1
|
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: From Biological Functions to Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24054822. [PMID: 36902254 PMCID: PMC10003636 DOI: 10.3390/ijms24054822] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses. Efficient homeostatic systems carefully regulate intracellular Zn concentrations. However, perturbed Zn homeostasis has been implicated in the pathogenesis of several chronic human diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases. This review focuses on Zn's roles in cell proliferation, survival/death, and DNA repair mechanisms, outlines some biological Zn targets, and addresses the therapeutic potential of Zn supplementation in some human diseases.
Collapse
Affiliation(s)
- Maria Inês Costa
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-023
| |
Collapse
|
2
|
Dietary zinc restriction affects the expression of genes related to immunity and stress response in the small intestine of pigs. J Nutr Sci 2022; 11:e104. [PMID: 36452400 PMCID: PMC9705703 DOI: 10.1017/jns.2022.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc (Zn) is an essential mineral and its deficiency manifests in non-specific clinical signs that require long time to develop. The response of swine intestine to Zn restriction was evaluated to identify early changes that can be indicative of Zn deficiency. Twenty-seven pigs (body weight = 77⋅5 ± 2⋅5 kg) were assigned to one of three diets: diet without added Zn (Zn-restricted diet, ZnR), and ZnR-supplemented with either 50 (Zn50) or 100 mg of Zn/kg of diet (Zn100) of Zn supplied by ZnCl2. After 32 d consuming the diets, serum Zn concentration in ZnR pigs was below the range of 0⋅59-1⋅37 μg/ml considered sufficient, thereby confirming subclinical Zn deficiency. Pigs showed no obvious health or growth changes. RNA-seq analysis followed by qPCR showed decreased expression of metallothionein-1 (MT1) (P < 0⋅05) and increased expression of Zn transporter ZIP4 (P < 0⋅05) in jejunum and ileum of ZnR pigs compared with Zn-supplemented pigs. Ingenuity pathway analysis revealed that Zn50 and Zn100 induced changes in genes related to nucleotide excision repair and integrin signalling pathways. The top gene network in the ZnR group compared with Zn100 was related to lipid and drug metabolism; and compared with Zn50, was related to cellular proliferation, assembly and organisation. Dietary Zn concentrations resulted in differences in genes related to immune pathways. Our analysis showed that small intestine presents changes associated with Zn deficiency after 32 d of Zn restriction, suggesting that the intestine could be a sentinel organ for Zn deficiency.
Collapse
|
3
|
Bose K, Lakshminarasimhan H, Sundar K, Kathiresan T. Cytotoxic effect of ZnS nanoparticles on primary mouse retinal pigment epithelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1764-73. [PMID: 26523428 DOI: 10.3109/21691401.2015.1102739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The multiple properties of zinc sulphide nanoparticles (ZnS-NPs) are attracting great attention in the field of chemical and biological research. ZnS-NPs also find their application in biosensor and photocatalysis. Zinc is an important metal ion in retina and its deficiency leads to age-related macular degeneration. As of now, not much research is available on bio-interaction of ZnS as nanoform with retinal pigment epithelial (RPE) cells. RPE cells in the retina help in maintaining normal photoreceptor function and vision. To begin with, ZnS-NPs were synthesized and characterized using UV-visible spectra, X-ray diffraction, Fourier transform infrared spectrum, transmission electron microscopy and dynamic light scattering. Followed by the confirmation of nanoparticles, our study extended to investigate the impact of ZnS-NPs in primary mouse RPE (MRPE) cells at different concentrations. ZnS-NPs showed dose-dependent cytotoxicity in MRPE cells and no changes were observed in cells' tight intactness at minimal concentration. In addition, exposure to ZnS-NPs increased cellular permeability in dose- and time-dependent manner in MRPE cells. The findings from DCFH-DA analysis revealed that ZnS-NPs-treated cells had elevated level of reactive oxygen species and partial activation of cell apoptosis was identified after exposure to ZnS-NPs at higher concentration. Furthermore, pre-treatment of the primary MRPE cells with ZnS-NPs led to phosphorylation of Akt (Ser 473), which indicates the crucial role of ZnS-NPs in regulating cell survival at minimal concentration. Altogether, this study enumerates requisite dose of using ZnS-NPs to maintain healthy RPE cells and contributes to future studies in development of therapeutic drug and drug carrier for ocular-related disorders.
