1
|
Gupta A, Soto AN, Medina SJ, Petrie KL, Meyer JR. Bacteriophage lambda overcomes a perturbation in its host-viral genetic network through mutualism and evolution of life history traits. Evolution 2020; 74:764-774. [PMID: 31891185 DOI: 10.1111/evo.13920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 11/27/2022]
Abstract
An important driver of evolution in viruses is natural selection to optimize the use of their hosts' genetic network. To learn how viruses respond to this pressure, we disrupted the genetic network of Escherichia coli to inhibit replication of its virus, bacteriophage lambda, and then observed how λ evolved to compensate. We deleted E. coli's dnaJ gene, which lambda uses to initiate DNA replication. Lambda partially restored its ability to reproduce with just two adaptive mutations associated with genes J and S. The location of the mutations was unexpected because they were not in genes that directly interact with DnaJ, rather they affected seemingly unrelated life history traits. A nonsynonymous J mutation increased lambda's adsorption rate and an S regulatory mutation delayed lysis timing. Lambda also recovered some of its reproductive potential through intracellular mutualism. This study offers two important lessons: first, viruses can rapidly adapt to disruptive changes in their host's genetic network. Second, organisms can employ mechanisms thought to operate at the population scale, such as evolution of life history traits and social interactions, in order to overcome hurdles at the molecular level. As life science research progresses and new fields become increasingly specialized, these results remind us of the importance of multiscale and interdisciplinary approaches to understand adaptation.
Collapse
Affiliation(s)
- Animesh Gupta
- Division of Physics, University of California San Diego, La Jolla, California
| | - Anechelle N Soto
- Division of Biological Science, University of California San Diego, La Jolla, California
| | - Sarah J Medina
- Division of Physics, University of California San Diego, La Jolla, California
| | - Katherine L Petrie
- Division of Physics, University of California San Diego, La Jolla, California.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Justin R Meyer
- Division of Physics, University of California San Diego, La Jolla, California
| |
Collapse
|
2
|
Sadeghian-Rizi T, Ebrahimi A, Moazzen F, Yousefian H, Jahanian-Najafabadi A. Improvement of solubility and yield of recombinant protein expression in E. coli using a two-step system. Res Pharm Sci 2019; 14:400-407. [PMID: 31798656 PMCID: PMC6827196 DOI: 10.4103/1735-5362.268200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Overexpression of recombinant proteins in Escherichia coli results in inclusion body formation, and consequently decreased production yield and increased production cost. Co-expression of chaperon systems accompanied by recombinant protein is a general method to increase the production yield. However, it has not been successful enough due to imposed intense stress to the host cells. The aim of this study was to balance the rate of protein production and the imposed cellular stresses using a two-step expression system. For this purpose, in the first step, green fluorescent protein (GFP) was expressed as a recombinant protein model under control of the T7-TetO artificial promoter-operator, accompanied by Dnak/J/GrpE chaperon system. Then, in the next step, TetR repressor was activated automatically under the control of the stress promoter ibpAB and suppressed the GFP production after accumulation of inclusion bodies. Thus in this step incorrect folded proteins and inclusion bodies are refolded causing increased yield and solubility of the recombinant protein and restarting GFP expression again. Total GFP, soluble and insoluble GFP fractions, were measured by Synergy H1 multiple reader. Results showed that expression yield and soluble/insoluble ratio of GFP have been increased 5 and 2.5 times using this system in comparison with the single step process, respectively. The efficiency of this system in increasing solubility and production yield of recombinant proteins was confirmed. The two-step system must be evaluated for expression of various proteins to further confirm its applicability in the field of recombinant protein production.
Collapse
Affiliation(s)
- Tahereh Sadeghian-Rizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Azade Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Moazzen
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hesam Yousefian
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
3
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
4
|
Oshone R, Ngom M, Chu F, Mansour S, Sy MO, Champion A, Tisa LS. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics 2017; 18:633. [PMID: 28821232 PMCID: PMC5563000 DOI: 10.1186/s12864-017-4056-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Results Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Conclusion Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4056-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rediet Oshone
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Mariama Ngom
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.,Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-Air, Dakar, Sénégal
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Samira Mansour
- Faculty of Science, Suez Canal University, Ismalia, Egypt
| | - Mame Ourèye Sy
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,UMR DIADE, Institut de Recherche pour le Développement, Montpellier, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA.
| |
Collapse
|
5
|
Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, B V, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 2014; 4:316-35. [PMID: 24505239 PMCID: PMC3915094 DOI: 10.7150/thno.7819] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/16/2013] [Indexed: 12/22/2022] Open
Abstract
In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future.
