1
|
Perry AS, Piaggi P, Huang S, Nayor M, Freedman J, North KE, Below JE, Clish CB, Murthy VL, Krakoff J, Shah RV. Human metabolic chambers reveal a coordinated metabolic-physiologic response to nutrition. JCI Insight 2024; 9:e184279. [PMID: 39576013 PMCID: PMC11601946 DOI: 10.1172/jci.insight.184279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024] Open
Abstract
Human studies linking metabolism with organism-wide physiologic function have been challenged by confounding, adherence, and precisionHere, we united physiologic and molecular phenotypes of metabolism during controlled dietary intervention to understand integrated metabolic-physiologic responses to nutrition. In an inpatient study of individuals who underwent serial 24-hour metabolic chamber experiments (indirect calorimetry) and metabolite profiling, we mapped a human metabolome onto substrate oxidation rates and energy expenditure across up to 7 dietary conditions (energy balance, fasting, multiple 200% caloric excess overfeeding of varying fat, protein, and carbohydrate composition). Diets exhibiting greater fat oxidation (e.g., fasting, high-fat) were associated with changes in metabolites within pathways of mitochondrial β-oxidation, ketogenesis, adipose tissue fatty acid liberation, and/or multiple anapleurotic substrates for tricarboxylic acid cycle flux, with inverse associations for diets with greater carbohydrate availability. Changes in each of these metabolite classes were strongly related to 24-hour respiratory quotient (RQ) and substrate oxidation rates (e.g., acylcarnitines related to lower 24-hour RQ and higher 24-hour lipid oxidation), underscoring links between substrate availability, physiology, and metabolism in humans. Physiologic responses to diet determined by gold-standard human metabolic chambers are strongly coordinated with biologically consistent, interconnected metabolic pathways encoded in the metabolome.
Collapse
Affiliation(s)
- Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, Arizona, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jane Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kari E. North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| | | | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, Arizona, USA
| | - Ravi V. Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Perry AS, Piaggi P, Huang S, Nayor M, Freedman J, North K, Below J, Clish C, Murthy VL, Krakoff J, Shah RV. Human metabolic chambers reveal a coordinated metabolic-physiologic response to nutrition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305087. [PMID: 38645000 PMCID: PMC11030300 DOI: 10.1101/2024.04.08.24305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.
Collapse
|
3
|
Gómez G, Laviano HD, García-Casco J, Muñoz M, Gómez F, Sánchez-Esquiliche F, González-Bulnes A, López-Bote C, Óvilo C, Rey AI. Long-Term Effect of Maternal Antioxidant Supplementation on the Lipid Profile of the Progeny According to the Sow's Parity Number. Antioxidants (Basel) 2024; 13:379. [PMID: 38539912 PMCID: PMC10968619 DOI: 10.3390/antiox13030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 08/30/2024] Open
Abstract
Pig feeding prior to the extensive fattening phase might affect the final lipid profile and product quality. This study evaluates how maternal supplementation with vitamin E (VITE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg), or combined administration (VE + HXT) affects the piglet's plasma and tissues' fatty acid profiles and lipid stability according to the sow's parity number (PN), as well as the possible changes to the lipid profile after extensive feeding. The sows' PN affected the total fatty acid profile of plasma, muscle, and liver of piglets, with lower Δ-9 and Δ-6 desaturase indices but higher Δ-5 in those from primiparous (P) than multiparous (M) sows. Dietary VITE was more effective at decreasing C16:0 and saturated fatty acids in the muscle of piglets born from M than P sows, and modified the liver phospholipids in a different way. Sows' supplementation with HXT increased C18:2n-6 in triglycerides and polyunsaturated fatty acids (PUFA) in muscle phospholipids. In the liver, HXT supplementation also increased free-PUFA and free-n-3 fatty acids. However, lipid oxidation of piglets' tissues was not affected by the antioxidant supplementation, and it was higher in the livers of piglets born from M sows. The fatty acid profile in the muscle of pigs after extensive feeding was not affected by the PN, but it was by the sows' antioxidant supplementation, with positive effects on quality by both compounds.
Collapse
Affiliation(s)
- Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), 13700 Toledo, Spain;
| | - Hernan D. Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Juan García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Maria Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Fernando Gómez
- Sánchez Romero Carvajal, Carretera de San Juan del Puerto, s/n, 21290 Jabugo, Spain
| | | | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Clemente López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Ana I. Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| |
Collapse
|
4
|
Yao K, Feng L, Jiang WD, Liu Y, Zhang L, Mi HF, Zhou XQ, Wu P. The role of vitamin E in polyunsaturated fatty acid synthesis and alleviating endoplasmic reticulum stress in sub-adult grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:275-287. [PMID: 38371478 PMCID: PMC10869583 DOI: 10.1016/j.aninu.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 02/20/2024]
Abstract
Vitamin E (VE) is an essential lipid-soluble vitamin that improves the fish flesh quality. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of VE on growth performance and flesh quality in sub-adult grass carp (Ctenopharyngodon idella). A total of 450 fish (713.53 ± 1.50 g) were randomly divided into six treatment groups (three replicates per treatment) and fed for nine weeks with different experimental diets (dietary lipid 47.8 g/kg) that contained different levels of VE (5.44, 52.07, 96.85, 141.71, 185.66, and 230.12 mg/kg diet, supplemented as dl-α-tocopherol acetate). Notably, the treatment groups that were fed with dietary VE ranging from 52.07 to 230.12 mg/kg diet showed improvement in the percent weight gain, special growth rate, and feed efficiency of grass carp. Moreover, the treatment groups supplemented with dietary VE level of 141.71, 185.66, and 230.12 mg/kg diet showed enhancement in crude protein, lipid, and α-tocopherol contents in the muscle, and the dietary levels of VE ranging from 52.07 to 141.71 mg/kg diet improved muscle pH24h and shear force but reduced muscle cooking loss in grass carp. Furthermore, appropriate levels of VE (52.07 to 96.85 mg/kg diet) increased the muscle polyunsaturated fatty acid content in grass carp. Dietary VE also increased the mRNA levels of fatty acid synthesis-related genes, including fas, scd-1, fad, elovl, srebp1, pparγ, and lxrα, and up-regulated the expression of SREBP-1 protein. However, dietary VE decreased the expression of fatty acid decomposition-related genes, including hsl, cpt1, acox1, and pparα, and endoplasmic reticulum stress-related genes, including perk, ire1, atf6, eif2α, atf4, xbp1, chop, and grp78, and down-regulated the expression of p-PERK, p-IRE1, ATF6, and GRP78 proteins. In conclusion, dietary VE increased muscle fatty acid synthesis, which may be partly associated with the alleviation of endoplasmic reticulum stress, and ultimately improves fish flesh quality. Moreover, the VE requirements for sub-adult grass carp (713.53 to 1590.40 g) were estimated to be 124.9 and 122.73 mg/kg diet based on percentage weight gain and muscle shear force, respectively.
