modulate enzymes activity permitting the enhancement of the activity of certain enzymes ameliorating microbial process or the inhibition of certain other enzymes permitting their use as antifungal agents. This article will present a detailed classification of lipopeptides biosurfactant along with their producing strain and biological activities and will discuss their functional properties and related applications.
Collapse
Affiliation(s)
- Inès Mnif
- Higher Institute of Biotechnology, Sfax, Tunisia.,Unit Enzymes and Bioconversion, National School of Engineers, Tunisia
| | - Dhouha Ghribi
- Higher Institute of Biotechnology, Sfax, Tunisia.,Unit Enzymes and Bioconversion, National School of Engineers, Tunisia
| |
Collapse
|
24
|
Licciardello G, Ferraro R, Russo M, Strozzi F, Catara AF, Bella P, Catara V. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion. N Biotechnol 2016; 37:39-47. [PMID: 27445200 DOI: 10.1016/j.nbt.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/11/2016] [Accepted: 07/16/2016] [Indexed: 11/30/2022]
Abstract
Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness.
Collapse
Affiliation(s)
- Grazia Licciardello
- Parco Scientifico e Tecnologico della Sicilia s.c.p.a. Via V. Lancia 57, 95121 Catania, Italy.
| | - Rosario Ferraro
- Parco Scientifico e Tecnologico della Sicilia s.c.p.a. Via V. Lancia 57, 95121 Catania, Italy
| | - Marcella Russo
- Parco Scientifico e Tecnologico della Sicilia s.c.p.a. Via V. Lancia 57, 95121 Catania, Italy
| | - Francesco Strozzi
- Parco Tecnologico Padano, via Einstein - Loc. Cascina Codazza 26900, Lodi, Italy
| | - Antonino F Catara
- Parco Scientifico e Tecnologico della Sicilia s.c.p.a. Via V. Lancia 57, 95121 Catania, Italy
| | - Patrizia Bella
- Dipartimento di Scienze Agrarie e Forestali Università degli Studi di Palermo, Viale delle Scienze, 13, 90128, Palermo, Italy
| | - Vittoria Catara
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Via S. Sofia 100, 95123 Catania Italy
| |
Collapse
|
25
|
Huang CJ, Pauwelyn E, Ongena M, Debois D, Leclère V, Jacques P, Bleyaert P, Höfte M. Characterization of Cichopeptins, New Phytotoxic Cyclic Lipodepsipeptides Produced by Pseudomonas cichorii SF1-54 and Their Role in Bacterial Midrib Rot Disease of Lettuce. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1009-22. [PMID: 25961750 DOI: 10.1094/mpmi-03-15-0061-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The lettuce midrib rot pathogen Pseudomonas cichorii SF1-54 produces seven bioactive compounds with biosurfactant properties. Two compounds exhibited necrosis-inducing activity on chicory leaves. The structure of the two phytotoxic compounds, named cichopeptin A and B, was tentatively characterized. They are related cyclic lipopeptides composed of an unsaturated C12-fatty acid chain linked to the N-terminus of a 22-amino acid peptide moiety. Cichopeptin B differs from cichopeptin A only in the last C-terminal amino acid residue, which is probably Val instead of Leu/Ile. Based on peptide sequence similarity, cichopeptins are new cyclic lipopeptides related to corpeptin, produced by the tomato pathogen Pseudomonas corrugata. Production of cichopeptin is stimulated by glycine betaine but not by choline, an upstream precursor of glycine betaine. Furthermore, a gene cluster encoding cichopeptin synthethases, cipABCDEF, is responsible for cichopeptin biosynthesis. A cipA-deletion mutant exhibited significantly less virulence and rotten midribs than the parental strain upon spray inoculation on lettuce. However, the parental and mutant strains multiplied in lettuce leaves at a similar rate. These results demonstrate that cichopeptins contribute to virulence of P. cichorii SF1-54 on lettuce.
Collapse
Affiliation(s)
- Chien-Jui Huang
- 1 Department of Crop Protection, Laboratory of Phytopathology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- 2 Department of Plant Medicine, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan (R.O.C.)
| | - Ellen Pauwelyn
- 1 Department of Crop Protection, Laboratory of Phytopathology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- 3 Inagro vzw, Ieperseweg 87, 8800 Rumbeke, Belgium
| | - Marc Ongena
- 4 Walloon Centre for Industrial Biology, University of Liège-Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Delphine Debois
- 5 Mass Spectrometry Laboratory (LSM/GIGA-R), Chemistry Department, University of Liege, 4000 Liege, Belgium
| | - Valerie Leclère
- 6 Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), Université de Lille Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France
| | - Philippe Jacques
- 6 Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), Université de Lille Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France
| | | | - Monica Höfte
- 1 Department of Crop Protection, Laboratory of Phytopathology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Trantas EA, Licciardello G, Almeida NF, Witek K, Strano CP, Duxbury Z, Ververidis F, Goumas DE, Jones JDG, Guttman DS, Catara V, Sarris PF. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol 2015; 6:811. [PMID: 26300874 PMCID: PMC4528175 DOI: 10.3389/fmicb.2015.00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.