Collapse
Affiliation(s)
- Sudip Mukherjee
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Debabrata Chowdhury
- 2. Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Rajesh Kotcherlakota
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Sujata Patra
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Vinothkumar B
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Manika Pal Bhadra
- 2. Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Bojja Sreedhar
- 3. Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Chitta Ranjan Patra
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| |
Collapse
|
6
|
Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 2010; 9:64. [PMID: 20813055 PMCID: PMC2944165 DOI: 10.1186/1475-2859-9-64] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022] Open
Abstract
Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are discussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiological responses triggered by protein misfolding.
Collapse
|
7
|
Vanterpool E, Aruni AW, Roy F, Fletcher HM. regT can modulate gingipain activity and response to oxidative stress in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2010; 156:3065-3072. [PMID: 20595264 PMCID: PMC3068696 DOI: 10.1099/mic.0.038315-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recombinant VimA protein can interact with the gingipains and several other proteins that may play a role in its biogenesis in Porphyromonas gingivalis. In silico analysis of PG2096, a hypothetical protein that was shown to interact with VimA, suggests that it may have environmental stress resistance properties. To further evaluate the role(s) of PG2096, the predicted open reading frame was PCR amplified from P. gingivalis W83 and insertionally inactivated using the ermF-ermAM antibiotic-resistance cassette. One randomly chosen PG2096-defective mutant created by allelic exchange and designated FLL205 was further characterized. Under normal growth conditions at 37 °C, Arg-X and Lys-X gingipain activities in FLL205 were reduced by approximately 35 % and 21 %, respectively, compared to the wild-type strain. However, during prolonged growth at an elevated temperature of 42 °C, Arg-X activity was increased by more than 40 % in FLL205 in comparison to the wild-type strain. In addition, the PG2096-defective mutant was more resistant to oxidative stress when treated with 0.25 mM hydrogen peroxide. Taken together these results suggest that the PG2096 gene, designated regT (regulator of gingipain activity at elevated temperatures), may be involved in regulating gingipain activity at elevated temperatures and be important in oxidative stress resistance in P. gingivalis.
Collapse
Affiliation(s)
- E Vanterpool
- Department of Biological Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - A Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - F Roy
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - H M Fletcher
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
8
|
Selective expression of the soluble product fraction in Escherichia coli cultures employed in recombinant protein production processes. Appl Microbiol Biotechnol 2010; 87:2047-58. [DOI: 10.1007/s00253-010-2608-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
9
|
Nagy M, Guenther I, Akoyev V, Barnett ME, Zavodszky MI, Kedzierska-Mieszkowska S, Zolkiewski M. Synergistic cooperation between two ClpB isoforms in aggregate reactivation. J Mol Biol 2009; 396:697-707. [PMID: 19961856 DOI: 10.1016/j.jmb.2009.11.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/10/2009] [Accepted: 11/25/2009] [Indexed: 11/17/2022]
Abstract
Bacterial AAA+ ATPase ClpB cooperates with DnaK during reactivation of aggregated proteins. The ClpB-mediated disaggregation is linked to translocation of polypeptides through the channel in the oligomeric ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and ClpB80, which does not contain the substrate-interacting N-terminal domain. The biological role of the truncated isoform ClpB80 is unknown. We found that resolubilization of aggregated proteins in Escherichia coli after heat shock and reactivation of aggregated proteins in vitro and in vivo occurred at higher rates in the presence of ClpB95 with ClpB80 than with ClpB95 or ClpB80 alone. Combined amounts of ClpB95 and ClpB80 bound to aggregated substrates were similar to the amounts of either ClpB95 or ClpB80 bound to the substrates in the absence of another isoform. The ATP hydrolysis rate of ClpB95 with ClpB80, which is linked to the rate of substrate translocation, was not higher than the rates measured for the isolated ClpB95 or ClpB80. We postulate that a reaction step that takes place after substrate binding to ClpB and precedes substrate translocation is rate-limiting during aggregate reactivation, and its efficiency is enhanced in the presence of both ClpB isoforms. Moreover, we found that ClpB95 and ClpB80 form hetero-oligomers, which are similar in size to the homo-oligomers of ClpB95 or ClpB80. Thus, the mechanism of functional cooperation of the two isoforms of ClpB may be linked to their heteroassociation. Our results suggest that the functionality of other AAA+ ATPases may be also optimized by interaction and synergistic cooperation of their isoforms.