Collapse
Affiliation(s)
- Karthikeyan Bose
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India
| | | | - Krishnan Sundar
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India.,b International Research Centre, Kalasalingam University , Krishnankoil , Tamil Nadu , India
| | - Thandavarayan Kathiresan
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India.,b International Research Centre, Kalasalingam University , Krishnankoil , Tamil Nadu , India
| |
Collapse
|
4
|
McCormick NH, Hennigar SR, Kiselyov K, Kelleher SL. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution. J Mammary Gland Biol Neoplasia 2014; 19:59-71. [PMID: 24338187 DOI: 10.1007/s10911-013-9314-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023] Open
Abstract
Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
5
|
Xu Z, Zhou J. Zinc and myocardial ischemia/reperfusion injury. Biometals 2013; 26:863-78. [DOI: 10.1007/s10534-013-9671-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/21/2013] [Indexed: 01/06/2023]
|
6
|
Oteiza PI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med 2012; 53:1748-59. [PMID: 22960578 PMCID: PMC3506432 DOI: 10.1016/j.freeradbiomed.2012.08.568] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/12/2022]
Abstract
Zinc, a redox-inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintaining the cell redox balance through various mechanisms including: (i) the regulation of oxidant production and metal-induced oxidative damage; (ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione, and other thiol oxidant species; (iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and acts per se as a scavenging oxidant; (iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and (v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue dysfunction in cell and animal models of zinc deficiency highlight the relevant role of zinc in the preservation of cell redox homeostasis. However, although the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the molecules, targets, and mechanisms involved are still partially known and the subject of active research.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 2012; 4:875-903. [PMID: 23016122 PMCID: PMC3448077 DOI: 10.3390/nu4080875] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/29/2022] Open
Abstract
Worldwide, breast cancer is the most commonly diagnosed cancer among women and is the leading cause of female cancer deaths. Zinc (Zn) functions as an antioxidant and plays a role in maintaining genomic stability. Zn deficiency results in oxidative DNA damage and increased cancer risk. Studies suggest an inverse association between dietary and plasma Zn levels and the risk for developing breast cancer. In contrast, breast tumor biopsies display significantly higher Zn levels compared with normal tissue. Zn accumulation in tumor tissue also correlates with increased levels of Zn importing proteins. Further, aberrant expression of Zn transporters in tumors correlates with malignancy, suggesting that altered metal homeostasis in the breast could contribute to malignant transformation and the severity of cancer. However, studies have yet to link dysregulated Zn transport and abnormal Zn-dependent functions in breast cancer development. Herein, we summarize studies that address the multi-modal role of Zn dyshomeostasis in breast cancer with respect to the role of Zn in modulating oxidative stress, DNA damage response/repair pathways and cell proliferation/apoptosis, and the relationship to aberrant regulation of Zn transporters. We also compare Zn dysregulation in breast tissue to that of prostate, pancreatic and ovarian cancer where possible.
Collapse
Affiliation(s)
- Samina Alam
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Shannon L. Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Surgery, the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Cell and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-814-863-9680; Fax: +1-814-863-6103
| |
Collapse
|
8
|
Dempsey C, McCormick NH, Croxford TP, Seo YA, Grider A, Kelleher SL. Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. J Nutr 2012; 142:655-60. [PMID: 22357740 PMCID: PMC3301987 DOI: 10.3945/jn.111.150623] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/16/2011] [Accepted: 12/27/2011] [Indexed: 11/14/2022] Open
Abstract
Dietary analysis predicts that marginal Zn deficiency is common in women of reproductive age. The lack of reliable biomarkers limits the capacity to assess Zn status and consequently understand effects of maternal Zn deficiency. We determined effects of marginal maternal Zn deficiency on mammary gland function, milk secretion, and milk composition in mice. Mice (n = 12/diet) were fed marginal (ZD; 15 mg Zn/kg diet) or adequate (ZA; 30 mg Zn/kg diet) Zn diets for 30 d prior to conception through mid-lactation. Mice fed the ZD had a higher plasma Zn concentration (~20%; P < 0.05) but lower milk Zn concentration (~15%; P < 0.05) compared with mice fed the ZA. ZnT2 abundance was higher (P < 0.05) in mice fed the ZD compared with mice fed the ZA; no effect on ZnT4 abundance was detected. The Zn concentration of mammary gland mitochondria tended to be ~40% greater in mice fed ZD (P = 0.07); this was associated with apoptosis and lower milk secretion (~80%; P < 0.01). Total milk protein was ~25% higher (P < 0.05), although the abundance of the major milk proteins (caseins and whey acidic protein) was lower (P < 0.05) in mice fed the ZD. Proteomic analysis of milk proteins revealed an increase (P < 0.05) in four proteins in mice fed the ZD. These findings illustrate that marginal maternal Zn deficiency compromises mammary gland function and milk secretion and alters milk composition. This suggests that lactating women who consume inadequate Zn may not produce and/or secrete an adequate amount of high quality milk to provide optimal nutrition to their developing infant.