Collapse
Affiliation(s)
- Emmanouil A Trantas
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece
| | | | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul Campo Grande, Brazil
| | - Kamil Witek
- The Sainsbury Laboratory, John Innes Centre Norwich, UK
| | - Cinzia P Strano
- Department of Agriculture, Food and Environment, University of Catania Catania, Italy
| | - Zane Duxbury
- The Sainsbury Laboratory, John Innes Centre Norwich, UK
| | - Filippos Ververidis
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece
| | - Dimitrios E Goumas
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece ; Plant Pathology and Bacteriology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece
| | | | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto Toronto, ON, Canada
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania Catania, Italy
| | - Panagiotis F Sarris
- Plant Biochemistry and Biotechnology Laboratory, Department of Agriculture, School of Agriculture and Food Technology, Technological Educational Institute of Crete Heraklion, Greece ; The Sainsbury Laboratory, John Innes Centre Norwich, UK
| |
Collapse
|
27
|
Van Der Voort M, Meijer HJG, Schmidt Y, Watrous J, Dekkers E, Mendes R, Dorrestein PC, Gross H, Raaijmakers JM. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front Microbiol 2015. [PMID: 26217324 PMCID: PMC4493835 DOI: 10.3389/fmicb.2015.00693] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The plant microbiome represents an enormous untapped resource for discovering novel genes and bioactive compounds. Previously, we isolated Pseudomonas sp. SH-C52 from the rhizosphere of sugar beet plants grown in a soil suppressive to the fungal pathogen Rhizoctonia solani and showed that its antifungal activity is, in part, attributed to the production of the chlorinated 9-amino-acid lipopeptide thanamycin (Mendes et al., 2011). To get more insight into its biosynthetic repertoire, the genome of Pseudomonas sp. SH-C52 was sequenced and subjected to in silico, mutational and functional analyses. The sequencing revealed a genome size of 6.3 Mb and 5579 predicted ORFs. Phylogenetic analysis placed strain SH-C52 within the Pseudomonas corrugata clade. In silico analysis for secondary metabolites revealed a total of six non-ribosomal peptide synthetase (NRPS) gene clusters, including the two previously described NRPS clusters for thanamycin and the 2-amino acid antibacterial lipopeptide brabantamide. Here we show that thanamycin also has activity against an array of other fungi and that brabantamide A exhibits anti-oomycete activity and affects phospholipases of the late blight pathogen Phytophthora infestans. Most notably, mass spectrometry led to the discovery of a third lipopeptide, designated thanapeptin, with a 22-amino-acid peptide moiety. Seven structural variants of thanapeptin were found with varying degrees of activity against P. infestans. Of the remaining four NRPS clusters, one was predicted to encode for yet another and unknown lipopeptide with a predicted peptide moiety of 8-amino acids. Collectively, these results show an enormous metabolic potential for Pseudomonas sp. SH-C52, with at least three structurally diverse lipopeptides, each with a different antimicrobial activity spectrum.
Collapse
Affiliation(s)
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Yvonne Schmidt
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Jeramie Watrous
- Departments of Pharmacology and Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego San Diego, CA, USA
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Rodrigo Mendes
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands ; Brazilian Agricultural Research Corporation, Embrapa Environment Jaguariuna, Brazil
| | - Pieter C Dorrestein
- Departments of Pharmacology and Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego San Diego, CA, USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen Tübingen, Germany
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands ; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| |
Collapse
|
28
|
Strano CP, Bella P, Licciardello G, Fiore A, Lo Piero AR, Fogliano V, Venturi V, Catara V. Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2015; 16:495-506. [PMID: 25231335 PMCID: PMC6638327 DOI: 10.1111/mpp.12207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pseudomonas corrugata CFBP 5454 produces two kinds of cyclic lipopeptides (CLPs), cormycin A and corpeptins, both of which possess surfactant, antimicrobial and phytotoxic activities. In this study, we identified genes coding for a putative non-ribosomal peptide synthetase and an ABC-type transport system involved in corpeptin production. These genes belong to the same transcriptional unit, designated crpCDE. The genetic organization of this locus is highly similar to other Pseudomonas CLP biosynthetic clusters. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis revealed that transporter and synthetase genomic knock-out mutants were unable to produce corpeptins, but continued to produce cormycin A. This suggests that CrpCDE is the only system involved in corpeptin production in P. corrugata CFBP 5454. In addition, phylogenetic analysis revealed that the CrpE ABC transporter clustered with the transporters of CLPs with a long peptide chain. Strains depleted in corpeptin production were significantly less virulent than the wild-type strain when inoculated in tomato plants and induced only chlorosis when infiltrated into Nicotiana benthamiana leaves. Thus, corpeptins are important effectors of P. corrugata interaction with plants. Expression analysis revealed that crpC transcription occurs at high cell density. Two LuxR transcriptional regulators, PcoR and RfiA, have a pivotal role in crpC expression and thus in corpeptin production.
Collapse
Affiliation(s)
- Cinzia Patricia Strano
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA), Università degli Studi di Catania, Via Santa Sofia 100, 95131, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
α,β-Dehydroamino acids are naturally occurring non-coded amino acids, found primarily in peptides. The review focuses on the type of α,β-dehydroamino acids, the structure of dehydropeptides, the source of their origin and bioactivity. Dehydropeptides are isolated primarily from bacteria and less often from fungi, marine invertebrates or even higher plants. They reveal mainly antibiotic, antifungal, antitumour, and phytotoxic activity. More than 60 different structures were classified, which often cover broad families of peptides. 37 different structural units containing the α,β-dehydroamino acid residues were shown including various side chains, Z and E isomers, and main modifications: methylation of peptide bond as well as the introduction of ester group and heterocycle ring. The collected data show the relation between the structure and bioactivity. This allows the activity of compounds, which were not studied in this field, but which belong to a larger peptide family to be predicted. A few examples show that the type of the geometrical isomer of the α,β-dehydroamino acid residue can be important or even crucial for biological activity.