Collapse
Affiliation(s)
- Ke Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, 610041, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, 610041, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
5
|
Sakaya A, Durantini AM, Gidi Y, Šverko T, Wieczny V, McCain J, Cosa G. Fluorescence-Amplified Detection of Redox Turnovers in Supported Lipid Bilayers Illuminates Redox Processes of α-Tocopherol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13872-13882. [PMID: 35266688 DOI: 10.1021/acsami.1c23931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.
Collapse
Affiliation(s)
- Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Andrés M Durantini
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Tara Šverko
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Vincent Wieczny
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| |
Collapse
|
6
|
Fortier M, Guay F, Saucier L. Effect of oregano oil and cranberry pulp supplementation in finishing pigs on the physicochemical quality of fresh loin during storage. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2020-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oregano oil and cranberry pulp supplements were added to the diets of finishing pigs to determine their effects on the meat quality of fresh loins during storage. Two and three levels of oregano oil (250 and 500 mg·kg−1) and cranberry pulp (5, 10, and 20 g·kg−1) were tested, according to a factorial experimental design. The loin meat was vacuum packed and analyzed at 0 (after the 24 h chilling period post slaughter), 23, 45, and 60 d of storage. Samples were repackaged under aerobic conditions after 0 or 23 d and analyzed after 4, 8, and 12 d. Oregano and cranberry supplements did not affect lipid oxidation (microgram of malondialdehyde equivalent per kilogram of meat) during anaerobic or aerobic storage. On day 0, the fatty acid profile of the loin samples demonstrated that the addition of cranberries at a dose of 10 g·kg−1 was associated with a lower percentage of saturated fatty acids (P = 0.04; 42.97% vs. 40.99%) and a trend for a higher percentage of monounsaturated fatty acids (P = 0.06; 47.26% vs. 46.09%). Considering the result obtained, feeding pigs with oregano and cranberry supplements had a limited effect on meat quality parameters measured during storage.
Collapse
Affiliation(s)
- M.P. Fortier
- Department of Animal Science, Université Laval, Québec, QC G1V0A6, Canada
- Institute of Nutraceutical and Functional Foods, Université Laval, Québec, QC G1V0A6, Canada
| | - F. Guay
- Department of Animal Science, Université Laval, Québec, QC G1V0A6, Canada
| | - L. Saucier
- Department of Animal Science, Université Laval, Québec, QC G1V0A6, Canada
- Institute of Nutraceutical and Functional Foods, Université Laval, Québec, QC G1V0A6, Canada
| |
Collapse
|
7
|
Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients 2021; 13:nu13020508. [PMID: 33557154 PMCID: PMC7913904 DOI: 10.3390/nu13020508] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Total parenteral nutrition (TPN) is a life-saving intervention for infants that are unable to feed by mouth. Infants that remain on TPN for extended periods of time are at risk for the development of liver injury in the form of parenteral nutrition associated cholestasis (PNAC). Current research suggests the lipid component of TPN is a factor in the development of PNAC. Most notably, the fatty acid composition, vitamin E concentration, and presence of phytosterols are believed key mediators of lipid emulsion driven PNAC development. New emulsions comprised of fish oil and medium chain triglycerides show promise for reducing the incidence of PNAC in infants. In this review we will cover the current clinical studies on the benefit of fish oil and medium chain triglyceride containing lipid emulsions on the development of PNAC, the current constituents of lipid emulsions that may modulate the prevalence of PNAC, and potential new supplements to TPN to further reduce the incidence of PNAC.
Collapse
|
8
|
Wallert M, Kluge S, Schubert M, Koeberle A, Werz O, Birringer M, Lorkowski S. Diversity of Chromanol and Chromenol Structures and Functions: An Emerging Class of Anti-Inflammatory and Anti-Carcinogenic Agents. Front Pharmacol 2020; 11:362. [PMID: 32372948 PMCID: PMC7187200 DOI: 10.3389/fphar.2020.00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Natural chromanols and chromenols comprise a family of molecules with enormous structural diversity and biological activities of pharmacological interest. A recently published systematic review described more than 230 structures that are derived from a chromanol ortpd chromenol core. For many of these compounds structure-activity relationships have been described with mostly anti-inflammatory as well as anti-carcinogenic activities. To extend the knowledge on the biological activity and the therapeutic potential of these promising class of natural compounds, we here present a report on selected chromanols and chromenols based on the availability of data on signaling pathways involved in inflammation, apoptosis, cell proliferation, and carcinogenesis. The chromanol and chromenol derivatives seem to bind or to interfere with several molecular targets and pathways, including 5-lipoxygenase, nuclear receptors, and the nuclear-factor "kappa-light-chain-enhancer" of activated B-cells (NFκB) pathway. Interestingly, available data suggest that the chromanols and chromenols are promiscuitively acting molecules that inhibit enzyme activities, bind to cellular receptors, and modulate mitochondrial function as well as gene expression. It is also noteworthy that the molecular modes of actions by which the chromanols and chromenols exert their effects strongly depend on the concentrations of the compounds. Thereby, low- and high-affinity molecular targets can be classified. This review summarizes the available knowledge on the biological activity of selected chromanols and chromenols which may represent interesting lead structures for the development of therapeutic anti-inflammatory and chemopreventive approaches.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
- Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
9
|
Strobbe S, De Lepeleire J, Van Der Straeten D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1862. [PMID: 30619424 PMCID: PMC6305313 DOI: 10.3389/fpls.2018.01862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 05/11/2023]
Abstract
Humans are highly dependent on plants to reach their dietary requirements, as plant products contribute both to energy and essential nutrients. For many decades, plant breeders have been able to gradually increase yields of several staple crops, thereby alleviating nutritional needs with varying degrees of success. However, many staple crops such as rice, wheat and corn, although delivering sufficient calories, fail to satisfy micronutrient demands, causing the so called 'hidden hunger.' Biofortification, the process of augmenting nutritional quality of food through the use of agricultural methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly due to vitamin and mineral deficiencies. Several technical advances have led to recent breakthroughs. Nutritional genomics has come to fruition based on marker-assisted breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL) in the germplasm of interest. As a complement to these breeding techniques, metabolic engineering approaches, relying on a continuously growing fundamental knowledge of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding. Alteration of micronutrient levels does also require fundamental knowledge about their role and influence on plant growth and development. This review focuses on our knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin E group (tocochromanols). We begin by providing an overview of the functions of these vitamins in planta, followed by highlighting some of the achievements in the nutritional enhancement of food crops via conventional breeding and genetic modification, concluding with an evaluation of the need for such biofortification interventions. The review further elaborates on the vast potential of creating nutritionally enhanced crops through multi-pathway engineering and the synergistic potential of conventional breeding in combination with genetic engineering, including the impact of novel genome editing technologies.