Collapse
Affiliation(s)
- Maria Nagy
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Moon HJ, Jeya M, Yu IS, Ji JH, Oh DK, Lee JK. Chaperone-aided expression of LipA and LplA followed by the increase in alpha-lipoic acid production. Appl Microbiol Biotechnol 2009; 83:329-37. [PMID: 19234698 DOI: 10.1007/s00253-009-1899-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/01/2009] [Accepted: 01/25/2009] [Indexed: 10/21/2022]
Abstract
Alpha-lipoic acid (LA), a naturally occurring cofactor reported to be present in a diverse group of microorganisms, plants, and animal tissues, has been widely and successfully used as a therapy for a variety of diseases, including diabetes and heart disease. However, to date, recombinant DNA technology has not been applied for higher LA production due mainly to difficulties in the functional expression of key enzymes involved in LA production. Here, we report a study for higher LA production with the aid of chaperone plasmids, DnaKJE and trigger factor (Tf). The lipA and lplA genes encoding lipoate synthase and lipoate protein ligase in Pseudomonas fluorescens, respectively, were cloned and transformed into Escherichia coli K12. When they were overexpressed in E. coli, both LipA and LplA were expressed as inclusion bodies leading to no increase in LA production. However, when chaperone plasmids DnaKJE and Tf were coexpressed with lipA and lplA, the resulting recombinant E. coli strains showed higher LA production than the wild-type E. coli by 32-111%, respectively.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul, 143-701, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Al Refaii A, Alix JH. Ribosome biogenesis is temperature-dependent and delayed inEscherichia colilacking the chaperones DnaK or DnaJ. Mol Microbiol 2009; 71:748-62. [DOI: 10.1111/j.1365-2958.2008.06561.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Kwiatkowska J, Matuszewska E, Kuczyńska-Wiśnik D, Laskowska E. Aggregation of Escherichia coli proteins during stationary phase depends on glucose and oxygen availability. Res Microbiol 2008; 159:651-7. [DOI: 10.1016/j.resmic.2008.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/11/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
|
13
|
García-Fruitós E, Martínez-Alonso M, Gonzàlez-Montalbán N, Valli M, Mattanovich D, Villaverde A. Divergent genetic control of protein solubility and conformational quality in Escherichia coli. J Mol Biol 2007; 374:195-205. [PMID: 17920630 DOI: 10.1016/j.jmb.2007.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/03/2007] [Accepted: 09/04/2007] [Indexed: 11/30/2022]
Abstract
In bacteria, protein overproduction results in the formation of inclusion bodies, sized protein aggregates showing amyloid-like properties such as seeding-driven formation, amyloid-tropic dye binding, intermolecular beta-sheet architecture and cytotoxicity on mammalian cells. During protein deposition, exposed hydrophobic patches force intermolecular clustering and aggregation but these aggregation determinants coexist with properly folded stretches, exhibiting native-like secondary structure. Several reports indicate that inclusion bodies formed by different enzymes or fluorescent proteins show detectable biological activity. By using an engineered green fluorescent protein as reporter we have examined how the cell quality control distributes such active but misfolded protein species between the soluble and insoluble cell fractions and how aggregation determinants act in cells deficient in quality control functions. Most of the tested genetic deficiencies in different cytosolic chaperones and proteases (affecting DnaK, GroEL, GroES, ClpB, ClpP and Lon at different extents) resulted in much less soluble but unexpectedly more fluorescent polypeptides. The enrichment of aggregates with fluorescent species results from a dramatic inhibition of ClpP and Lon-mediated, DnaK-surveyed green fluorescent protein degradation, and it does not perturb the amyloid-like architecture of inclusion bodies. Therefore, the Escherichia coli quality control system promotes protein solubility instead of conformational quality through an overcommitted proteolysis of aggregation-prone polypeptides, irrespective of their global conformational status and biological properties.
Collapse
Affiliation(s)
- Elena García-Fruitós
- Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology and CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Skorko-Glonek J, Laskowska E, Sobiecka-Szkatula A, Lipinska B. Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock. Arch Biochem Biophys 2007; 464:80-9. [PMID: 17485069 DOI: 10.1016/j.abb.2007.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
The protective action of chaperone-like activity of HtrA protease against protein aggregation was studied. High levels of proteolytically inactive HtrAS210A (active center serine replaced by alanine) suppressed the temperature-sensitive phenotype of the htrA mutants. The ability of HtrAS210A to alleviate the lethality of htrA bacteria at high temperatures correlated well with the observed decrease of cellular level of large protein aggregates in cells overproducing HtrAS210A. The in vitro experiments proved that HtrA was very efficient in inhibiting the unfolded substrate (lysozyme) aggregation over a wide range of temperatures (30-45 degrees C). HtrA was able to bind to the denatured polypeptides and as a consequence limited their ability to form large aggregates. Our results suggest that HtrA may protect the bacterial cells from deleterious effects of heat shock not only by degrading the damaged proteins but by combination of the proteolytic and chaperoning activities.