Collapse
Affiliation(s)
- Dawid Siodłak
- Faculty of Chemistry, University of Opole, Oleska, 48 45-052, Opole, Poland,
| |
Collapse
|
30
|
Reybroeck W, De Vleeschouwer M, Marchand S, Sinnaeve D, Heylen K, De Block J, Madder A, Martins JC, Heyndrickx M. Cyclic lipodepsipeptides produced by Pseudomonas spp. naturally present in raw milk induce inhibitory effects on microbiological inhibitor assays for antibiotic residue screening. PLoS One 2014; 9:e98266. [PMID: 24853676 PMCID: PMC4031126 DOI: 10.1371/journal.pone.0098266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/30/2014] [Indexed: 11/23/2022] Open
Abstract
Two Pseudomonas strains, identified as closely related to Pseudomonas tolaasii, were isolated from milk of a farm with frequent false-positive Delvotest results for screening putative antibiotic residues in raw milk executed as part of the regulatory quality programme. Growth at 5 to 7°C of these isolates in milk resulted in high lipolysis and the production of bacterial inhibitors. The two main bacterial inhibitors have a molecular weight of 1168.7 and 1140.7 Da respectively, are heat-tolerant and inhibit Geobacillus stearothermophilus var. calidolactis, the test strain of most of the commercially available microbiological inhibitor tests for screening of antibiotic residues in milk. Furthermore, these bacterial inhibitors show antimicrobial activity against Staphylococcus aureus, Bacillus cereus and B. subtilis and also interfere negatively with yoghurt production. Following their isolation and purification with RP-HPLC, the inhibitors were identified by NMR analysis as cyclic lipodepsipeptides of the viscosin group. Our findings bring to light a new challenge for quality control in the dairy industry. By prolonging the refrigerated storage of raw milk, the keeping quality of milk is influenced by growth and metabolic activities of psychrotrophic bacteria such as pseudomonads. Besides an increased risk of possible spoilage of long shelf-life milk, the production at low temperature of natural bacterial inhibitors may also result in false-positive results for antibiotic residue screening tests based on microbial inhibitor assays thus leading to undue production loss.
Collapse
Affiliation(s)
- Wim Reybroeck
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Matthias De Vleeschouwer
- Ghent University (UGent), Department of Organic Chemistry, NMR and Structure Analysis Unit, Gent, Belgium
- Ghent University (UGent), Department of Organic Chemistry, Organic and Biomimetic Chemistry Research Unit, Gent, Belgium
| | - Sophie Marchand
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Davy Sinnaeve
- Ghent University (UGent), Department of Organic Chemistry, NMR and Structure Analysis Unit, Gent, Belgium
| | - Kim Heylen
- Ghent University (UGent), Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent, Belgium
| | - Jan De Block
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Annemieke Madder
- Ghent University (UGent), Department of Organic Chemistry, Organic and Biomimetic Chemistry Research Unit, Gent, Belgium
| | - José C. Martins
- Ghent University (UGent), Department of Organic Chemistry, NMR and Structure Analysis Unit, Gent, Belgium
| | - Marc Heyndrickx
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Melle, Belgium
- Ghent University (UGent), Department of Pathology, Bacteriology and Poultry Diseases, Merelbeke, Belgium
| |
Collapse
|
31
|
Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MGK, Sinnaeve D, Xie GL, Rozenski J, Madder A, Martins JC, De Mot R. The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS One 2013; 8:e62946. [PMID: 23690965 PMCID: PMC3656897 DOI: 10.1371/journal.pone.0062946] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022] Open
Abstract
The rhizosphere isolate Pseudomonas putida BW11M1 produces a mixture of cyclic lipopeptide congeners, designated xantholysins. Properties of the major compound xantholysin A, shared with several other Pseudomonas lipopeptides, include antifungal activity and toxicity to Gram-positive bacteria, a supportive role in biofilm formation, and facilitation of surface colonization through swarming. Atypical is the lipopeptide’s capacity to inhibit some Gram-negative bacteria, including several xanthomonads. The lipotetradecadepsipeptides are assembled by XtlA, XtlB and XtlC, three co-linearly operating non-ribosomal peptide synthetases (NRPSs) displaying similarity in modular architecture with the entolysin-producing enzymes of the entomopathogenic Pseudomonas entomophila L48. A shifted serine-incorporating unit in the eight-module enzyme XtlB elongating the central peptide moiety not only generates an amino acid sequence differing at several equivalent positions from entolysin, but also directs xantholysin’s macrocyclization into an octacyclic structure, distinct from the pentacyclic closure in entolysin. Relaxed fatty acid specificity during lipoinitiation by XtlA (acylation with 3-hydroxydodec-5-enoate instead of 3-hydroxydecanoate) and for incorporation of the ultimate amino acid by XtlC (valine instead of isoleucine) account for the production of the minor structural variants xantholysin C and B, respectively. Remarkably, the genetic backbones of the xantholysin and entolysin NRPS systems also bear pronounced phylogenetic similarity to those of the P. putida strains PCL1445 and RW10S2, albeit generating the seemingly structurally unrelated cyclic lipopeptides putisolvin (undecapeptide containing a cyclotetrapeptide) and WLIP (nonapeptide containing a cycloheptapeptide), respectively. This similarity includes the linked genes encoding the cognate LuxR-family regulator and tripartite export system components in addition to individual modules of the NRPS enzymes, and probably reflects a common evolutionary origin. Phylogenetic scrutiny of the modules used for selective amino acid activation by these synthetases indicates that bacteria such as pseudomonads recruit and reshuffle individual biosynthetic units and blocks thereof to engineer reorganized or novel NRPS assembly lines for diversified synthesis of lipopeptides.
