1
|
Prachařová J, Kostrhunová H, Barbanente A, Margiotta N, Brabec V. The mechanism of antiproliferative activity of the oxaliplatin pyrophosphate derivative involves its binding to nuclear DNA in cancer cells. J Biol Inorg Chem 2023; 28:669-678. [PMID: 37624480 DOI: 10.1007/s00775-023-02017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
(1R,2R-diaminocyclohexane)(dihydropyrophosphato) platinum(II), also abbreviated as RRD2, belongs to a class of potent antitumor platinum cytostatics called phosphaplatins. Curiously, several published studies have suggested significant mechanistic differences between phosphaplatins and conventional platinum antitumor drugs. Controversial findings have been published regarding the role of RRD2 binding to DNA in the mechanism of its antiproliferative activity in cancer cells. This prompted us to perform detailed studies to confirm or rule out the role of RRD2 binding to DNA in its antiproliferative effect in cancer cells. Here, we show that RRD2 exhibits excellent antiproliferative activity in various cancer cell lines, with IC50 values in the low micromolar or submicromolar range. Moreover, the results of this study demonstrate that DNA lesions caused by RRD2 contribute to killing cancer cells treated with this phosphaplatin derivative. Additionally, our data indicate that RRD2 accumulates in cancer cells but to a lesser extent than cisplatin. On the other hand, the efficiency of cisplatin and RRD2, after they accumulate in cancer cells, in binding to nuclear DNA is similar. Our results also show that RRD2 in the medium, in which the cells were cultured before RRD2 accumulated inside the cells, remained intact. This result is consistent with the view that RRD2 is activated by releasing free pyrophosphate only in the environment of cancer cells, thereby allowing RRD2 to bind to nuclear DNA.
Collapse
Affiliation(s)
- Jitka Prachařová
- Department of Biophysics, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Hana Kostrhunová
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Alessandra Barbanente
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70126, Bari, Italy
| | - Nicola Margiotta
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70126, Bari, Italy
| | - Viktor Brabec
- Department of Biophysics, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
2
|
Beta-Carotene Affects the Effects of Heme Oxygenase-1 in Isolated, Ischemic/Reperfused Rat Hearts: Potential Role of the Iron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093039. [PMID: 35566389 PMCID: PMC9101800 DOI: 10.3390/molecules27093039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Beta-carotene (BC) is a well-known antioxidant. However, increasing evidence shows that under severe oxidative conditions, BC can become pro-oxidant, an effect that may be enhanced in the presence of iron (II). In our earlier studies, we observed that despite increasing heme oxygenase-1 (HO-1) levels in the heart, the protective effects of BC have been lost when it was used at a high concentration. Since iron releases from heme as a consequence of HO-1 activity, we hypothesized that the application of an iron-chelator (IC) would reverse the lost cardiac protection associated with an elevated HO-1 level. Thus, in the present study, we investigated the effects of desferrioxiamine (DFO) in isolated, ischemic/reperfused rat hearts after long-term treatment with vehicle or high-dose (HD) BC. Vehicle or 150 mg/bw kg daily doses of BC were administered to the rats for 4 weeks, and then their hearts were removed and subjected to 30 min of global ischemia (ISA) followed by 120 min of reperfusion (REP). During the experiments, cardiac function was registered, and at the end of the REP period, infarct size (IS) and HO-1 expression were measured. The results show that DFO treatment alone during REP significantly ameliorated postischemic cardiac function and decreased IS, although HO-1 expression was not increased significantly. In hearts isolated from BC-treated rats, no cardioprotective effects, despite an elevated HO-1 level, were observed, while DFO administration after ISA resulted in a mild improvement in heart function and IS. Our results suggest that iron could have a role whether BC exerts antioxidant or pro-oxidant effects in ISA/REP-injured hearts.