Collapse
|
10
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
11
|
Schäfers S, Meyer U, von Soosten D, Hüther L, Drong C, Eder K, Most E, Tröscher A, Pelletier W, Zeyner A, Dänicke S. Influence of conjugated linoleic acids and vitamin E on milk fatty acid composition and concentrations of vitamin A and α-tocopherol in blood and milk of dairy cows. J Anim Physiol Anim Nutr (Berl) 2017; 102:e431-e441. [PMID: 28815782 DOI: 10.1111/jpn.12762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/14/2017] [Indexed: 11/28/2022]
Abstract
The objective of this trial was to investigate the influences of conjugated linoleic acid (CLA) and vitamin E (Vit. E) and their interactions on fatty acid composition and vitamins in milk (α-tocopherol, retinol and β-carotene) as well as on α-tocopherol in blood of pluriparous cows from week 6 ante partum until week 10 post-partum (p.p.). We assigned 59 pluriparous German Holstein cows to four treatment groups with the treatment factors CLA and Vit. E at two levels in a 2 × 2 factorial design. Milk fatty acid composition and milk vitamins were analysed on lactation days 7 and 28. α-tocopherol in blood serum was analysed on days -42, -7, 1, 7, 14, 28 and 70 relative to parturition. Milk concentration of α-tocopherol was influenced by Vit. E (p < .001) and CLA (p = .034). Percentage of cis-9, trans-11 CLA in total milk fat was influenced by treatment with CLA (p < .001), while for percentage of trans-10, cis-12 CLA an interaction between treatment and day (p = .019), driven by an increase in both CLA groups from day 7 to day 28, was found. Serum ratios of α-tocopherol to cholesterol were influenced by Vit. E (p < .001). Results suggest that treatment with CLA during late pregnancy and early lactation is suitable to enhance the proportion of trans-10, cis-12 CLA in milk and thereby influencing nutritional properties. As treatment with Vit. E did not have an impact on milk fatty acid composition, it might be possible to increase the antioxidative capacity of the dairy cow without affecting milk properties. Consequently, combined treatment with CLA and Vit. E might elicit synergistic effects on the cow and milk quality by increasing the proportion of CLA in milk fat as well as the excretion of Vit. E and the Vit. E levels in serum.
Collapse
Affiliation(s)
- S Schäfers
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - U Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - L Hüther
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - C Drong
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - K Eder
- Department of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Gießen, Germany
| | - E Most
- Department of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Gießen, Germany
| | | | | | - A Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - S Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| |
Collapse
|
12
|
Taşdelen EÖ, Ceylan N. Effects of Dietary Inclusion of Oil Sources With or Without Vitamin E on Body Composition and Meat Oxidation Level in Broilers*. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Akbari Moghaddam Kakhki R, Bakhshalinejad R, Shafiee M. Effect of dietary zinc and α-tocopheryl acetate on broiler performance, immune responses, antioxidant enzyme activities, minerals and vitamin concentration in blood and tissues of broilers. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Liu S, Masters D, Ferguson M, Thompson A. Vitamin E status and reproduction in sheep: potential implications for Australian sheep production. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vitamin E concentrations in dried pastures, stubble and most grains are below the recommended requirement of 10–25 mg/kg dry matter (DM). Sheep grazing in an environment when dry pastures and cereal crop stubbles are their primary source of nutrients for a few months have a high risk of developing vitamin E deficiency. If the low vitamin E status coincides with late gestation, the neonate is likely to have a deficiency of vitamin E. Some of the consequences of this are well known, with nutritional myopathy (with high mortality) a risk in young growing sheep unless vitamin E supplements are provided. Vitamin E plays an important role in the management of oxidative stress. Sperm are subject to oxidative damage due to high metabolic rate and high concentration of polyunsaturated fatty acids in their membranes. Oxidative stress may also compromise follicular development and ovarian activity. Vitamin E is also involved with improvement in immune response. For these reasons, vitamin E status is important for reproductive efficiency in both males and females and in the survival of lambs and weaners. In addition, vitamin E deficiency is potentially exacerbated by a lack of other nutrients involved in the management of oxidative stress and immune function, such as selenium (Se) and sulfur amino acids. A Se concentration of 0.1 mg/kg DM in feedstuffs is required to maintain immune competency in sheep. In considering possible consequences for reproduction, further investigation is justified into: (i) effects of low vitamin E, in combination with low levels of other natural antioxidants, on the quality and quantity of sperm produced before and during mating; (ii) follicle development, fertilisation and embryonic mortality in Se-supplemented ewes; (iii) assessment of supplementing formulated antioxidants to rams and ewes during the mating season; (iv) managing oxidative stress in the newborn – consequences of large doses of vitamin E to ewes before parturition to boost lamb reserves; (v) potential benefits to lamb survival through boosting maternal innate immunity; (vi) choices for boosting antioxidant and immune function in ewes and lambs through ‘immune pack’ nutrient options that may target nutrients lacking in dry grass pastures; (vii) the potential role of heat stress in modifying the requirements for, and responses to, vitamin E in extensive grazing systems.
Collapse
|
15
|
Zingg JM, Meydani M, Azzi A. alpha-Tocopheryl phosphate--an active lipid mediator? Mol Nutr Food Res 2010; 54:679-92. [PMID: 20169583 DOI: 10.1002/mnfr.200900404] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vitamin E (alpha-tocopherol, alphaT) derivative, alpha-tocopheryl phosphate (alphaTP), is detectable in small amounts in plasma, tissues, and cultured cells. Studies done in vitro and in vivo suggest that alphaT can become phosphorylated and alphaTP dephosphorylated, suggesting the existence of enzyme(s) with alphaT kinase or alphaTP phosphatase activity, respectively. As a supplement in animal studies, alphaTP can reach plasma concentrations similar to alphaT and only a part is dephosphorylated; thus, alphaTP may act both as pro-vitamin E, but also as phosphorylated form of vitamin E with possibly novel regulatory activities. Many effects of alphaTP have been described: in the test tube alphaTP modulates the activity of several enzymes; in cell culture alphaTP affects proliferation, apoptosis, signal transduction, and gene expression; in animal studies alphaTP prevents atherosclerosis, ischemia/reperfusion injury, and induces hippocampal long-term potentiation. At the molecular level, alphaTP may act as a cofactor for enzymes, as an active lipid mediator similar to other phosphorylated lipids, or indirectly by altering membrane characteristics such as lipid rafts, fluidity, and curvature. In this review, the molecular and cellular activities of alphaTP are examined and the possible functions of alphaTP as a natural compound, cofactor and active lipid mediator involved in signal transduction and gene expression discussed.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Jean-François F Dufour
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1587-605. [PMID: 20599680 DOI: 10.1016/j.bbabio.2010.06.007] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/23/2022]
Abstract
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K(1), a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
18
|
Galli F, Iuliano L. Do statins cause myopathy by lowering vitamin E levels? Med Hypotheses 2009; 74:707-9. [PMID: 19896775 DOI: 10.1016/j.mehy.2009.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/24/2009] [Accepted: 10/08/2009] [Indexed: 11/16/2022]
Abstract
Statins and other lipid lowering drugs have been repeatedly described to decrease blood levels of minor fat soluble components such as vitamin E (as alpha-tocopherol). Clinical consequences of this secondary state of deficiency have not been described so far, but recent biochemical and molecular evidence on homeostatic and molecular responses to vitamin E deficiency in skeletal muscle cells may suggest the hypothesis presented in this paper of a role as risk factor in the development of statin-associated myopathy. This hypothesis that needs to be further investigated, could suggest the need for precautionary measures during lipid lowering therapy, which include timely diagnosis and active prevention of vitamin E deficiency.