Collapse
Affiliation(s)
- Wen Li
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
| | - Hassan Rokni-Zadeh
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
| | - Matthias De Vleeschouwer
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Gent, Belgium
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - Maarten G. K. Ghequire
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
| | - Davy Sinnaeve
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, Gent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Heverlee-Leuven, Belgium
- * E-mail:
| |
Collapse
|
32
|
Pauwelyn E, Huang CJ, Ongena M, Leclère V, Jacques P, Bleyaert P, Budzikiewicz H, Schäfer M, Höfte M. New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:585-598. [PMID: 23405865 DOI: 10.1094/mpmi-11-12-0258-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pseudomonas cichorii is the causal agent of lettuce midrib rot, characterized by a dark-brown to green-black discoloration of the midrib. Formation of necrotic lesions by several plant-pathogenic pseudomonads is associated with production of phytotoxic lipopeptides, which contribute to virulence. Therefore, the ability of P. cichorii SF1-54 to produce lipopeptides was investigated. A cell-free culture filtrate of SF1-54 showed surfactant, antimicrobial, and phytotoxic activities which are typical for lipopeptides. High-performance liquid chromatography analysis of P. cichorii SF1-54 culture filtrate revealed the presence of seven compounds with lipopeptide characteristics. Two related lipopeptides, named cichofactin A and B, were studied in more detail: they are linear lipopeptides with a decanoic and dodecanoic lipid chain, respectively, connected to the N-terminus of an eight-amino-acid peptide moiety. Both cichofactins are new members of the syringafactin lipopeptide family. Furthermore, two nonribosomal peptide synthethase-encoding genes, cifA and cifB, were identified as responsible for cichofactin biosynthesis. A cifAB deletion mutant no longer produced cichofactins and was impaired in swarming motility but showed enhanced biofilm formation. Upon spray inoculation on lettuce, the cichofactin-deficient mutant caused significantly less rotten midribs than the wild type, indicating that cichofactins are involved in pathogenicity of P. cichorii SF1-54. Further analysis revealed that P. cichorii isolates vary greatly in swarming motility and cichofactin production.
Collapse
Affiliation(s)
- Ellen Pauwelyn
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Berry CL, Brassinga AKC, Donald LJ, Fernando WGD, Loewen PC, de Kievit TR. Chemical and biological characterization of sclerosin, an antifungal lipopeptide. Can J Microbiol 2013; 58:1027-34. [PMID: 22838838 DOI: 10.1139/w2012-079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas sp. strain DF41 produces a lipopeptide, called sclerosin that inhibits the fungal pathogen Sclerotinia sclerotiorum . The aim of the current study was to deduce the chemical structure of this lipopeptide and further characterize its bioactivity. Mass spectrometry analysis determined the structure of sclerosin to be CH(3)-(CH(2))(6)-CH(OH)-CH(2)-CO-Dhb-Pro-Ala-Leu/Ile-Ala-Val-Val-Dhb-Thr-Val-Leu/Ile-Dhp-Ala-Ala-Ala-Val-Dhb-Dhb-Ala-Dab-Ser-Val-OH, similar to corpeptins A and B of the tolaasin group, differing by only 3 amino acids in the peptide chain. Subjecting sclerosin to various ring opening procedures revealed no new ions, suggesting that this molecule is linear. As such, sclerosin represents a new member of the tolaasin lipopeptide group. Incubation of S. sclerotinia ascospores and sclerotia in the presence of sclerosin inhibited the germination of both cell types. Sclerosin also exhibited antimicrobial activity against Bacillus species. Conversely, this lipopeptide demonstrated no zoosporicidal activity against the oomycete pathogen Phytophthora infestans . Next, we assessed the effect of DF41 and a lipopeptide-deficient mutant on the growth and development of Caenorhabditis elegans larvae. We discovered that sclerosin did not protect DF41 from ingestion by and degradation in the C. elegans digestive tract. However, another metabolite produced by this bacterium appeared to shorten the life-span of the nematode compared to C. elegans growing on Escherichia coli OP50.
Collapse
Affiliation(s)
- Chrystal L Berry
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Licciardello G, Strano CP, Bertani I, Bella P, Fiore A, Fogliano V, Venturi V, Catara V. N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J Biotechnol 2012; 159:274-82. [DOI: 10.1016/j.jbiotec.2011.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/17/2011] [Accepted: 07/27/2011] [Indexed: 11/25/2022]
|
35
|
Reder-Christ K, Schmidt Y, Dörr M, Sahl HG, Josten M, Raaijmakers JM, Gross H, Bendas G. Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:566-73. [DOI: 10.1016/j.bbamem.2011.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
|
36
|
Roongsawang N, Washio K, Morikawa M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 2010; 12:141-72. [PMID: 21339982 PMCID: PMC3039948 DOI: 10.3390/ijms12010141] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/03/2010] [Accepted: 12/10/2010] [Indexed: 12/02/2022] Open
Abstract
Lipopeptide biosurfactants (LPBSs) consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive) and Pseudomonas (Gram-negative) have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs). Production of active-form NRPSs requires not only transcriptional induction and translation but also post-translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.