Collapse
|
3
|
Qiu S, Shen Y, Zhang L, Ma B, Amadu AA, Ge S. Antioxidant assessment of wastewater-cultivated Chlorella sorokiniana in Drosophila melanogaster. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Hrabina O, Malina J, Kostrhunova H, Novohradsky V, Pracharova J, Rogers N, Simpson DH, Scott P, Brabec V. Optically Pure Metallohelices That Accumulate in Cell Nuclei, Condense/Aggregate DNA, and Inhibit Activities of DNA Processing Enzymes. Inorg Chem 2020; 59:3304-3311. [DOI: 10.1021/acs.inorgchem.0c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ondrej Hrabina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jitka Pracharova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Nicola Rogers
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Daniel H. Simpson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
5
|
Fucoxanthin Exerts Cytoprotective Effects against Hydrogen Peroxide-induced Oxidative Damage in L02 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1085073. [PMID: 30581841 PMCID: PMC6276502 DOI: 10.1155/2018/1085073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/20/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
Abstract
Several previous studies have demonstrated the excellent antioxidant activity of fucoxanthin against oxidative stress which is closely related to the pathogenesis of liver diseases. The present work was to investigate whether fucoxanthin could protect human hepatic L02 cells against hydrogen peroxide- (H2O2-) induced oxidative damage. Its effects on H2O2-induced cell viability, lactate dehydrogenase (LDH) leakage, intracellular reduced glutathione, and reactive oxygen species (ROS) contents, along with mRNA and protein relative levels of the cytoprotective genes including Nrf2, HO-1, and NQO1, were investigated. The results showed that fucoxanthin could upregulate the mRNA and protein levels of the cytoprotective genes and promote the nuclear translocation of Nrf2, which could be inhibited by the PI3K inhibitor of LY294002. Pretreatment of fucoxanthin resulted in decreased LDH leakage and intracellular ROS content but enhanced intracellular reduced glutathione. Interestingly, pretreatment using fucoxanthin protected against the oxidative damage in a nonconcentration-dependent manner, with fucoxanthin of 5 μM demonstrating the optimal effects. The results suggest that fucoxanthin exerts cytoprotective effects against H2O2-induced oxidative damage in L02 cells, which may be through the PI3K-dependent activation of Nrf2 signaling.
Collapse
|
6
|
Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V. Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 2018; 46:14139-14148. [PMID: 28972623 DOI: 10.1039/c7dt02633a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the promising new antitumor platinum complexes is a large-ring chelate complex [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane) (kiteplatin). Recently, new platinum(ii) derivatives of kiteplatin with pyrophosphate as a carrier ligand have been synthesized and tested on a panel of human cancer cell lines. These derivatives of kiteplatin were found to be more effective than clinically used anticancer platinum drugs. The design of kiteplatin pyrophosphate derivatives was based on the concept of pyrophosphate coordinated platinum complexes, phosphaplatins. Phosphaplatins have been shown to function without binding to DNA and hence DNA has been excluded as the target of phosphaplatins in contrast to conventional antitumor platinum drugs. Cytotoxicity, major cellular targets and DNA interactions of the new anticancer platinum drug were characterized by standard biochemical methods and methods of molecular and cellular biology. We demonstrate that, in contrast to what has been reported on closely related phosphaplatins, the derivatives of kiteplatin with the pyrophosphate carrier ligand are activated in the cellular environment. This activation, which yields species capable of platination of DNA, very likely comprises the hydrolytic release of the pyrophosphate ligand that could be enzymatically catalyzed. Collectively, these data provide convincing evidence that unexpectedly DNA is an important target for the biological activity of the kiteplatin pyrophosphate derivatives, although the overall mechanism of action might be different from those of conventional platinum drugs.