Collapse
Affiliation(s)
- Joanna Skorko-Glonek
- University of Gdansk, Department of Biochemistry, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
15
|
Gould P, Maguire M, Lund PA. Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 2006; 187:1-14. [PMID: 16944097 DOI: 10.1007/s00203-006-0164-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/25/2006] [Accepted: 08/04/2006] [Indexed: 01/16/2023]
Abstract
We investigated the regulation of the two of the three groE operons (cpn.1 and cpn.2) of the root-nodulating bacterium R. leguminosarum strain A34. Both are heat inducible, and both have a CIRCE sequence in their upstream regions, suggesting regulation by an HrcA repressor. Mutagenesis of the CIRCE sequence upstream of cpn.1 led to an increase in the levels of cpn.1 mRNA, and knock-out of the hrcA gene increased the level of Cpn60.1 protein (the GroEL homologue encoded by the cpn.1 operon). Inactivation of the hrcA gene also caused increased expression of a 29 kDa protein that was identified as RhiA, a component of a quorum-sensing system. However, neither loss of the upstream CIRCE sequence, nor loss of HrcA function, had any effect on expression from the cpn.2 promoter. Further analysis of the cpn.2 upstream region suggested regulation could be mediated by an RpoH system, and this was confirmed by deleting the rpoH gene from the chromosome, which led to a decreased level of Cpn60.2 expression. Inactivation of RpoH led to a reduction in growth rate which could be partly compensated for by inactivation of HrcA, indicating an overlap in the in vivo function of the proteins regulated by these two systems.
Collapse
Affiliation(s)
- Phillip Gould
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK,
| | | | | |
Collapse
|
16
|
Rinas U, Hoffmann F, Betiku E, Estapé D, Marten S. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol 2006; 127:244-57. [PMID: 16945443 DOI: 10.1016/j.jbiotec.2006.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/29/2006] [Accepted: 07/07/2006] [Indexed: 11/21/2022]
Abstract
During production in recombinant Escherichia coli, the human basic fibroblast growth factor (hFGF-2) partly aggregates into stable cytoplasmic inclusion bodies. These inclusion bodies additionally contain significant amounts of the heat-shock chaperone DnaK, and putative DnaK substrates such as the elongation factor Tu (ET-Tu) and the metabolic enzymes dihydrolipoamide dehydrogenase (LpdA), tryptophanase (TnaA), and d-tagatose-1,6-bisphosphate aldolase (GatY). Guanidinium hydrochloride induced disaggregation studies carried out in vitro on artificial aggregates generated through thermal aggregation of purified hFGF-2 revealed identical disaggregation profiles as hFGF-2 inclusion bodies indicating that the heterogenic composition of inclusion bodies did not influence the strength of interactions of hFGF-2 in aggregates formed in vivo as inclusion bodies compared to those generated in vitro from native and pure hFGF-2 through thermal aggregation. Compared to unfolding of native hFGF-2, higher concentrations of denaturant were required to dissolve hFGF-2 aggregates showing that more energy is required for disruption of interactions in both types of protein aggregates compared to the unfolding of the native protein. In vivo dissolution of hFGF-2 inclusion bodies was studied through coexpression of chaperones of the DnaK and GroEL family and ClpB and combinations thereof. None of the chaperone combinations was able to completely prevent the initial formation of inclusion bodies, but upon prolonged incubation mediated disaggregation of otherwise stable inclusion bodies. The GroEL system was particularly efficient in inclusion body dissolution but did not lead to a corresponding increase in soluble hFGF-2 rather was promoting the proteolysis of the recombinant growth factor. Coproduction of the disaggregating DnaK system and ClpB in conjunction with small amounts of the chaperonins GroELS was most efficient in disaggregation with concomitant formation of soluble hFGF-2. Thus, fine-balanced coproduction of chaperone combinations can play an important role in the production of soluble recombinant proteins with a high aggregation propensity not through prevention of aggregation but predominantly through their disaggregating properties.
Collapse
Affiliation(s)
- Ursula Rinas
- Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
17
|
Gur E, Katz C, Ron EZ. All three J-domain proteins of theEscherichia coliDnaK chaperone machinery are DNA binding proteins. FEBS Lett 2005; 579:1935-9. [PMID: 15792799 DOI: 10.1016/j.febslet.2005.01.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/30/2005] [Accepted: 01/31/2005] [Indexed: 11/21/2022]
Abstract
DnaJ, DjlA and CbpA are the J-domain proteins of DnaK, the major Hsp70 of Escherichia coli. CbpA was originally discovered as a DNA binding protein. Here, we show that DNA binding is a property of DnaJ and DjlA as well. Of special interest in this respect is DjlA, as this cytoplasmic protein is membrane bound and, as shown here, its affinity for DNA is extremely high. The finding that all the three J-proteins of DnaK are DNA binding proteins sheds new light on the cellular activity of these proteins.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
18
|
LeThanh H, Neubauer P, Hoffmann F. The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact 2005; 4:6. [PMID: 15707488 PMCID: PMC552319 DOI: 10.1186/1475-2859-4-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/11/2005] [Indexed: 11/23/2022] Open
Abstract
Background The permanently impaired protein folding during recombinant protein production resembles the stress encountered at extreme temperatures, under which condition the putative holding chaperones, IbpA/IbpB, play an important role. We evaluated the impact of ibpAB deletion or overexpression on stress responses and the inclusion body metabolism during production of yeast α-glucosidase in Escherichia coli. Results Deletion of ibpAB, which is innocuous under physiological conditions, impaired culture growth during α-glucosidase production. At higher temperatures, accumulation of stress proteins including disaggregation chaperones (DnaK and ClpB) and components of the RNA degradosome, enolase and PNP, was intensified. Overexpression of ibpAB, conversely, suppressed the heat-shock response under these conditions. Inclusion bodies of α-glucosidase started to disaggregate after arrest of protein synthesis in a ClpB and DnaK dependent manner, followed by degradation or reactivation. IbpA/IbpB decelerated disaggregation and degradation at higher temperatures, but did hardly influence the disaggregation kinetics at 15°C. Overexpression of ibpAB concomitant to production at 42°C increased the yield of α-glucosidase activity during reactivation. Conclusions IbpA/IbpB attenuate the accumulation of stress proteins, and – at high temperatures – save disaggregated proteins from degradation, at the cost, however, of delayed removal of aggregates. Without ibpAB, inclusion body removal is faster, but cells encounter more intense stress and growth impairment. IbpA/IbpB thus exert a major function in cell protection during stressful situations.