Collapse
Affiliation(s)
- Niran Roongsawang
- Microbial Cell Factory Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
- Authors to whom correspondence should be addressed; E-Mails: (N.R.); (M.M.); Tel.: +66-2564-6700 (N.R.); +81-11-706-2253 (M.M.); Fax: +66-2564-6707 (N.R.); +81-11-706-2253 (M.M.)
| | - Kenji Washio
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mail:
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (N.R.); (M.M.); Tel.: +66-2564-6700 (N.R.); +81-11-706-2253 (M.M.); Fax: +66-2564-6707 (N.R.); +81-11-706-2253 (M.M.)
| |
Collapse
|
37
|
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides fromBacillusandPseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010; 34:1037-62. [DOI: 10.1111/j.1574-6976.2010.00221.x] [Citation(s) in RCA: 719] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
D'aes J, De Maeyer K, Pauwelyn E, Höfte M. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:359-72. [PMID: 23766108 DOI: 10.1111/j.1758-2229.2009.00104.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy.
Collapse
Affiliation(s)
- Jolien D'aes
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
39
|
Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V. The transcriptional activator rfiA is quorum-sensing regulated by cotranscription with the luxI homolog pcoI and is essential for plant virulence in Pseudomonas corrugata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1514-1522. [PMID: 19888817 DOI: 10.1094/mpmi-22-12-1514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The gram-negative phytopathogen Pseudomonas corrugata has an acyl-homoserine lactone (AHL) quorum-sensing (QS) system called PcoI/PcoR that is involved in virulence on tomato. This work identifies, downstream of pcoI, a gene designated rfiA, which we demonstrate is directly linked to QS by cotranscription with pcoI. The deduced RfiA protein contains a DNA-binding domain characteristic of the LuxR family but lacks the autoinducer-binding terminus characteristic of the QS LuxR-family proteins. We also identified, downstream of rfiA, an operon designated pcoABC, encoding for the three components of a tripartite resistance nodulation-cell-division (RND) transporter system. The expression of pcoABC is regulated by RfiA. We found that lipodepsipeptide (LDP) production is cell density dependent and mutants of pcoI, pcoR, and rfiA are unable to inhibit the growth of the LDP-sensitive microorganisms Rhodotorula pilimanae and Bacillus megaterium. P. corrugata rfiA mutants were significantly reduced in their ability to cause necrosis development in tomato pith. In addition, it was established that PcoR in the absence of AHL also played a role in virulence on tomato. A model for the role of PcoI, PcoR, and RfiA in tomato pith necrosis is presented.
Collapse
|
40
|
Fiore A, Laparra JM, Farrè R, Fullone MR, Grgurina I, Gallo M, Fogliano V. Lipodepsipeptides from Pseudomonas syringae are partially proteolyzed and are not absorbed by humans: an in vitro study. J Food Prot 2008; 71:979-85. [PMID: 18522033 DOI: 10.4315/0362-028x-71.5.979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are some concerns about the use of Pseudomonas-based products as biocontrol agents because of the hemolytic activity shown by their metabolites. The effects of Pseudomonas lipodepsipeptides (LDPs) on mammals via ingestion and the LDP degradation during the digestion and intestinal permeability have not been evaluated. In this research, the susceptibility of different LDPs to degradation was assayed with enzymatic gastrointestinal digestion, and intestinal permeability to LDPs was investigated in an in vitro system based on an intestinal cell layer system. Results demonstrated that trypsin and chymotrypsin hydrolyze up to 50% of the various LDPs, and that proteolysis was further increased by pronase E treatment. A decrease in LDP hemolytic activity matched LDP degradation during the various steps of the digestion process. Moreover, it was shown that syringomycin E (SRE), the main known LDP, was not able to cross the intestinal cell layer, suggesting that SRE does not reach the bloodstream in vivo. It was concluded that the Pseudomonas-based biocontrol products do not represent a serious risk for consumer health. In fact, LDPs possibly present on biocontrol-treated agricultural commodities would likely be partially digested by gastrointestinal enzymes and would not be absorbed at the intestinal level.
Collapse
Affiliation(s)
- A Fiore
- Dipartimento di Scienza degli Alimenti, Università di Napoli Federico II, Parco Gussone, Edificio 84, 80055 Portici, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Coraiola M, Paletti R, Fiore A, Fogliano V, Serra MD. Fuscopeptins, antimicrobial lipodepsipeptides from Pseudomonas fuscovaginae,
are channel forming peptides active on biological and model membranes. J Pept Sci 2007; 14:496-502. [DOI: 10.1002/psc.970] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Solaiman DKY, Ashby RD, Licciardello G, Catara V. Genetic organization of pha gene locus affects phaC expression, poly(hydroxyalkanoate) composition and granule morphology in Pseudomonas corrugata. J Ind Microbiol Biotechnol 2007; 35:111-20. [PMID: 17987331 DOI: 10.1007/s10295-007-0272-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
Abstract
The complete sequence of the pha locus responsible for the biosynthesis of poly(hydroxyalkanoates) (PHAs) in Pseudomonas corrugata 388 was determined. As with the other known pseudomonad pha gene loci, the one in P. corrugata 388 also consists of phaC1 (1,680 bps; PHA synthase 1), phaZ (858 bp; PHA depolymerase) and phaC2 (1,683 bp; PHA synthase 2) genes. A BLAST search showed that the nucleotide sequences of these genes and the amino-acid sequences of their respective gene products are homologous to those of P. corrugata CFBP5454 and P. mediterranea CFBP5447. A putative intrinsic transcription terminator consisting of a dyad symmetry (24 bp; Delta G = -41.8 kcals) that precedes a stretch of dA residues was located in the phaC1-phaZ intergenic region. P. corrugata mutant-clones XI 32-1 and XI 32-4 were constructed in which this intergenic region was replaced with a selectable kanamycin-resistance gene. These mutant clones when grown on oleic acid for 48 h showed 4.7-to 7.0-fold increases of phaC1 and phaC2 relative expression in comparison to the initial inoculants, whereas the parental strain showed only 1.2- to 1.4-fold increases. Furthermore, in comparison to parental P. corrugata with only a few large PHA inclusion bodies, the mutants grown on oleic acid produce numerous smaller PHA granules that line the periphery of the cells. With glucose as a substrate, XI 32-1 and XI 32-4 clones produce mcl-PHA with a high content (26-31 mol%) of the mono-unsaturated 3-hydroxydodecenoate as a repeat-unit monomer. Our results show for the first time the effects of the phaC1-phaZ intergenic region on the substrate-dependent temporal expression of phaC1 and phaC2 genes, the repeat-unit composition of mcl-PHA, and the morphology of the PHA granules.