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Potentiation of cytotoxic action of cis -[PtCl 2 (NH 3 )(1M7AI)] by UVA irradiation. Mechanistic insights. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Rovani BT, de Freitas RB, Augusti PR, Araldi IC, Somacal S, Quatrin A, Emanuelli T, da Rocha MP, Bauermann LDF. Prooxidant activity of norbixin in model of acute gastric ulcer induced by ethanol in rats. Hum Exp Toxicol 2016; 35:737-746. [PMID: 26353805 DOI: 10.1177/0960327115604199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Free radicals and oxidative stress play a central role in gastric injuries caused by ethanol (EtOH). Antioxidant strategies to counteract EtOH toxicity are highly desirable. Norbixin (NBIX) is a carotenoid with antioxidant potential largely used in the food industry. This study evaluated the NBIX effects in a model of gastric ulcer induced by EtOH in rats. Male Wistar rats received NBIX doses of 0, 10, and 25 mg/kg by gavage 1 h after EtOH administration (0 or 75% solution, 1 mL/200 g of animal). The animals were euthanized 1 h after the NBIX administration, and their stomachs were removed for macroscopic and histopathological analyses, quantification of nonprotein sulfhydryl (NPSH) groups, lipid peroxidation (LPO) levels, and catalase (CAT) activity determination. NBIX increased LPO in gastric mucosa and caused CAT inhibition and NPSH depletion in EtOH-treated animals. Results showed that NBIX did not protect gastric tissue against EtOH damage, and this could be associated to a prooxidant effect.
Collapse
Affiliation(s)
- B T Rovani
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - R B de Freitas
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - P R Augusti
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - I C Araldi
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - S Somacal
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - A Quatrin
- Integrated Center for Laboratory Analysis Development (NIDAL), Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - T Emanuelli
- Integrated Center for Laboratory Analysis Development (NIDAL), Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - M P da Rocha
- Department of Pathology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - L de Freitas Bauermann
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Bioprospecting Davidson's plum and quandong: Cytoprotective and proapoptotic activities. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Wang SK, Yang L, Wang TT, Huang GL, Yang LG, Sun GJ. Inhibition of proliferation and induction of apoptosis by the combination of β-carotene and 1,25-dihydroxyvitamin D3 in human esophageal cancer EC9706 cells. Asian Pac J Cancer Prev 2014; 13:6327-32. [PMID: 23464453 DOI: 10.7314/apjcp.2012.13.12.6327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Esophageal cancer is a common malignant tumor occurring in human esophageal epithelial tissue. The primary purpose of this paper was to define the effects of β-carotene and 1,25-dihydroxyvitamin D3, alone and in combination, on cell proliferation, cell cycle and apoptosis of human esophageal cancer EC9706 cells. Treatment with different concentrations of β-carotene and/or 1,25-dihydroxyvitamin D3. MTT assay showed that β-carotene and 1,25-dihydroxyvitamin D3 significantly inhibited proliferation of EC9706 cells in a dose- and time-dependent manner. Further studies also demonstrated that β-carotene alone or 1,25-dihydroxyvitamin D3 alone caused a marked increase on the induction of apoptosis in EC9706 cells. The percentage of G0/G1-phase cells significantly increased on addition of 1,25-dihydroxyvitamin D3 alone, but there were no significant changes with β-carotene alone. These two agents in combination synergistically inhibited cell growth and induced apoptosis. Therefore, our results indicate that β-carotene and 1,25-dihydroxyvitamin D3 in combination may provide a novel strategy for preventing and treating esophageal cancer.