Collapse
Affiliation(s)
- Ha LeThanh
- Institute for Biotechnology, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Peter Neubauer
- Bioprocess Engineering Laboratory, P.O. Box 4300, Department of Process and Environmental Engineering, Biocenter Oulu, University of Oulu, FIN-90014 Oulu, Finland
| | - Frank Hoffmann
- Institute for Biotechnology, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| |
Collapse
|
19
|
Gur E, Biran D, Shechter N, Genevaux P, Georgopoulos C, Ron EZ. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation. J Bacteriol 2004; 186:7236-42. [PMID: 15489435 PMCID: PMC523209 DOI: 10.1128/jb.186.21.7236-7242.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DnaJ (Hsp40) protein of Escherichia coli serves as a cochaperone of DnaK (Hsp70), whose activity is involved in protein folding, protein targeting for degradation, and rescue of proteins from aggregates. Two other E. coli proteins, CbpA and DjlA, which exhibit homology with DnaJ, are known to interact with DnaK and to stimulate its chaperone activity. Although it has been shown that in dnaJ mutants both CbpA and DjlA are essential for growth at temperatures above 37 degrees C, their in vivo role is poorly understood. Here we show that in a dnaJ mutant both CbpA and DjlA are required for efficient protein dissaggregation at 42 degrees C.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Laskowska E, Bohdanowicz J, Kuczyńska-Wiśnik D, Matuszewska E, Kędzierska S, Taylor A. Aggregation of heat-shock-denatured, endogenous proteins and distribution of the IbpA/B and Fda marker-proteins in Escherichia coli WT and grpE280 cells. Microbiology (Reading) 2004; 150:247-259. [PMID: 14702418 DOI: 10.1099/mic.0.26470-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Submission of wild-type Escherichia coli to heat shock causes an aggregation of cellular proteins. The aggregates (S fraction) are separable from membrane fractions by ultracentrifugation in a sucrose density gradient. In contrast, no protein aggregation was detectable in an E. coli grpE280 mutant either by this technique or by electron microscopy. In search of an explanation for this observation at a molecular level, two kinds of marker proteins were used: Fda (fructose-1,6-biphosphate aldolase), the previously identified S fraction component, and IbpA/B, small heat-shock proteins abundantly associated with the S fraction proteins. Both types of marker proteins, normally never found in the outer-membrane (OM) fraction of WT cells, were present in the OM fraction from grpE cells after heat shock. This pointed to the presence of aggregates smaller than those in WT cells that cosedimented with the OM fraction. The OM fraction was enlarged in grpE cells. Although not proven directly, the presence of still smaller aggregates, not exceeding the solubility level and containing inactive Fda, was noted in the soluble CP fraction containing the cytoplasmic and periplasmic proteins. Therefore, aggregation occurred in both strains, but in a different way. The autoregulation of the heat-shock response causes a greater increase of DnaK/DnaJ and IbpAB levels in grpE cells than in WT after temperature elevation. This may explain the prevalence of the small-sized aggregates in the grpE cells. Estimation of total Fda protein before and after heat shock did not show any loss. This indicated that renaturation rather than proteolysis underlies the final disappearance of the aggregates. Though surprising at first, this is not contradictory with the participation of heat-shock proteases in removal of protein components of the S fraction as shown before, since proteins that are irreversibly denatured are probably substrates for the proteases.