Collapse
Affiliation(s)
- Francesco Galli
- Faculty of Pharmacy, Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | | |
Collapse
|
19
|
Tres A, Bou R, Codony R, Guardiola F. Influence of different dietary doses of n-3- or n-6-rich vegetable fats and alpha-tocopheryl acetate supplementation on raw and cooked rabbit meat composition and oxidative stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7243-7253. [PMID: 18627165 DOI: 10.1021/jf800736w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study evaluates the effects of replacing beef tallow added to rabbit feeds (3% w/w) by different doses (0%, 1.5% and 3% w/w) of n-6- or n-3-rich vegetable fat sources (sunflower and linseed oil, respectively) and alpha-tocopheryl acetate supplementation (0 and 100 mg/kg) on the fatty acid composition, alpha-tocopherol content, and oxidation levels [assessed by analyzing thiobarbituric acid (TBA) and lipid hydroperoxide values] in rabbit meat. We also measured these parameters after cooking and refrigerated storage of cooked rabbit meat. Both dietary alpha-tocopheryl acetate supplementation and the dose and source of fat added to feeds influenced meat fatty acid composition, modifying the n-6/n-3 ratio, which was more nutritionally favorable when linseed oil was used. Furthermore, the addition of linseed oil and the supplementation with alpha-tocopheryl acetate enhanced long-chain PUFA biosynthesis. However, the addition of 3% linseed oil increased meat oxidation, and although it was reduced by dietary supplementation with alpha-tocopheryl acetate in raw meat, this reduction was not as effective after cooking. Therefore, dietary supplementation with 1.5% linseed oil plus 1.5% beef tallow and with alpha-tocopheryl acetate would be recommended to improve the nutritional quality of rabbit meat.
Collapse
Affiliation(s)
- Alba Tres
- Nutrition and Food Science Department-XaRTA-INSA, Faculty of Pharmacy, University of Barcelona, Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Zingg JM. Vitamin E: An overview of major research directions. Mol Aspects Med 2007; 28:400-22. [PMID: 17624418 DOI: 10.1016/j.mam.2007.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/23/2007] [Indexed: 02/07/2023]
Abstract
During the last 90 years since the discovery of vitamin E, research has focused on different properties of this molecule, the focus often depending on the specific techniques and scientific knowledge present at each time. Originally discovered as a dietary factor essential for reproduction in rats, vitamin E has revealed in the meantime many more important molecular properties, such as the scavenging of reactive oxygen and nitrogen species with consequent prevention of oxidative damage associated with many diseases, or the modulation of signal transduction and gene expression in antioxidant and non-antioxidant manners. Research over the last 30 years has also resolved the biosynthesis and occurrence of vitamin E in plants, the proteins involved in the cellular uptake, tissue distribution and metabolism, and defined a congenital recessive neurological disease, ataxia with vitamin E deficiency (AVED), characterized by impaired enrichment of alpha-tocopherol in plasma as a result of mutations in the liver alpha-tocopherol transfer gene. This review is giving a brief introduction about vitamin E by following the major research directions since its discovery with a historical perspective.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
21
|
CRISOSTOMO ANAG, MORENO RAPHAELB, NAVARATNAM SUPPIAH, WILKINSON JAMESA, BISBY ROGERH. Generation of superoxide and singlet oxygen from alpha-tocopherolquinone and analogues. Free Radic Res 2007; 41:730-7. [PMID: 17516246 PMCID: PMC2080821 DOI: 10.1080/10715760701324075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three potential routes to generation of reactive oxygen species (ROS) from alpha-tocopherolquinone (alpha-TQ) have been identified. The quinone of the water-soluble vitamin E analogue Trolox C (Trol-Q) is reduced by hydrated electron and isopropanol alpha-hydroxyalkyl radical, and the resulting semiquinone reacts with molecular oxygen to form superoxide with a second order rate constant of 1.3 x 10(8) dm(3)/mol/s, illustrating the potential for redox cycling. Illumination (UV-A, 355 nm) of the quinone of 2,2,5,7,8-pentamethyl-6-hydroxychromanol (PMHC-Q) leads to a reactive short-lived (ca. 10(- 6) s) triplet state, able to oxidise tryptophan with a second order rate constant greater than 10(9) dm(3)/mol/s. The triplet states of these quinones sensitize singlet oxygen formation with quantum yields of about 0.8. Such potentially damaging reactions of alpha-TQ may in part account for the recent findings that high levels of dietary vitamin E supplementation lack any beneficial effect and may lead to slightly enhanced levels of overall mortality.
Collapse
Affiliation(s)
- ANA G CRISOSTOMO
- Biomedical Sciences Research Institute, University of Salford, Salford M5 4WT, UK
| | - RAPHAEL B MORENO
- Biomedical Sciences Research Institute, University of Salford, Salford M5 4WT, UK
| | - SUPPIAH NAVARATNAM
- Biomedical Sciences Research Institute, University of Salford, Salford M5 4WT, UK
- FRRF, CCLRC Daresbury Laboratory, Warrington WA4 4AD, UK
| | - JAMES A WILKINSON
- Biomedical Sciences Research Institute, University of Salford, Salford M5 4WT, UK
| | - ROGER H BISBY
- Biomedical Sciences Research Institute, University of Salford, Salford M5 4WT, UK
- Correspondence: Roger Bisby, Biomedical Sciences Research Institute, Peel Building, University of Salford, Salford M5 4WT, UK. Fax 0161 295 5015. Email
| |
Collapse
|
22
|
Abstract
A combination of electrochemical and spectroscopic experiments have proven that the alpha-, beta-, gamma-, and delta-forms (vitamers) of the tocopherols (vitamin E) undergo a series of chemically reversible proton- and electron-transfer steps in dry organic solvents, such as acetonitrile or dichloromethane, to form cationic compounds: the cation radical, the dication, and the phenoxonium cation. The cationic compounds are extremely unusual in their high persistence compared with what is presently known about the oxidative stability of other phenols, particularly the phenoxonium cation of alpha-tocopherol, which is stable for at least several hours in nonaqueous solvents and is formed quantitatively by oxidation of the starting material at an applied potential of approximately +0.5 V vs ferrocene0/+ or with 2 mol equiv of NO+.