Collapse
Affiliation(s)
- Shao-Kang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
11
|
Åsgård R, Hellman B. Effect of β-carotene on catechol-induced genotoxicity in vitro: evidence of both enhanced and reduced DNA damage. Free Radic Res 2013; 47:692-8. [PMID: 23767930 DOI: 10.3109/10715762.2013.815346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intake of antioxidants from the diet has been recognized to have beneficial health effects, but the potential benefit of taking antioxidants such as β-carotene as supplements is controversial. The aim of the present study was to evaluate the potential protective effects of a physiologically relevant concentration (2 μM) of β-carotene on the DNA damaging effects of catechol in mouse lymphoma L5178Y cells. Two different exposure protocols were used: simultaneous exposure to β-carotene and catechol for 3 h; and exposure to catechol for 3 h after 18 h pre-treatment with the vitamin. DNA damage was evaluated using the comet assay (employing one procedure for general damage, and another procedure, which also included oxidative DNA damage). Independent of exposure protocol and procedure for comet assay, β-carotene did not increase the basal level of DNA damage. However, at the highest concentration of catechol (1 mM), β-carotene was found to clearly increase the level of catechol-induced DNA damage, especially in the pre-treated cells. Interestingly, an opposite effect was observed at lower concentrations of catechol, but the β-carotene related reduction of catechol-induced genotoxicity was significant (P < 0.05) only for the procedure including oxidative damage induced by 0.5 mM catechol. Taken together our results indicate that β- carotene can both reduce and enhance the DNA damaging effects of a genotoxic agent such as catechol. This indicates that it is the level of catechol-induced DNA damage that seems to determine whether β-carotene should be regarded as a beneficial or detrimental agent when it comes to its use as a dietary supplement.
Collapse
Affiliation(s)
- R Åsgård
- Division of Toxicology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
12
|
İşeri ÖD, Yurtcu E, Sahin FI, Haberal M. Corchorus olitorius (jute) extract induced cytotoxicity and genotoxicity on human multiple myeloma cells (ARH-77). PHARMACEUTICAL BIOLOGY 2013; 51:766-770. [PMID: 23577798 DOI: 10.3109/13880209.2013.765897] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Corchorus olitorius L. (Malvaceae) has industrial importance in world jute production and is a widely cultivated and consumed crop in Cyprus and in some Arabic countries. OBJECTIVE The present study investigated cytotoxic and genotoxic effects of leaf extracts (LE) and seed extracts (SE) of the C. olitorius on the multiple myeloma-derived ARH-77 cells. The extracts were also evaluated for their total phenol content (TPC) and free radical scavenging activity (FRSA). MATERIALS AND METHODS C. olitorius was collected from Nicosia, Cyprus. TPC and FRSA were measured by Folin-Ciocalteu and DPPH free radical methods, respectively. Cytotoxicity was evaluated by the MTT assay (4-2048 µg/mL range), and DNA damage (at IC50 and ½IC50) was measured by the comet assay. RESULTS AND DISCUSSION The LE had significantly higher total phenol (78 mg GAE/g extract) than the SE (2 mg GAE/g extract) with significantly higher FRSA (IC50 LE: 23 µg/mL and IC50 SE: 10 401 µg/mL). Both LE and SE exerted cytotoxic effects on cells after 48 h. The IC50 of SE (17 µg/mL) was lower than LE (151 µg/mL), which demonstrates its higher cytotoxicity on cells. The extracts were applied at 150 and 75 µg/mL for LE and at 17 and 8.5 µg/mL for SE, and the results of the comet assay revealed that the extracts induced genotoxic damage on ARH-77 cells. In both 48 h leaf and seed extract treatments, genotoxic damage significantly increased with increasing concentrations at relevant cytotoxic concentrations. CONCLUSION To our knowledge, this is the first report demonstrating the high cytotoxic potential of C. olitorius SE and the genotoxic potential of LE and SE.
Collapse
|
13
|
Lo HM, Chen CL, Yang CM, Wu PH, Tsou CJ, Chiang KW, Wu WB. The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RARβ activation in murine macrophages. J Leukoc Biol 2013; 93:723-735. [DOI: 10.1189/jlb.0512238] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Carotenoid lutein causes MMP-9 release that participates in macrophage phagocytosis.