Collapse
Affiliation(s)
| | | | | | | | - Arthur Grider
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Shannon L. Kelleher
- Department of Nutritional Sciences
- Department of Surgery, and
- Department of Cell and Molecular Physiology, The Pennsylvania State University, University Park, PA; and
| |
Collapse
|
9
|
Chen DF, Li X, Xu Z, Liu X, Du SH, Li H, Zhou JH, Zeng HP, Hua ZC. Hexadecanoic Acid from Buzhong Yiqi Decoction Induced Proliferation of Bone Marrow Mesenchymal Stem Cells. J Med Food 2010; 13:967-70. [DOI: 10.1089/jmf.2009.1293] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Dong-Feng Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing, China
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xican Li
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zhiwei Xu
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaobing Liu
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shao-Hui Du
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Hui Li
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jian-Hong Zhou
- College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - He-Ping Zeng
- Faculty of Chemistry, South China University of Technology, Guangzhou, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Abstract
Zinc, essential for normal cell growth, is tightly controlled in cells by two families of zinc transporters. The aberrant expression of zinc transporters from the LIV-1 family of ZIP (Zrt/Irt-like protein) transporters is increasingly being implicated in a variety of disease states. In the present paper, I describe a mechanism for the role of ZIP7 in the progression of breast cancer, identifying it as a new target in breast cancer. Furthermore, I document a link between another zinc transporter, LIV-1, and breast cancer metastasis, identifying it as a potential new prognostic indicator of breast cancer spread.
Collapse
|
11
|
Kimura T, Itoh N, Sone T, Kondoh M, Tanaka K, Isobe M. Role of metal-responsive transcription factor-1 (MTF-1) in EGF-dependent DNA synthesis in primary hepatocytes. J Cell Biochem 2006; 99:485-94. [PMID: 16619271 DOI: 10.1002/jcb.20948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal-responsive transcription factor-1 (MTF-1), which is involved in sensing heavy metal load, induces the transcription of several protective genes. The mouse Mtf-1 gene is essential, and Mtf-1(-/-) embryos die from liver degeneration. We showed that DNA synthesis induced in hepatocytes by epidermal growth factor (EGF) was delayed by inhibition of MTF-1. To inhibit MTF-1 activity, MTFDeltaC, a C-terminal deletion mutant of MTF-1, was expressed by infection with the virus Ad5MTFDeltaC. Lactate dehydrogenase (LDH) release and/or caspase-3/7 activation was not observed under our experimental conditions. The inhibitory effect of MTFDeltaC on EGF-dependent DNA synthesis in hepatocytes was not eliminated by zinc addition. EGF-dependent extracellular signal-related kinase (ERK) phosphorylation, an essential reaction for EGF-dependent DNA synthesis, was decreased in MTF-1-inhibited hepatocytes. Moreover, decrease of ERK phosphorylation was observed by using siRNA in MTF-1-downregulated hepatocytes. These results indicate that MTF-1 is particularly important for proper hepatocyte proliferation. This is the first report to suggest the function of MTF-1 in the ERK pathway.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Zinc deficiency is characterized by an attenuation of growth factor signaling pathways and an amplification of p53 pathways. This outcome is facilitated by hypo-phosphorylation of AKT and ERK secondary to zinc deficiency, which are permissive events to the activation of the intrinsic cell death pathway. Low zinc concentrations provide an environment that is also conducive to the production of reactive oxygen/reactive nitrogen species (ROS/RNS) and caspase activation. Additionally, during zinc deficiency endogenous survival pathways such as NF-kappaB are inhibited in their transactivation potential. The above factors contribute to the irreversible commitment of the zinc deficient cell to death.