Collapse
Affiliation(s)
- Richard D Webster
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
23
|
Marra CA, Nella J, Manti D, de Alaniz MJT. Lipid Metabolism in Rats is Modified by Nitric Oxide Availability Through a Ca++-Dependent Mechanism. Lipids 2007; 42:211-28. [PMID: 17393227 DOI: 10.1007/s11745-006-3004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/23/2006] [Indexed: 10/23/2022]
Abstract
We studied lipid metabolism and the antioxidant defense system in plasma and liver of rats fed diets supplemented with L(omega)-nitro-L-arginine methyl ester (L-NAME), isosorbide dinitrate (DIS), L-arginine (Arg), or the associations of these drugs. Liver hydroperoxide and thiobarbituric-acid-reactive substance (TBARS) levels were decreased by Arg and increased by L-NAME or DIS treatments. Oxidized glutathione and conjugated dienes were increased by DIS. Nitrate + nitrite levels and serum calcium ([Ca(++)]) were incremented by Arg or DIS and reduced by L-NAME. Superoxide dismutase and catalase activities decreased under Arg treatment, while L-NAME or DIS caused stimulation. Liver high-density lipoprotein (HDL) cholesterol was increased by DIS or NAME (alone or associated with Arg). Free fatty acids and neutral and polar lipids were increased by Arg, L: -NAME, and DIS. However, predominating phospholipid synthesis increased the neutral/polar ratio. Decreased levels of nitric oxide (NO) (low [Ca(++)]) was directly associated with increased fatty acid synthetase, decreased phospholipase A(2), carnitine-palmitoyl transferase, and fatty acid desaturase activities. Raised NO (high [Ca(++)]) inversely correlated with increased phospholipase-A(2) and acyl-coenzyme A (CoA) synthetase and decreased fatty acid synthetase and beta-oxidation rate. Arg or DIS produced changes that were partially reverted by association with L-NAME. Based on these observations, prolonged therapeutical approaches using drugs that modify NO availability should be carefully considered.
Collapse
Affiliation(s)
- Carlos A Marra
- INIBIOLP Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Cátedra de Bioquímica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | |
Collapse
|
24
|
Gregor W, Staniek K, Nohl H, Gille L. Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer. Biochem Pharmacol 2006; 71:1589-601. [PMID: 16569397 DOI: 10.1016/j.bcp.2006.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Alpha-tocopherol (Toc) is an efficient lipophilic antioxidant present in all mammalian lipid membranes. This chromanol is metabolized by two different pathways: excessive dietary Toc is degraded in the liver by side chain oxidation, and Toc acting as antioxidant is partially degraded to alpha-tocopheryl quinone (TQ). The latter process and the similarity between TQ and ubiquinone (UQ) prompted us to study the distribution of TQ in rat liver mitochondrial membranes and the interference of TQ with the activity of mitochondrial and microsomal redox enzymes interacting with UQ. In view of the contradictory literature results regarding Toc, we determined the distribution of Toc, TQ, and UQ over inner and outer membranes of rat liver mitochondria. Irrespective of the preparation method, the TQ/Toc ratio tends to be higher in mitochondrial inner membranes than in outer membranes suggesting TQ formation by respiratory oxidative stress in vivo. The comparison of the catalytic activities using short-chain homologues of TQ and UQ showed decreasing selectivity in the order complex II (TQ activity not detected)>Q(o) site of complex III>Q(i) site of complex III>complex I approximately cytochrome b(5) reductase>cytochrome P-450 reductase (comparable reactivity of UQ and TQ). TQ binding to some enzymes is comparable to UQ despite low activities. These data show that TQ arising from excessive oxidative degradation of Toc can potentially interfere with mitochondrial electron transfer. On the other hand, both microsomal and mitochondrial enzymes contribute to the reduction of TQ to tocopheryl hydroquinone, which has been suggested to play an antioxidative role itself.
Collapse
Affiliation(s)
- Wolfgang Gregor
- Research Institute for Biochemical Pharmacology and Molecular Toxicology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Kleopa KA, Kyriacou K, Zamba-Papanicolaou E, Kyriakides T. Reversible inflammatory and vacuolar myopathy with vitamin E deficiency in celiac disease. Muscle Nerve 2005; 31:260-5. [PMID: 15389648 DOI: 10.1002/mus.20144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a patient with late-onset celiac disease and neurological manifestations including myopathy, polyneuropathy, and ataxia. Laboratory investigations showed anti-gliadin antibodies and severe vitamin E deficiency. Muscle biopsy revealed inflammatory infiltrates and rimmed vacuoles, similar to those found in inclusion-body myositis. A gluten-free diet and vitamin E supplementation reversed both the clinical neurological manifestations and the abnormalities in the muscle biopsy. Anti-gliadin antibodies were no longer present. This case illustrates the spectrum of neurological complications of celiac disease and documents the occurrence of reversible pathology resembling inclusion-body myopathy in the muscle.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Clinical Neurosciences, Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia, Cyprus
| | | | | | | |
Collapse
|
26
|
Gille L, Gregor W, Staniek K, Nohl H. Redox-interaction of α-tocopheryl quinone with isolated mitochondrial cytochrome bc1 complex. Biochem Pharmacol 2004; 68:373-81. [PMID: 15194009 DOI: 10.1016/j.bcp.2004.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 03/31/2004] [Indexed: 01/12/2023]
Abstract
The homogenous distribution of vitamin E in lipid membranes is a prerequisite for its universal function as lipophilic antioxidant. Its antioxidant activity leads to the irreversible formation of alpha-tocopheryl quinone (TQ) in those membranes. Very little is known about the interference of TQ with redox-cycling enzymes normally interacting with ubiquinone (UQ), which exerts important bioenergetic functions in the mitochondrial respiratory chain. One of the most complex redox reactions of the respiratory chain is the interaction of reduced UQ (UQH(2)) with the cytochrome bc(1) complex (ubiquinol:cytochrome c reductase, EC 1.10.2.2). The aim of this study was to elucidate the influence of TQ on the electron transfer from UQH(2) to cytochrome c via the isolated mitochondrial cytochrome bc(1) complex. Although TQ is present in substoichiometric amounts with respect to UQ in mitochondria and in our experiments with isolated bc(1) complex, we observed a decrease of the total electron transfer rate via the bc(1) complex with increasing amounts of TQ. Both reduced TQ (TQH(2)) and UQH(2) are able to reduce b-cytochromes in the bc(1) complex, however, they act in a completely different way. While reduction of b-cytochromes by UQH(2) can occur both via the Q(o) and the Q(i) pocket of the cytochrome bc(1) complex, TQH(2) can preferably reduce b-cytochromes via the Q(i) pocket. These differences are also reflected by the extremely low turnover numbers of the bc(1) activity for TQ/TQH(2) compared to UQ/UQH(2) suggesting that TQ/TQH(2) acts as a weak competitive inhibitor for binding sites of UQ/UQH(2). In contrast, the oxidation properties of TQ and UQ are similar. Furthermore, oxidized TQ was observed to decrease the O(2)(*)(-) release rate of UQH(2)-consuming cytochrome bc(1) complex. These findings suggest that the irreversible oxidation of vitamin E to TQ in mitochondrial membranes causes a downregulation of respiratory activities as well as a lower O(2)(*)(-) formation rate by the cytochrome bc(1) complex.