Collapse
Affiliation(s)
- Ewa Laskowska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Jerzy Bohdanowicz
- Department of Genetics, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | - Ewelina Matuszewska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Sabina Kędzierska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Alina Taylor
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
21
|
Germaniuk A, Liberek K, Marszalek J. A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J Biol Chem 2002; 277:27801-8. [PMID: 12023279 DOI: 10.1074/jbc.m201756200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA synthesis is a thermosensitive process in the yeast Saccharomyces cerevisiae. We found that restoration of mtDNA synthesis following heat treatment of cells is dependent on reactivation of the mtDNA polymerase Mip1p through the action of a mitochondrial bichaperone system consisting of the Hsp70 system and the Hsp78 oligomeric protein. mtDNA synthesis was inefficiently restored after heat shock in yeast lacking either functional component of the bichaperone system. Furthermore, the activity of purified Mip1p was also thermosensitive; however, the purified components of the mitochondrial bichaperone system (Ssc1p, Mdj1p, Mge1p, and Hsp78p) were able to protect its activity under moderate heat shock conditions as well as to reactivate thermally inactivated Mip1p. Interestingly, the reactivation of endogenous Mip1p contributed more significantly to the restoration of mtDNA synthesis than did import of newly synthesized Mip1p from the cytosol. These observations suggest an important link between function of mitochondrial chaperones and the propagation of mitochondrial genomes under ever-changing environmental conditions.
Collapse
Affiliation(s)
- Aleksandra Germaniuk
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | |
Collapse
|
22
|
Kuczynska-Wisnik D, Kçdzierska S, Matuszewska E, Lund P, Taylor A, Lipinska B, Laskowska E. The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1757-1765. [PMID: 12055295 DOI: 10.1099/00221287-148-6-1757] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The roles of the Escherichia coli IbpA and IbpB chaperones in protection of heat-denatured proteins against irreversible aggregation in vivo were investigated. Overproduction of IbpA and IbpB resulted in stabilization of the denatured and reversibly aggregated proteins (the S fraction), which could be isolated from E. coli cells by sucrose gradient centrifugation. This finding is in agreement with the present model of the small heat-shock proteins' function, based mainly on in vitro studies. Deletion of the ibpAB operon resulted in almost twofold increase in protein aggregation and in inactivation of an enzyme (fructose-1,6-biphosphate aldolase) in cells incubated at 50 degrees C for 4 h, decreased efficiency of the removal of protein aggregates formed during prolonged incubation at 50 degrees C and affected cell viability at this temperature. IbpA/B proteins were not needed for removal of protein aggregates or for the enzyme protection/renaturation in cells heat shocked at 50 degrees C for 15 min. These results show that the IbpA/B proteins are required upon an extreme, long-term heat shock. Overproduction of IbpA but not IbpB caused an increase of the level of beta-lactamase precursor, which was localized in the S fraction, together with the IbpA protein, which suggests that the unfolded precursor binds to IbpA but not to IbpB. Although in the wild-type cells both E. coli small heat-shock proteins are known to localize in the S fraction, only 2% of total IbpB co-localized with the aggregated proteins in the absence of IbpA, while in the absence of IbpB, the majority of IbpA was present in the aggregates fraction.
Collapse
Affiliation(s)
| | - Sabina Kçdzierska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| | - Ewelina Matuszewska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| | - Peter Lund
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK2
| | - Alina Taylor
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland3
| | - Barbara Lipinska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| | - Ewa Laskowska
- Department of Biochemistry, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| |
Collapse
|
23
|
Kedzierska S, Matuszewska E. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100. FEMS Microbiol Lett 2001; 204:355-60. [PMID: 11731148 DOI: 10.1111/j.1574-6968.2001.tb10910.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The effect of overproduction of the Hsp70 system proteins (DnaK, DnaJ, GrpE) and/or ClpB (Hsp100) from plasmids on the process of formation and removal of heat-aggregated proteins from Escherichia coli cells (the S fraction) was investigated by sucrose density gradient centrifugation. Two plasmids were employed: pKJE7 carrying the dnaK/dnaJ/grpE genes under the control of the araB promoter and pClpB carrying the clpB gene under the control of its own promoter (sigma(32)-dependent). In the wild-type cells the S fraction after 15 min of heat shock amounted to 21% of cellular insoluble proteins (IP), and disappeared 10 min after transfer of the culture to 37 degrees C. In contrast to this, in the clpB mutant the S fraction was larger (35% IP) and its elimination was retarded, nearly 60% of the aggregated proteins remained stable 30 min after heat shock. This result points to the importance of ClpB in removal of the heat-aggregated proteins from cells. Overproduction of the Hsp70 system proteins (exceeding by about 1.5-fold that of wild-type) in wild-type and DeltaclpB cells completely prevented the formation of the S fraction during heat shock. Overproduction of ClpB (exceeding by about eight-fold that of wild-type) in the same background did not prevent protein aggregation after heat shock and only partly compensated for the effect of the mutation in the clpB gene. Monitoring the S fraction during co-production of DnaK/DnaJ/GrpE and ClpB in the DeltaclpB mutant revealed that both the levels of expression and the ratios of ClpB to Hsp70 system proteins had a significant effect on the formation and removal of protein aggregates in heat-shocked E. coli cells. In the presence of excess ClpB, an increase in the levels of DnaK, DnaJ and GrpE was required to prevent aggregate formation upon heat shock or to efficiently remove protein aggregates after heat shock. Therefore, it is supposed that a high level of ClpB under some conditions, especially at insufficient levels of Hsp70 system proteins, may support protein aggregation resulting from heat shock and may lead to stabilization of hydrophobic aggregates.