Collapse
Affiliation(s)
- Michael S Clegg
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
13
|
Daniel H, tom Dieck H. Nutrient-gene interactions: a single nutrient and hundreds of target genes. Biol Chem 2004; 385:571-83. [PMID: 15318805 DOI: 10.1515/bc.2004.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractBased on the effects of a selective experimental zinc deficiency in a rodent model we explore the use of transcriptome profiling for assessing nutrient-gene interactions in the liver at the molecular and cellular levels. Zinc deficiency caused pleiotropic alterations in mRNA/protein levels of hundreds of genes. In the context of observed metabolic alterations in hepatic metabolism, possible mechanisms are discussed for how a low zinc status may be sensed and transmitted into changes in various metabolic pathways. However, it also becomes obvious that analysis of such complex nutrient-gene interactions beyond the descriptional level is a real challenge for systems biology.
Collapse
Affiliation(s)
- Hannelore Daniel
- Molecular Nutrition Unit, Technical University of Munich, Life and Food Science Center, Hochfeldweg 2, D-85350 Freising-Weihenstephan, Germany.
| | | |
Collapse
|
14
|
Cui L, Schoene NW, Zhu L, Fanzo JC, Alshatwi A, Lei KY. Zinc depletion reduced Egr-1 and HNF-3beta expression and apolipoprotein A-I promoter activity in Hep G2 cells. Am J Physiol Cell Physiol 2002; 283:C623-30. [PMID: 12107072 DOI: 10.1152/ajpcell.00308.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the influence of zinc status on expression of certain transcription factors involved in regulation of apolipoprotein A-I (apoAI) expression in human hepatoblastoma Hep G2 cells. A low zinc basal medium (zinc deficient, ZD) consisting of DMEM and 10% Chelex100-treated fetal bovine serum was used to deplete cellular zinc over one passage. Cells were also cultured for one passage in medium supplemented with 0.4 (ZD0.4), 4.0 (zinc normal, ZN), 16.0 (zinc adequate, ZA), or 32.0 microM zinc (zinc supplemented, ZS). Compared with ZN cells, cellular zinc levels were 43 and 31% lower in ZD and ZD0.4 cells but 70 and 146% higher in ZA and ZS cells, respectively. Supplementation of 0.4 microM zinc significantly increased DNA contents per plate, from 65% in ZD cells to 83% in ZD0.4 cells compared with ZN cells. Addition of >4 microM zinc in medium did not further increase DNA contents. The proportion of cells in G(1)/S and S phase was about fourfold higher and threefold lower, respectively, in ZD cells compared with ZN and other groups. Nuclear Egr-1 protein was markedly decreased in ZD and ZD0.4 cells. Moreover, hepatocyte nuclear factor (HNF)-3beta was severely degraded in ZD and ZD0.4 cells. In contrast, HNF-4alpha remained stable in all groups and was not significantly lower in ZD and ZD0.4 cells. Furthermore, downregulation of trans-acting factor Egr-1 and cleavage of HNF-3beta were associated with reduction of apoAI promoter activity in zinc-deficient Hep G2 cells. Thus zinc is critical in transcriptional regulation of apoAI gene expression in hepatocytes.