Collapse
Affiliation(s)
- Lars Gille
- Research Institute for Pharmacology and Toxicology of Oxygen Radicals, University of Veterinary Medicine Vienna, Veterinärpl. 1, A-1210 Vienna, Austria.
| | | | | | | |
Collapse
|
27
|
Cortinas L, Villaverde C, Galobart J, Baucells MD, Codony R, Barroeta AC. Fatty Acid Content in Chicken Thigh and Breast as Affected by Dietary Polyunsaturation Level. Poult Sci 2004; 83:1155-64. [PMID: 15285507 DOI: 10.1093/ps/83.7.1155] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One hundred ninety-two female broiler chickens were randomly distributed into 16 experimental treatments as a result of the combination of 4 levels of dietary polyunsaturated fatty acids (PUFA) (15, 34, 45, and 61 g/kg) and 4 levels of supplementation with alphatocopheryl acetate (alpha-TA) (0, 100, 200, and 400 mg/kg), to determine the modification of the amount and type of fatty acids (FA) deposited in raw and cooked chicken tissues. At 44 d, quantified FA of thighs and breasts were not affected by dietary supplementation with alpha-TA. Total FA content of breast was less than 15% of the total FA content of thigh. However, increasing the PUFA content of the diet by 46 g, from 15 to 61 g/kg, decreased total FA of thigh 17%, but did not affect FA content in breast meat. Monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) content of thigh (y) decreased linearly as the inclusion of dietary PUFA (x) increased (MUFA: y = 89.34 - 0.92x, R2 = 0.70; SFA: y = 53.81 - 0.43x, R2 = 0.57), whereas the relationship between PUFA content of feed (x) and thighs (y) was exponential (y = 92.03 92.03e(-00155x), R2 = 0.75). A similar response was observed in breast, with less variation and more incorporation of PUFA than thigh. Cooking of thigh meat led to a reduction in total FA content that affected SFA, MUFA, and PUFA in a similar proportion.
Collapse
Affiliation(s)
- L Cortinas
- Universitat Autonoma de Barcelona, Department of Animal and Food Science, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P, Hamdheydari L, Mou S, Pye QN, Stoddard MF, Wallis G, Williamson KS, West M, Wechter WJ, Floyd RA. New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 2004; 36:1-15. [PMID: 14732286 DOI: 10.1016/j.freeradbiomed.2003.10.009] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/16/2003] [Accepted: 10/17/2003] [Indexed: 01/20/2023]
Abstract
Vitamin E (alpha-tocopherol or alphaT) has long been recognized as a classic free radical scavenging antioxidant whose deficiency impairs mammalian fertility. In actuality, alpha-tocopherol is one member of a class of phytochemicals that are distinguished by varying methylation of a chroman head group. Early studies conducted between 1922 and 1950 indicated that alpha-tocopherol was specific among the tocopherols in allowing fertility of laboratory animals. The unique vitamin action of alphaT, combined with its prevalence in the human body and the similar efficiency of tocopherols as chain-breaking antioxidants, led biologists to almost completely discount the "minor" tocopherols as topics for basic and clinical research. Recent discoveries have forced a serious reconsideration of this conventional wisdom. New and unexpected biological activities have been reported for the desmethyl tocopherols, such as gamma-tocopherol, and for specific tocopherol metabolites, most notably the carboxyethyl-hydroxychroman (CEHC) products. The activities of these other tocopherols do not map directly to their chemical antioxidant behavior but rather reflect anti-inflammatory, antineoplastic, and natriuretic functions possibly mediated through specific binding interactions. Moreover, a nascent body of epidemiological data suggests that gamma-tocopherol is a better negative risk factor for certain types of cancer and myocardial infarction than is a alpha-tocopherol. The potential public health implications are immense, given the extreme popularity of alphaT supplementation which can unintentionally deplete the body of gamma-tocopherol. These findings may or may not signal a major paradigm shift in free radical biology and medicine. The data argue for thorough experimental and epidemiological reappraisal of desmethyl tocopherols, especially within the contexts of cardiovascular disease and cancer biology.
Collapse
Affiliation(s)
- Kenneth Hensley
- Free Radical Biology and Aging Research Program, Oklahoma Medical Reserach Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Infante JP, Tschanz CL, Shaw N, Michaud AL, Lawrence P, Brenna JT. Straight-chain acyl-CoA oxidase knockout mouse accumulates extremely long chain fatty acids from alpha-linolenic acid: evidence for runaway carousel-type enzyme kinetics in peroxisomal beta-oxidation diseases. Mol Genet Metab 2002; 75:108-19. [PMID: 11855929 DOI: 10.1006/mgme.2001.3279] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extremely long chain polyunsaturated fatty acids (ELCPs) with >24 carbons and four or more double bonds are normally found in excitatory tissues but have no known function, and are greatly increased in brain and other tissues of humans with peroxisomal disorders. Straight-chain acyl-CoA oxidase (AOX) catalyzes the first, rate-limiting step of peroxisomal beta-oxidation of very-long-chain saturated and unsaturated fatty acids. We have studied the polyunsaturated fatty acid metabolism of AOX knockout mice (AOX-/- as a model of human AOX deficiency (pseudo-neonatal adrenoleukodystrophy), and as a genetic tool to test the putative peroxisomal beta-oxidation involvement in polyunsaturated fatty acid synthesis. Liver lipids of 26-day-old weanling AOX-/- mice livers accumulate n-3 and n-6 ELCPs from C24 to C30 with 5 and 6 double bonds, have 356 +/- 66 microg/g docosahexaenoic acid (22:6n-3), similar to congenic (AOX -/* = AOX+/+ and AOX+/-) controls (401 +/- 96 microg/g), but increased 22:5n-6 (22.4 +/- 3.7 vs 6.4 +/- 1.5 microg/g). AOX+/* mice injected intraperitoneally at 23 days with [U-(13)C]-18:3n-3 show strong labeling of 22:6n-3 after 72 h, whereas AOX -/- mice display less labeling of 22:6n-3 but strong tracer incorporation into 24:6n-3, 26:6n-3, and 28:6n-3, after the same period. These data suggest that ELCPs are natural runaway elongation by-products of 22:6n-3 and 22:5n-6 synthesis, which are normally disposed of by peroxisomal beta-oxidation. Under conditions with impaired peroxisomal beta-oxidation, such as Zellweger syndrome and adrenoleukodystrophies, ELCPs accumulate due to increased synthesis and impaired disposal. Two mechanisms for the formation of these runaway elongation by-products and the involvement of secondary carnitine deficiency in this process are proposed: n-3 ELCPs are synthesized by a carnitine-dependent multifunctional mitochondrial docosahexaenoic acid synthase (mtDHAS) which normally synthesizes primarily 22:6n-3, while n-6 ELCPs are synthesized by independent elongation enzymes in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Juan P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York, 14852
| | | | | | | | | | | |
Collapse
|
30
|
Dvorska JE, Surai PF, Speake BK, Sparks NH. Effect of the mycotoxin aurofusarin on the antioxidant composition and fatty acid profile of quail eggs. Br Poult Sci 2001; 42:643-9. [PMID: 11811917 DOI: 10.1080/00071660120088470] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The effect of the mycotoxin aurofusarin on the antioxidant composition and fatty acid profile of quail eggs was investigated. 2. Thirty eight 45-d-old Japanese quails were divided into two groups (experimental and control, 15 females +4 males in each group) and were fed on a maize-soya diet balanced in all nutrients. The diet of the experimental quails was supplemented with aurofusarin at the level of 26.4 mg/kg feed in the form of Fusarium graminearum culture enriched with aurofusarin. At the beginning and after 2, 4 and 8 week supplementation periods, eggs were collected and analysed. After 8 weeks of supplementation, experimental quails were fed on unsupplemented diet during the next 4 weeks and eggs were collected after 2 and 4 weeks on such a diet and analysed. 3. Aurofusarin caused a significant (P<0.05) decrease in vitamins E, A, total carotenoid, lutein and zeaxanthin concentrations and significantly (P<0.05) increased egg yolk susceptibility to lipid peroxidation. During two weeks on the diet without aurofusarin the levels of carotenoids in the egg yolk returned to the initial level, vitamins A and E returned to the initial level during 4 weeks on the same unsupplemented diet. 4. Dietary supplementation with aurofusarin was associated with a significant (P<0.01) decrease in the docosahexaenoic acid proportion in the phospholipid, cholesteryl ester and free fatty acid fractions of the egg yolk. At the same time the proportion of linoleic acid in the phospholipid, free fatty acid and triacylglycerol fractions significantly (P<0.05) increased. 5. It is concluded that mycotoxin aurofusarin is detrimental to the nutritional quality of eggs.