Collapse
Affiliation(s)
- S Kedzierska
- Department of Biochemistry, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| | | |
Collapse
|
24
|
Abstract
Protein folding in the cell, long thought to be a spontaneous process, in fact often requires the assistance of molecular chaperones. This is thought to be largely because of the danger of incorrect folding and aggregation of proteins, which is a particular problem in the crowded environment of the cell. Molecular chaperones are involved in numerous processes in bacterial cells, including assisting the folding of newly synthesized proteins, both during and after translation; assisting in protein secretion, preventing aggregation of proteins on heat shock, and repairing proteins that have been damaged or misfolded by stresses such as a heat shock. Within the cell, a balance has to be found between refolding of proteins and their proteolytic degradation, and molecular chaperones play a key role in this. In this review, the evidence for the existence and role of the major cytoplasmic molecular chaperones will be discussed, mainly from the physiological point of view but also in relationship to their known structure, function and mechanism of action. The two major chaperone systems in bacterial cells (as typified by Escherichia coli) are the GroE and DnaK chaperones, and the contrasting roles and mechanisms of these chaperones will be presented. The GroE chaperone machine acts by providing a protected environment in which protein folding of individual protein molecules can proceed, whereas the DnaK chaperones act by binding and protecting exposed regions on unfolded or partially folded protein chains. DnaK chaperones interact with trigger factor in protein translation and with ClpB in reactivating proteins which have become aggregated after heat shock. The nature of the other cytoplasmic chaperones in the cell will also be reviewed, including those for which a clear function has not yet been determined, and those where an in vivo chaperone function has still to be proven, such as the small heat shock proteins IbpA and IbpB. The regulation of expression of the genes of the heat shock response will also be discussed, particularly in the light of the signals that are needed to induce the response. The major signals for induction of the heat shock response are elevated temperature and the presence of unfolded protein within the cell, but these are sensed and transduced differently by different bacteria. The best characterized example is the sigma 32 subunit of RNA polymerase from E. coli, which is both more efficiently translated and also transiently stabilized following heat shock. The DnaK chaperones modulate this effect. However, a more widely conserved system appears to be typified by the HrcA repressor in Bacillus subtilis, the activity of which is modulated by the GroE chaperone machine. Other examples of regulation of molecular chaperones will also be discussed. Finally, the likely future research directions for molecular chaperone biology in the post-genomic era will be briefly evaluated.
Collapse
Affiliation(s)
- P A Lund
- School of BioSciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Kedzierska S, Jezierski G, Taylor A. DnaK/DnaJ chaperone system reactivates endogenous E. coli thermostable FBP aldolase in vivo and in vitro; the effect is enhanced by GroE heat shock proteins. Cell Stress Chaperones 2001. [PMID: 11525240 DOI: 10.1379/1466-1268(2001)006<0029:ddcsre>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thermally aggregated, endogenous proteins in Escherichia coli cells form the S fraction, which is separable by sucrose density gradient centrifugation. To date, relatively little is known about the mechanisms of elimination of the heat-aggregated proteins from E. coli cells and the composition of the S fraction. We have identified several proteins of the S fraction using 2D-gel electrophoresis and microsequencing. A thermostable II class fructose-1,6-bisphosphate aldolase (Fda protein) appeared to be one of numerous proteins of the S fraction. Fda was purified from E. coli overproducer strain and used as a model substrate for investigation of the role of Hsps in prevention and repair of thermal denaturation of proteins both in vivo and in vitro. We found that the heat inactivation of Fda was reversible and that its reactivation in vivo and in vitro required mainly the assistance of the DnaK/DnaJ chaperone system. The dnaK756 and dnaJ259 mutations had a negative effect on the reactivation of thermally inactivated Fda. Moreover, we showed that the reactivation process in vitro was enhanced when GroEL/GroES were added together with DnaK/DnaJ. GroEL/GroES alone were inefficient in the resolubilization or reactivation of the heat-aggregated Fda. It is supposed that the denaturation of the thermostable Fda in vivo results rather from a temporary and transient deficit of Hsps than from the direct heat effect.