Early studies have demonstrated the ability of dietary carotenoids to enhance immune response, but the mechanism underlying their influence on macrophage activity remains unclear. Here, we investigated the effects of carotenoids on macrophage activity. Carotenoids, including lutein and lycopene, enhanced MMP-9 activity in RAW264.7 macrophages. Lutein was chosen as a representative and analyzed further in this study. It increased the synthesis, activity, and release of MMP-9 in murine RAW264.7 and primary-cultured peritoneal macrophages. MMP-9 induction by lutein was through the transcriptional regulation of mmp-9. It was blunted by the MAPK inhibitors targeting ERK1/2 and p38 MAPK, the reagents that inhibit free radical signaling, and the inhibitors and siRNA targeting RARβ. Moreover, lutein induced Nox activation and intracellular ROS production at an early stage of treatment. This carotenoid also caused ERK1/2 and p38 MAPK activation, RARβ expression, and RAR interaction with its responsive element in the promoter region. These findings suggest the involvement of ROS, MAPKs, and RARβ activation in lutein-driven MMP-9 expression and release. Interestingly, lutein enhanced the phagocytic activity of macrophages, and the secreted MMP-9 appeared to be involved in this process. In summary, we provide evidence here for the first time that the carotenoid lutein induces intracellular ROS generation and MAPK and RARβ activation in macrophages, leading to an increase in MMP-9 release and macrophage phagocytosis. Our results demonstrate that lutein exerts an immunomodulatory effect on macrophages.
Collapse
Affiliation(s)
- Huey-Ming Lo
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital , Taipei, Taiwan
| | - Chih-Li Chen
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University , Tao-Yuan, Taiwan
| | - Pi-Hui Wu
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Chih-Jen Tsou
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Kai-Wen Chiang
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| |
Collapse
|
14
|
Scientific Opinion on the re‐evaluation of mixed carotenes (E 160a (i)) and beta‐carotene (E 160a (ii)) as a food additive. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2593] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Lo HM, Tsai YJ, Du WY, Tsou CJ, Wu WB. A naturally occurring carotenoid, lutein, reduces PDGF and H₂O₂ signaling and compromised migration in cultured vascular smooth muscle cells. J Biomed Sci 2012; 19:18. [PMID: 22313606 PMCID: PMC3292940 DOI: 10.1186/1423-0127-19-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/08/2012] [Indexed: 12/12/2022] Open
Abstract
Background Platelet-derived growth factor (PDGF) is a potent stimulator of growth and motility of vascular smooth muscle cells (VSMCs). Abnormalities of PDGF/PDGF receptor (PDGFR) are thought to contribute to vascular diseases and malignancy. We previously showed that a carotenoid, lycopene, can directly bind to PDGF and affect its related functions in VSMCs. In this study we examined the effect of the other naturally occurring carotenoid, lutein, on PDGF signaling and migration in VSMCs. Methods Western blotting was performed to examine PDGF and H2O2 signaling. Flowcytometry was used to determine PDGF binding to VSMCs. Fluorescence microscopy was performed to examine intracellular ROS production. Modified Boyden chamber system (Transwell apparatus) was used for migration assay. Results Lutein reduced PDGF signaling, including phosphorylation of PDGFR-β and its downstream protein kinases/enzymes such as phospholipase C-γ, Akt, and mitogen-activated protein kinases (MAPKs). Although lutein possesses a similar structure to lycopene, it was striking that lutein inhibited PDGF signaling through a different way from lycopene in VSMCs. Unlike lycopene, lutein not only interacted with (bound to) PDGF but also interfered with cellular components. This was evidenced that preincubation of PDGF with lutein and treatment of VSMCs with lutein followed by removing of lutein compromised PDGF-induced signaling. Lutein reduced PDGF-induced intracellular reactive oxygen species (ROS) production and attenuated ROS- (H2O2-) induced ERK1/2 and p38 MAPK activation. A further analysis indicated lutein could inhibit a higher concentration of H2O2-induced PDGFR signaling, which is known to act through an oxidative inhibition of protein tyrosine phosphatase. Finally, we showed that lutein functionally inhibited PDGF-induced VSMC migration, whereas its stereo-isomer zeaxanthin did not, revealing a special action of lutein on VSMCs. Conclusions Our study reveals a differential action mechanism of lutein from other reported caroteinoids and suggests a possible beneficial effect of lutein but not zeaxanthin on prevention of vascular diseases.