Collapse
MESH Headings
- Base Sequence
- Biosynthetic Pathways/genetics
- Cytoplasmic Granules
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Intergenic
- Enzyme Activators/pharmacology
- Gene Expression Regulation, Bacterial
- Gene Order
- Genes, Bacterial
- Glucose/metabolism
- Inclusion Bodies
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oleic Acid/pharmacology
- Polyhydroxyalkanoates/biosynthesis
- Polyhydroxyalkanoates/genetics
- Pseudomonas/cytology
- Pseudomonas/genetics
- Pseudomonas/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- Daniel K Y Solaiman
- US Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
43
|
Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V. Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol 2007; 61:222-34. [PMID: 17537174 DOI: 10.1111/j.1574-6941.2007.00338.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas corrugata is a phytopathogenic bacterium, causal agent of tomato pith necrosis, yet it is an ubiquitous bacterium that is part of the microbial community in the soil and in the rhizosphere of different plant species. Although it is a very heterogeneous species, all the strains tested were able to produce short chain acyl homoserine lactone (AHL) quorum sensing signal molecules. The main AHL produced was N-hexanoyl-L-homoserine lactone (C(6)-AHL). An AHL quorum sensing system, designated PcoI/PcoR, was identified and characterized. The role of the quorum sensing system in the expression of a variety of traits was evaluated. Inactivation of pcoI abolished the production of AHLs. The pcoR mutant, but not the pcoI mutant, was impaired in swarming, unable to cause a hypersensitivity response on tobacco and resulted in a reduced tomato pith necrosis phenotype. The pcoI mutant showed a reduced antimicrobial activity against various fungi and bacteria when assayed on King's B medium. These results demonstrate that the AHL quorum sensing in Ps. corrugata regulates traits that contribute to virulence, antimicrobial activity and fitness. This is the first report of genes of Ps. corrugata involved in the disease development and biological control activity.
Collapse
Affiliation(s)
- Grazia Licciardello
- Parco Scientifico e Tecnologico della Sicilia, z.i. Blocco Palma I, Catania, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Catara V. Pseudomonas corrugata: plant pathogen and/or biological resource? MOLECULAR PLANT PATHOLOGY 2007; 8:233-244. [PMID: 20507495 DOI: 10.1111/j.1364-3703.2007.00391.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED SUMMARY Pseudomonas corrugata is the causal agent of tomato pith necrosis yet it is also used in the biological control of plant pathogenic bacteria and fungi. Potentially it could be used in other fields, such as the production of commercial biomolecules with a wide range of application and including bioremediation. This review reports the multiple characteristics of the bacterium, highlights its known molecular features and speculates on the possible underlying mechanisms of action. TAXONOMY Bacteria; Proteobacteria; gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas. Microbiological properties: Gram-negative, oxidase-positive, non-spore forming rods; non-fluorescent on King's B medium; produces wrinkled and rarely smooth colonies on yeast peptone glucose agar or nutrient dextrose agar; yellow to brown diffusible pigments are frequently produced. Disease symptoms: The typical symptom on tomato is necrosis and/or hollowing of the pith of the stem; the syndrome determines loss of turgidity of the plant, hydropic/necrotic areas and long conspicuous adventitious roots on the stem. Biological control agent: In vitro assessed against plant pathogenic fungi and bacteria, as well as the phytotoxin indicator microorganims Rhodotorula pilimanae and Bacillus megaterium; in vivo used against pre- and post-harvest plant pathogens.
Collapse
Affiliation(s)
- Vittoria Catara
- Dipartimento di Scienze e Tecnologie Fitosanitarie, Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
45
|
Raaijmakers JM, de Bruijn I, de Kock MJD. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:699-710. [PMID: 16838783 DOI: 10.1094/mpmi-19-0699] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cyclic lipopeptides (CLPs) are versatile molecules produced by a variety of bacterial genera, including plant-associated Pseudomonas spp. CLPs are composed of a fatty acid tail linked to a short oligopeptide, which is cyclized to form a lactone ring between two amino acids in the peptide chain. CLPs are very diverse both structurally and in terms of their biological activity. The structural diversity is due to differences in the length and composition of the fatty acid tail and to variations in the number, type, and configuration of the amino acids in the peptide moiety. CLPs have received considerable attention for their antimicrobial, cytotoxic, and surfactant properties. For plant-pathogenic Pseudomonas spp., CLPs constitute important virulence factors, and pore formation, followed by cell lysis, is their main mode of action. For the antagonistic Pseudomonas sp., CLPs play a key role in antimicrobial activity, motility, and biofilm formation. CLPs are produced via nonribosomal synthesis on large, multifunctional peptide synthetases. Both the structural organization of the CLP synthetic templates and the presence of specific domains and signature sequences within peptide synthetase genes will be described for both pathogenic and antagonistic Pseudomonas spp. Finally, the role of various genes and regulatory mechanisms in CLP production by Pseudomonas spp., including two-component regulation and quorum sensing, will be discussed in detail.