Collapse
|
31
|
Ruiz-Sanz JI, Aldamiz-Echevarria L, Arrizabalaga J, Aquino L, Jimeno P, Pérez-Nanclares G, Sanjurjo P. Polyunsaturated fatty acid deficiency during dietary treatment of very long-chain acyl-CoA dehydrogenase deficiency. Rescue with soybean oil. J Inherit Metab Dis 2001; 24:493-503. [PMID: 11596652 DOI: 10.1023/a:1010533730659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nutritional management of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is based on the avoidance of fasting and substitution of medium-chain triglycerides for long- and very long-chain triglycerides. We report two cases of this disease, which developed omega-6 essential fatty acid deficiency after three and five months from the beginning of nutritional therapy (SHS product: Monogen). This alteration could be especially dangerous in these patients owing to their possible susceptibility to the development of pigmentary retinopathy. The incorporation of linoleic acid as 3-4% of total caloric intake supported as soybean oil ameliorates this deficiency. We wish to remark on this early complication in the nutritional management of VLCAD deficiency and the possibility of rescue by the incorporation of soybean oil into the diet.
Collapse
Affiliation(s)
- J I Ruiz-Sanz
- Paediatrics Department, University Cruces Hospital, Cruces-Baracaldo, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Connell JW, Gibb GM, Betts JC, Blackstock WP, Gallo J, Lovestone S, Hutton M, Anderton BH. Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3beta identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes. FEBS Lett 2001; 493:40-4. [PMID: 11278002 DOI: 10.1016/s0014-5793(01)02267-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vitro phosphorylation of recombinant wild-type 2N4R tau and FTDP-17 exonic mutant forms P301L, V337M and R406W by glycogen synthase kinase 3beta (GSK3beta) was examined by two dimensional phosphopeptide mapping analysis on thin layer cellulose plates. Comparison of these peptide maps with those generated from wild-type 1N4R tau isoform from which the phosphopeptide constituents and sites of phosphorylation had been determined previously, enabled us to monitor directly changes in phosphorylation of the individual tau proteins. No differences were found in the phosphorylation of wild-type, P301L or V337M tau by GSK3beta but the R406W mutant showed at least two clear differences from the other three tau proteins. The peptides, identified by mass spectrometry corresponding to phosphorylation at both threonine 231 and serine 235 (spot 3), serines 396, 400 and 404 (spot 6a) and serines 195 and 199 (spot 6b) were absent from the R406W peptide map. The findings imply that the R406W mutation in tau exerts long-range conformational effects on the structure of tau.
Collapse
Affiliation(s)
- J W Connell
- Department of Neuroscience, Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Infante JP, Huszagh VA. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. Mol Genet Metab 2001; 72:185-98. [PMID: 11243724 DOI: 10.1006/mgme.2001.3148] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent literature on polyunsaturated fatty acid metabolism in phenylketonuria (PKU) is critically analyzed. The data suggest that developmental impairment of the accretion of brain arachidonic (20:4n-6) and docosahexaenoic (22:6n-3, DHA) acids is a major etiological factor in the microcephaly and mental retardation of uncontrolled PKU and maternal PKU. These fatty acids appear to be synthesized by the recently elucidated carnitine-dependent, channeled, mitochondrial fatty acid desaturases for which alpha-tocopherolquinone (alpha-TQ) is an essential enzyme cofactor. alpha-TQ can be synthesized either de novo or from alpha-tocopherol. The fetus and newborn would primarily rely on de novo alpha-TQ synthesis for these mitochondrial desaturases because of low maternal transfer of alpha-tocopherol. Homogentisate, a pivotal intermediate in the de novo pathway of alpha-TQ synthesis, is synthesized by 4-hydroxyphenylpyruvate dioxygenase. The major catabolic products of excess phenylalanine, viz. phenylpyruvate and phenyllactate, are proposed to inhibit alpha-TQ synthesis at the level of the dioxygenase reaction by competing with its 4-hydroxyphenylpyruvate substrate, thus leading to a developmental impairment of 20:4n-6 and 22:6n-3 synthesis in uncontrolled PKU and fetuses of PKU mothers. The data suggest that dietary supplementation with carnitine, 20:4n-6, and 22:6n-3 may have therapeutic value for PKU mothers and for PKU patients who have been shown to have a low plasma status of these essential metabolites.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York 14852, USA.
| | | |
Collapse
|
34
|
Infante JP, Huszagh VA. Zellweger syndrome knockout mouse models challenge putative peroxisomal beta-oxidation involvement in docosahexaenoic acid (22:6n-3) biosynthesis. Mol Genet Metab 2001; 72:1-7. [PMID: 11161822 DOI: 10.1006/mgme.2000.3101] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The putative involvement of peroxisomal beta-oxidation in the biosynthetic pathway of docosahexaenoic acid (22:6n-3, DHA) synthesis is critically reviewed in light of experiments with two recently developed knockout mouse models for Zellweger syndrome, a peroxisomal disorder affecting brain development. These mice were generated by targeted disruption of the PEX2 and PEX5 peroxisomal assembly genes encoding targeting signal receptor peroxins for the recognition and transport of a set of peroxisomal enzymes, including those of peroxisomal beta-oxidation, to the peroxisomal matrix. Analysis of esterified 22:6n-3 concentrations in PEX2-/- and PEX5-/- mice do not support the hypothesized requirement of peroxisomal beta-oxidation in 22:6n-3 synthesis, as only brain, but not liver or plasma, 22:6n-3 levels were decreased. Supplementation of PEX5+/- dams with 22:6n-3, although restoring the levels of brain 22:6n-3 in total lipids to that of controls, did not normalize the phenotype. These decreased brain 22:6n-3 concentrations appear to be secondary to impaired plasmalogen (sn-1-alkyl-, alkenyl-2-acyl glycerophospholipids) synthesis, probably at the level of the dihydroxyacetonephosphate acyltransferase (DHAP-AT), a peroxisomal enzyme catalyzing the first step in the synthesis of 22:6n-3-rich plasmalogens. To diminish the confounding effects of impaired plasmalogen synthesis in the brains of these Zellweger syndrome mouse models, kinetic experiments with labeled precursors, such as 18:3n-3 or 20:5n-3, in liver or isolated hepatocytes, which have negligible amounts of plasmalogens, are suggested to establish the rates of 22:6n-3 biosynthesis and precursor-product relationships. Similar experiments using brain of the acyl-CoA oxidase knockout mouse model are proposed to confirm the lack of peroxisomal beta-oxidation involvement in 22:6n-3 synthesis, since this mutation would not impair plasmalogen synthesis.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York 14852, USA.