Collapse
Affiliation(s)
- Libin Cui
- Department of Nutrition and Food Science, University of Maryland, College Park 20742, USA
| | | | | | | | | | | |
Collapse
|
15
|
Boney CM, Gruppuso PA, Faris RA, Frackelton AR. The critical role of Shc in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes. Mol Endocrinol 2000; 14:805-13. [PMID: 10847583 DOI: 10.1210/mend.14.6.0487] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) stimulates mitogenesis in proliferating preadipocytes, but when cells reach confluence and become growth arrested, IGF-I stimulates differentiation into adipocytes. IGF-I induces signaling pathways that involve IGF-I receptor-mediated tyrosine phosphorylation of Shc and insulin receptor substrate 1 (IRS-1). Either of these adaptor proteins can lead to activation of the three-kinase cascade ending in activation of the extracellular signal-regulated kinase 1 and -2 (ERK-1 and -2) mitogen-activated protein kinases (MAPKs). Several lines of evidence suggest that activation of MAPK inhibits 3T3-L1 preadipocyte differentiation. We have shown that IGF-I stimulation of MAPK activity is lost as 3T3-L1 preadipocytes begin to differentiate. This change in MAPK signaling coincides with loss of IGF-I-mediated Shc, but not IRS-1, tyrosine phosphorylation. We hypothesized that down-regulation of MAPK via loss of proximal signaling through Shc is an early component in the IGF-I switch from mitogenesis to differentiation in 3T3-L1 preadipocytes. Treatment of subconfluent cells with the MEK inhibitor PD098059 inhibited both IGF-I-activation of MAPK as well as 3H-thymidine incorporation. PD098059, in the presence of differentiation-inducing media, accelerated differentiation in subconfluent cells as measured by expression of adipocyte protein-2 (aP-2), peroxisome proliferator-activated receptor gamma (PPARgamma) and lipoprotein lipase (LPL). Transient transfection of subconfluent cells with Shc-Y317F, a dominant-negative mutant, attenuated IGF-I-mediated MAPK activation, inhibited DNA synthesis, and accelerated expression of differentiation markers aP-2, PPARgamma, and LPL. We conclude that signaling through Shc to MAPK plays a critical role in mediating IGF-I-stimulated 3T3-L1 mitogenesis. Our results suggest that loss of the ability of IGF-I to activate Shc signaling to MAPK may be an early component of adipogenesis in 3T3-L1 cells.
Collapse
Affiliation(s)
- C M Boney
- Department of Pediatrics Rhode Island Hospital, Providence 02903, USA.
| | | | | | | |
Collapse
|
16
|
Ziegler TR, Estívariz CF, Jonas CR, Gu LH, Jones DP, Leader LM. Interactions between nutrients and peptide growth factors in intestinal growth, repair, and function. JPEN J Parenter Enteral Nutr 1999; 23:S174-83. [PMID: 10571452 DOI: 10.1177/014860719902300602] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several lines of evidence demonstrate that general nutritional status, specific nutrients (eg, zinc, glutamine), and certain trophic growth factors (eg, growth hormone, insulin-like growth factor I, keratinocyte growth factor, and glucagon-like peptide-2) have important interactions relevant for intestinal growth and function. Adequate nutritional status is critical for endogenous growth factor synthesis in the gut and other tissues and is an important mediator of organ responsiveness to exogenous growth factor administration. Both endogenously synthesized and exogenously administered growth factors upregulate nutrient uptake and utilization by gut mucosa, skeletal muscle, and other organs. Emerging data from both animal and human studies indicate that combinations of selected growth factors and specific nutrients may improve the growth, adaptation, and repair of the intestinal mucosa. Additional studies to determine basic mechanisms of nutrient-growth factor interactions and the safety and efficacy of treatment with combinations of specific nutrients and recombinant growth factors are needed. Results of these investigations should define new methods for support of the intestinal tract during short bowel syndrome (SBS), catabolic illness, and malnutrition.
Collapse
Affiliation(s)
- T R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
17
|
Thissen JP, Underwood LE, Ketelslegers JM. Regulation of insulin-like growth factor-I in starvation and injury. Nutr Rev 1999; 57:167-76. [PMID: 10439629 DOI: 10.1111/j.1753-4887.1999.tb06939.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Both starvation and sepsis are characterized by growth hormone (GH) insensitivity, which leads to a reduction in circulating insulin-like growth factor (IGF)-I. Because of the anabolic properties of this growth factor, its decline may contribute to the growth arrest and the catabolic reaction observed in starvation and sepsis. This review focuses on the mechanisms responsible for the reduction in circulating IGF-I and impairment of GH responsiveness that occur during starvation and sepsis. A clearer understanding of the complex nature of GH resistance should lead to the development of new therapeutic strategies aimed at restoring the beneficial effects of anabolic agents such as GH and IGF-I.
Collapse
Affiliation(s)
- J P Thissen
- Unité de Diabétologie and Nutrition, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | |
Collapse
|