Collapse
Affiliation(s)
- Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University, The Netherlands.
| | | | | |
Collapse
|
46
|
Scaloni A, Dalla Serra M, Amodeo P, Mannina L, Vitale R, Segre A, Cruciani O, Lodovichetti F, Greco M, Fiore A, Gallo M, D'Ambrosio C, Coraiola M, Menestrina G, Graniti A, Fogliano V. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A. Biochem J 2005; 384:25-36. [PMID: 15196052 PMCID: PMC1134085 DOI: 10.1042/bj20040422] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cationic lipodepsipeptides from Pseudomonas spp. have been characterized for their structural and antimicrobial properties. In the present study, the structure of a novel lipodepsipeptide, cormycin A, produced in culture by the tomato pathogen Pseudomonas corrugata was elucidated by combined protein chemistry, mass spectrometry and two-dimensional NMR procedures. Its peptide moiety corresponds to L-Ser-D-Orn-L-Asn-D-Hse-L-His-L-aThr-Z-Dhb-L-Asp(3-OH)-L-Thr(4-Cl) [where Orn represents ornithine, Hse is homoserine, aThr is allo-threonine, Z-Dhb is 2,3-dehydro-2-aminobutanoic acid, Asp(3-OH) is 3-hydroxyaspartic acid and Thr(4-Cl) is 4-chlorothreonine], with the terminal carboxy group closing a macrocyclic ring with the hydroxy group of the N-terminal serine residue. This is, in turn, N-acylated by 3,4-dihydroxy-esadecanoate. In aqueous solution, cormycin A showed a rather compact structure, being derived from an inward orientation of some amino acid side chains and from the 'hairpin-bent' conformation of the lipid, due to inter-residue interactions involving its terminal part. Cormycin was significantly more active than the other lipodepsipeptides from Pseudomonas spp., as demonstrated by phytotoxicity and antibiosis assays, as well as by red-blood-cell lysis. Differences in biological activity were putatively ascribed to its weak positive net charge at neutral pH. Planar lipid membrane experiments showed step-like current transitions, suggesting that cormycin is able to form pores. This ability was strongly influenced by the phospholipid composition of the membrane and, in particular, by the presence of sterols. All of these findings suggest that cormycin derivatives could find promising applications, either as antifungal compounds for topical use or as post-harvest biocontrol agents.
Collapse
Affiliation(s)
- Andrea Scaloni
- *Proteomics and Mass Spectrometry Laboratory, I.S.P.A.A.M., National Research Council, 80147 Naples, Italy
| | - Mauro Dalla Serra
- †ITC and Institute of Biophysics, National Research Council, 38050 Povo (Trento), Italy
| | - Pietro Amodeo
- ‡Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (Naples), Italy
| | - Luisa Mannina
- §Dipartimento di Scienze e Tecnologie Agroalimentari, Ambientali e Microbiologiche, Università di Molise, 86100 Campobasso, Italy
| | - Rosa Maria Vitale
- ∥Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Anna Laura Segre
- ¶Institute of Chemical Methodologies, National Research Council, 00016 Monterotondo Stazione (Rome), Italy
| | - Oscar Cruciani
- ¶Institute of Chemical Methodologies, National Research Council, 00016 Monterotondo Stazione (Rome), Italy
| | - Francesca Lodovichetti
- ¶Institute of Chemical Methodologies, National Research Council, 00016 Monterotondo Stazione (Rome), Italy
| | - Maria Luigia Greco
- **Dipartimento di Biologia e Patologia Vegetale, Università di Bari, 70126 Bari, Italy
| | - Alberto Fiore
- ††Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, Edificio 84, 80055 Portici (Naples), Italy
| | - Monica Gallo
- ††Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, Edificio 84, 80055 Portici (Naples), Italy
| | - Chiara D'Ambrosio
- *Proteomics and Mass Spectrometry Laboratory, I.S.P.A.A.M., National Research Council, 80147 Naples, Italy
| | - Manuela Coraiola
- †ITC and Institute of Biophysics, National Research Council, 38050 Povo (Trento), Italy
| | - Gianfranco Menestrina
- †ITC and Institute of Biophysics, National Research Council, 38050 Povo (Trento), Italy
| | - Antonio Graniti
- **Dipartimento di Biologia e Patologia Vegetale, Università di Bari, 70126 Bari, Italy
| | - Vincenzo Fogliano
- ††Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, Edificio 84, 80055 Portici (Naples), Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Solaiman DKY, Catara V, Greco S. Poly(hydroxyalkanoate) synthase genotype and PHA production of Pseudomonas corrugata and P. mediterranea. J Ind Microbiol Biotechnol 2005; 32:75-82. [PMID: 15726440 DOI: 10.1007/s10295-005-0205-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 01/07/2005] [Indexed: 11/29/2022]
Abstract
A collection of Pseudomonas corrugata and P. mediterranea strains, two closely related species, was evaluated for the presence and variability of pha loci. Using PCR methods that specifically amplify segments of medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) synthase genes, we demonstrated the presence of phaC1 and phaC2 in all P. mediterranea strains tested and in six out of 56 strains of P. corrugata screened. The remaining 50 strains of P. corrugata yielded only the phaC2 subgene fragment on detection by a combined PCR-restriction endonuclease analysis method or a semi-nested PCR-amplification approach. A Southern hybridization study on a representative strain from this group, however, indicated the presence of the phaC1 gene. Nucleic acid sequences of the subgene phaC fragments of the representative strains from the three groups showed an overall similarity ranging from 95% to 100%. The major repeat-unit monomers of the mcl-PHAs isolated from these selected strains are beta-hydroxyoctanoate (33-47 mol%) and beta-hydroxydecanoate (26-36 mol%). These results differentiate for the first time the strains of P. corrugata into two pha-distinguishable groups. This study also documents for the first time the production of mcl-PHA in P. mediterranea.