Collapse
Affiliation(s)
- Huey-Ming Lo
- Section of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
16
|
Effects of ascorbic acid and β-carotene on HepG2 human hepatocellular carcinoma cell line. Mol Biol Rep 2010; 38:4265-72. [PMID: 21116852 DOI: 10.1007/s11033-010-0549-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/17/2010] [Indexed: 12/31/2022]
Abstract
Recent studies have demonstrated that vegetable rich diets have protective effects on the occurrence and prognosis of various cancers. In addition to dietary intakes, ascorbic acid and β-carotene are also taken as supplements. The aim of this study was to assess effects of ascorbic acid, β-carotene and their combinations on human hepatocellular carcinoma cell line HepG2. Ascorbic acid and β-carotene were applied to cells as plasma peak concentrations (70 and 8 μM, respectively) and their half concentrations (35 and 4 μM, respectively) for 24 and 48 h. Genotoxic and cytotoxic effects of ascorbic acid and β-carotene were evaluated by alkali single cell gel electrophoresis (SCGE), acridine orange/ethidium bromide staining patterns of cells (apoptosis and necrosis) and lipid peroxidation (thiobarbituric acid reactive substances, TBARS). Results of the SCGE demonstrated that both ascorbic acid and β-carotene caused DNA damage on HepG2 which were also concordant to increased apoptosis and necrosis of cells. Increased TBARS values also demonstrated increased lipid peroxidation in these cells. Results of the present study demonstrates that when dietary intakes of ascorbic acid and β-carotene and their relevant achievable plasma level concentrations were considered, both ascorbic acid and β-carotene induce genotoxic and cytotoxic damage on HepG2 together with increased oxidative damage in contrast to their protective effect on healthy cells. This may be correlated to oxidative status and balance of ROS in hepatocellular carcinoma cells.
Collapse
|
17
|
Marzano C, Mazzega Sbovata S, Gandin V, Colavito D, Del Giudice E, Michelin RA, Venzo A, Seraglia R, Benetollo F, Schiavon M, Bertani R. A new class of antitumor trans-amine-amidine-Pt(II) cationic complexes: influence of chemical structure and solvent on in vitro and in vivo tumor cell proliferation. J Med Chem 2010; 53:6210-27. [PMID: 20681543 DOI: 10.1021/jm1006534] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of cyclopropylamine, cyclopentylamine, and cyclohexylamine with trans-[PtCl2(NCMe)2] afforded the bis-cationic complexes trans-[Pt(amine)2(Z-amidine)2]2+[Cl-]2, 1-3. The solution behavior and biological activity have been studied in different solvents (DMSO, water, polyethylene glycol (PEG 400), and polyethylene glycol dimethyl ether (PEG-DME 500)). The biological activity was strongly influenced by the cycloaliphatic amine ring size, with trans-[Pt(NH2CH(CH2)4CH2)2{N(H) horizontal lineC(CH3)N(H)CH(CH2)4CH2}2]2+[Cl-]2 (3) being the most active compound. Complex 3 overcame both cisplatin and MDR resistance, inducing cancer cell death through p53-mediated apoptosis. Alkaline single-cell gel electrophoresis experiments indicated direct DNA damage, reasonably attributable to DNA adducts of trans-[PtCl(amine)(Z-amidine)2][Cl] species, which can evolve to produce disruptive and nonrepairable lesions on DNA, thus leading to the drug-induced programmed cancer cell death. Preliminary in vivo antitumor studies on C57BL mice bearing Lewis lung carcinoma highlighted that complex 3 promoted a significant and dose-dependent tumor growth inhibition without adverse side effects.