| | | |
Collapse
|
35
|
Surai PF, Sparks NH. Tissue-specific fatty acid and alpha-tocopherol profiles in male chickens depending on dietary tuna oil and vitamin E provision. Poult Sci 2000; 79:1132-42. [PMID: 10947182 DOI: 10.1093/ps/79.8.1132] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beneficial health-promoting effects of the long-chain polyunsaturated fatty acids (PUFA) of the n-3 series make them important constituents of human and animal diets. The effects of tuna oil or a combination of tuna oil with an increased level of vitamin E on the fatty acid profile and vitamin E distribution in tissues taken from cockerels were studied. Male chickens (Ross broiler breeders), penned on white wood shavings, were allocated into one of three groups with 12 birds per group and were fed from 10 wk of age on a commercial diet supplemented with 3% corn oil (control) or with 3% Tuna orbital oil (TO). Vitamin E was added at the rate of 40 mg/ kg, except in the third group in which the birds received a diet containing TO (3%) supplemented with 160 mg/kg vitamin E (TO+E). At 72 wk of age, the cockerels were killed, and tissues (liver, testes, heart, lung, kidney, spleen, thigh muscle, pancreas, internal fat, cerebellum, and cerebrum) were dissected for lipid and vitamin E analyses. Inclusion of TO in the cockerel diets significantly (P < 0.01) increased docosahexanoic acid (DHA) proportions in the major lipid fractions of the tissues with the brain being more resistant to lipid manipulation compared with the other tissues. Tissue enrichment with DHA took place at the expense of a decrease of n-6 PUFA. In the DHA-enriched tissues, vitamin E level decreased (P < 0.05), and susceptibility to peroxidation (TBARS accumulation) significantly (P < 0.01) increased. High vitamin E supplementation (160 mg/kg) in combination with TO prevented decrease of alpha-tocopherol concentration in the tissues and normalized or even increased their resistance to lipid peroxidation. There was tissue-specificity in response to dietary vitamin E supplementation; the liver was most responsive and the cerebellum was most resistant to vitamin E manipulation.
Collapse
Affiliation(s)
- P F Surai
- Department of Biochemistry and Nutrition, SAC, Auchincruive, Ayr, Scotland.
| | | |
Collapse
|
36
|
Infante JP, Huszagh VA. Secondary carnitine deficiency and impaired docosahexaenoic (22:6n-3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and beta-oxidation. FEBS Lett 2000; 468:1-5. [PMID: 10683429 DOI: 10.1016/s0014-5793(00)01083-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A critical analysis of the literature of mitochondrial disorders reveals that genetic diseases of oxidative phosphorylation are often associated with impaired beta-oxidation, and vice versa, and preferentially affect brain, retina, heart and skeletal muscle, tissues which depend on docosahexaenoic (22:6n-3)-containing phospholipids for functionality. Evidence suggests that an increased NADH/NAD(+) ratio generated by reduced flux through the respiratory chain inhibits beta-oxidation, producing secondary carnitine deficiency while increasing reactive oxygen species and depleting alpha-tocopherol (alpha-TOC). These events result in impairment of the recently elucidated mitochondrial pathway for synthesis of 22:6n-3-containing phospholipids, since carnitine and alpha-TOC are involved in their biosynthesis. Therapeutic supplementation with 22:6n-3 and alpha-TOC is suggested.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry, Ithaca, NY, USA.
| | | |
Collapse
|
37
|
Abstract
A review is presented of studies on the effects of vitamin E on heart disease, studies encompassing basic science, animal studies, epidemiological and observational studies, and four intervention trials. The in vitro, cellular, and animal studies, which are impressive both in quantity and quality, leave no doubt that vitamin E, the most important fat-soluble antioxidant, protects animals against a variety of types of oxidative stress. The hypothesis that links vitamin E to the prevention of cardiovascular disease (CVD) postulates that the oxidation of unsaturated lipids in the low-density lipoprotein (LDL) particle initiates a complex sequence of events that leads to the development of atherosclerotic plaque. This hypothesis is supported by numerous studies in vitro, in animals, and in humans. There is some evidence that the ex vivo oxidizability of a subject's LDL is predictive of future heart events. This background in basic science and observational studies, coupled with the safety of vitamin E, led to the initiation of clinical intervention trials. The three trials that have been reported in detail are, on balance, supportive of the proposal that supplemental vitamin E can reduce the risk for heart disease, and the fourth trial, which has just been reported, showed small, but not statistically significant, benefits. Subgroup analyses of cohorts from the older three trials, as well as evidence from smaller trials, indicate that vitamin E provides protection against a number of medical conditions, including some that are indicative of atherosclerosis (such as intermittent claudication). Vitamin E supplementation also produces an improvement in the immune system and protection against diseases other than cardiovascular disease (such as prostate cancer). Vitamin E at the supplemental levels being used in the current trials, 100 to 800 IU/d, is safe, and there is little likelihood that increased risk will be found for those taking supplements. About one half of American cardiologists take supplemental vitamin E, about the same number as take aspirin. In fact, one study suggests that aspirin plus vitamin E is more effective than aspirin alone. There are a substantial number of trials involving vitamin E that are in progress. However, it is possible, or even likely, that each condition for which vitamin E provides benefit will have a unique dose-effect curve. Furthermore, different antioxidants appear to act synergistically, so supplementation with vitamin E might be more effective if combined with other micronutrients. It will be extremely difficult to do trials that adequately probe the dose-effect curve for vitamin E for each condition that it might affect, or to do studies of all the possible combinations of other micronutrients that might act with vitamin E to improve its effectiveness. Therefore, the scientific community must recognize that there never will be a time when the science is "complete." At some point, the weight of the scientific evidence must be judged adequate; although some may regard it as early to that judgement now, clearly we are very close. In view of the very low risk of reasonable supplementation with vitamin E, and the difficulty in obtaining more than about 30 IU/day from a balanced diet, some supplementation appears prudent now.
Collapse
Affiliation(s)
- W A Pryor
- The Biodynamics Institute, Louisiana State University, Baton Rouge 70803, USA.
| |
Collapse
|