Collapse
Affiliation(s)
- Daniel K Y Solaiman
- Agricultural Research Service, US Department of Agriculture, Eastern Regional Research Center, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | |
Collapse
|
48
|
Corsaro MM, Evidente A, Lanzetta R, Lavermicocca P, Parrilli M, Ummarino S. 5,7-Diamino-5,7,9-trideoxynon-2-ulosonic acid: a novel sugar from a phytopathogenic Pseudomonas lipopolysaccharide. Carbohydr Res 2002; 337:955-9. [PMID: 12007479 DOI: 10.1016/s0008-6215(02)00077-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preliminary results on the structure of a novel sugar from a lipopolysaccharide from Pseudomonas corrugata, a plant pathogenic bacterium whose several aspects of phytopathogenic mechanism are under investigation, are described. This is a 5,7-diamino-5,7,9-trideoxynon-2-ulosonic acid, isolated as an O-glycoside from the Smith degradation of the O-chain. The structure was obtained both with NMR and MS methodologies. To the best of our knowledge, this is the first example of 3-hydroxylated non-2-ulosonic acid.
Collapse
Affiliation(s)
- Maria Michela Corsaro
- Dipartimento di Chimica Organica e Biochimica, Università Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 4, I-80126, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Fogliano V, Ballio A, Gallo M, Woo S, Scala F, Lorito M. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:323-333. [PMID: 12026170 DOI: 10.1094/mpmi.2002.15.4.323] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pseudomonas syringae pv. syringae strain B359 secreted two main lipodepsipeptides (LDPs), syringomycin E (SRE) and syringopeptin 25A (SP25A), together with at least four types of cell wall-degrading enzymes (CWDEs). In antifungal bioassays, the purified toxins SRE and SP25A interacted synergistically with chitinolytic and glucanolytic enzymes purified from the same bacterial strain or from the biocontrol fungus Trichoderma atroviride strain P1. The synergism between LDPs and CWDEs occurred against all seven different fungal species tested and P. syringae itself, with a level dependent on the enzyme used to permeabilize the microbial cell wall. The antifungal activity of SP25A was much more increased by the CWDE action than was that of the smaller SRE, suggesting a stronger antifungal role for SP25A. In vivo biocontrol assays were performed by using P. syringae alone or in combination with T. atroviride, including a Trichoderma endochitinase knock-out mutant in place of the wild type and a chitinase-specific enzyme inhibitor. These experiments clearly indicate that the synergistic interaction LDPs-CWDEs is involved in the antagonistic mechanism of P. syringae, and they support the concept that a more effective disease control is given by the combined action of the two agents.
Collapse
Affiliation(s)
- Vincenzo Fogliano
- Dipartimento di Scienza degli Alimenti, Università di Napoli Federico II, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Monti SM, Gallo M, Ferracane R, Borrelli RC, Ritieni A, Greco ML, Graniti A, Fogliano V. Analysis of bacterial lipodepsipeptides by matrix-assisted laser desorption/ionisation time-of-flight and high-performance liquid chromatography with electrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:623-628. [PMID: 11312513 DOI: 10.1002/rcm.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Strains of certain plant pathogenic bacteria, in particular several pathovars of Pseudomonas syringae, are known to produce cyclic lipodepsipeptides (LDPs) endowed with peculiar structural features and noticeable biological activities. In this study, a mass spectrometry procedure is proposed for screening LDP-producing bacterial strains and for identifying and assessing individual LDPs. After matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) screening of thirteen P. syringae strains for LDP production, the extracts from culture filtrates of eight positive strains were subjected to electrospray mass spectrometry for the identification of LDPs. Five strains were found to produce two forms of syringomycins (SR-E and SR-G) and two forms of syringopeptin 25 (SP25A and SP25B); two strains produced SR-E, SR-G and a new form of SP22; one strain produced syringotoxin (ST) and syringostatin A (SS-A) in addition to SP25A and SP25B. The yield in culture of two major LPDs: SR-G (3.2-13.8 mg x L(-1)) and SP25A (41.6-231.5 mg x L(-1)) was assessed by and high-performance liquid chromatography with electrospray mass spectrometry (HPLC/ESI-MS) in both scan and single ion monitoring (SIM) modes. Results of this investigation showed that the mass spectrometry protocol developed here is a precise and reliable method for screening bacterial strains for LDP production and for assessing the amount of each metabolite under various culture conditions. This could be of practical value in view of potential applications, e.g. biocontrol of post-harvest fungal diseases.
Collapse
Affiliation(s)
- S M Monti
- Dipartimento di Scienza degli Alimenti, Università di Napoli 'Federico II', Parco Gussone, 80055 Portici, Italy
| | | | | | | | | | | | | | | |
Collapse
|