Collapse
Affiliation(s)
- S Kedzierska
- Department of Biochemistry, University of Gdańsk, Poland.
| | | | | |
Collapse
|
26
|
Kedzierska S, Jezierski G, Taylor A. DnaK/DnaJ chaperone system reactivates endogenous E. coli thermostable FBP aldolase in vivo and in vitro; the effect is enhanced by GroE heat shock proteins. Cell Stress Chaperones 2001; 6:29-37. [PMID: 11525240 PMCID: PMC434380 DOI: 10.1379/1466-1268(2001)006<0029:ddcsre>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thermally aggregated, endogenous proteins in Escherichia coli cells form the S fraction, which is separable by sucrose density gradient centrifugation. To date, relatively little is known about the mechanisms of elimination of the heat-aggregated proteins from E. coli cells and the composition of the S fraction. We have identified several proteins of the S fraction using 2D-gel electrophoresis and microsequencing. A thermostable II class fructose-1,6-bisphosphate aldolase (Fda protein) appeared to be one of numerous proteins of the S fraction. Fda was purified from E. coli overproducer strain and used as a model substrate for investigation of the role of Hsps in prevention and repair of thermal denaturation of proteins both in vivo and in vitro. We found that the heat inactivation of Fda was reversible and that its reactivation in vivo and in vitro required mainly the assistance of the DnaK/DnaJ chaperone system. The dnaK756 and dnaJ259 mutations had a negative effect on the reactivation of thermally inactivated Fda. Moreover, we showed that the reactivation process in vitro was enhanced when GroEL/GroES were added together with DnaK/DnaJ. GroEL/GroES alone were inefficient in the resolubilization or reactivation of the heat-aggregated Fda. It is supposed that the denaturation of the thermostable Fda in vivo results rather from a temporary and transient deficit of Hsps than from the direct heat effect.
Collapse
Affiliation(s)
- S Kedzierska
- Department of Biochemistry, University of Gdańsk, Poland.
| | | | | |
Collapse
|
27
|
Macario AJ, Conway de Macario E. The archaeal molecular chaperone machine: peculiarities and paradoxes. Genetics 1999; 152:1277-83. [PMID: 10430558 PMCID: PMC1460693 DOI: 10.1093/genetics/152.4.1277] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A major finding within the field of archaea and molecular chaperones has been the demonstration that, while some species have the stress (heat-shock) gene hsp70(dnaK), others do not. This gene encodes Hsp70(DnaK), an essential molecular chaperone in bacteria and eukaryotes. Due to the physiological importance and the high degree of conservation of this protein, its absence in archaeal organisms has raised intriguing questions pertaining to the evolution of the chaperone machine as a whole and that of its components in particular, namely, Hsp70(DnaK), Hsp40(DnaJ), and GrpE. Another archaeal paradox is that the proteins coded by these genes are very similar to bacterial homologs, as if the genes had been received via lateral transfer from bacteria, whereas the upstream flanking regions have no bacterial markers, but instead have typical archaeal promoters, which are like those of eukaryotes. Furthermore, the chaperonin system in all archaea studied to the present, including those that possess a bacterial-like chaperone machine, is similar to that of the eukaryotic-cell cytosol. Thus, two chaperoning systems that are designed to interact with a compatible partner, e.g., the bacterial chaperone machine physiologically interacts with the bacterial but not with the eucaryal chaperonins, coexist in archaeal cells in spite of their apparent functional incompatibility. It is difficult to understand how these hybrid characteristics of the archaeal chaperoning system became established and work, if one bears in mind the classical ideas learned from studying bacteria and eukaryotes. No doubt, archaea are intriguing organisms that offer an opportunity to find novel molecules and mechanisms that will, most likely, enhance our understanding of the stress response and the protein folding and refolding processes in the three phylogenetic domains.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, The University at Albany (SUNY), Albany, New York 12201-0509, USA.
| | | |
Collapse
|
28
|
Kedzierska S, Staniszewska M, Potrykus J, Wegrzyn G. The effect of some antibiotic-resistance-conferring plasmids on the removal of the heat-aggregated proteins from Escherichia coli cells. FEMS Microbiol Lett 1999; 176:279-84. [PMID: 10427710 DOI: 10.1111/j.1574-6968.1999.tb13673.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We found that the presence of plasmids expressing tetracycline resistance or chloramphenicol resistance genes, but not those expressing ampicillin resistance or kanamycin resistance genes, in Escherichia coli led to the retardation of the process of removal of the heat-aggregated proteins (i.e. the S fraction) from the bacterial cells. The presence of chloramphenicol acetyltransferase in the S fraction is demonstrated. Moreover, we observed that the expression of T7 RNA polymerase gene had an influence on S fraction removal. These results suggest that high level production of some heterologous proteins which are accumulated in the cytoplasm, but not proteins exported through the cell membranes, may cause overloading of the S fraction and delay in the removal of heat-aggregated proteins from bacterial cells.
Collapse
Affiliation(s)
- S Kedzierska
- Department of Biochemistry, University of Gdańsk, Poland.
| | | | | | | |
Collapse
|