Collapse
Affiliation(s)
- Cristina Marzano
- Department of Pharmaceutical Sciences, Universy of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
19
|
Park S, Kim AJ, Lee M. Synergic effects of α-tocopherol and β-carotene on tert-butylhydroperoxide-induced HepG2 cell injury. Toxicol Ind Health 2009; 25:311-20. [DOI: 10.1177/0748233709106443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidative stress produced by the dietary or chemical substrates is one of the major causes of liver cell injury. In this study, we compared the effects of two dietary antioxidants, α-tocopherol (α-T) and β-carotene (β-C) against tert-butyl hydroperxide (tBHP)-induced oxidative stress in human hepatoma HepG2 cells. Cell proliferation, lipid peroxidation (LPO), cellular lactate dehydrogenase (LDH), [3H]-aflatoxin B1(AFB1)-DNA adduct formation, and cytochrome P450 2E1 (CYP2E1) expression were determined after antioxidants were added to the tBHP-stressed cells. When compared to an ethanol-based control, all biomarkers for the cell damage were significantly increased by treatments. Treatments of β-C or the combination of two antioxidants at 50 ppm for 48 h enhanced cell proliferation ( P < 0.05) compared to tBHP control. The antioxidative and cytoprotective actions of α-T and β-C, alone or in combination, were associated with modulation of microsomal CYP2E1 expression, corresponding to the regulation of LPO production ( P < 0.0001). Our results indicate that α-T and β-C may contribute differently to protection of cellular membrane disruption in CYP2E1-expressing HepG2 cells. Moreover, the combination of α-T and β-C appears to impel the greater protection of pathogenic processes of oxidative stress in liver.
Collapse
Affiliation(s)
- S Park
- Department of Oriental Medical Food and Nutrition, Semyung University, Seoul, Korea
| | - AJ Kim
- Department of Food & Nutrition, Hyejeon College, Choongnam, Korea
| | - M Lee
- Department of Food and Nutrition, Sungshin Women’s University, Seoul, Korea
| |
Collapse
|
20
|
Lowe GM, Vlismas K, Graham DL, Carail M, Caris-Veyrat C, Young AJ. The degradation of (all-E)-beta-carotene by cigarette smoke. Free Radic Res 2009; 43:280-6. [PMID: 19177256 DOI: 10.1080/10715760802691497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of cigarette smoke in promoting the degradation of (all-E)-beta-carotene have been studied, but some conflicting results promoted a further study. beta-Carotene was solubilized in hexane and challenged with filtered cigarette smoke both at room temperature and at -20 degrees C. The products arising from smoke-induced oxidation were assessed using a combination of HLPC-DAD, LC-MS and GC-MS. At room temperature the degradation of beta-carotene was very rapid, with only a few products being detected using HPLC-DAD. A range of volatile products including beta-ionone, beta-cyclocitral and 5,6-epoxy-beta-ionone were detected using GC-MS. In contrast, when the reaction was slowed (by reducing the reaction temperature), a much wider range of products could be detected by HPLC-DAD, including 4-nitro-beta-carotene and several of its geometric isomers. These degradation products suggest that the C4 position on the beta-carotene end-group plays a key role in initiating free radical attack.
Collapse
|
21
|
Abstract
Este artigo discute as possibilidades de proteção contra o desenvolvimento do câncer, proporcionadas por carotenóides provenientes da alimentação, com base em uma revisão da literatura. Os carotenóides têm demonstrado uma ação protetora contra a carcinogênese, tanto em estudos in vitro como in vivo, com animais e humanos. Entre eles, a beta-criptoxantina, a fucoxantina, a astaxantina, a capsantina, a crocetina e o fitoeno, têm sido pouco explorados, e a literatura ainda se mostra extremamente limitada e pouco conclusiva. Estudos experimentais com humanos demonstraram não haver efeito, ou efeito reverso, do beta-caroteno, no entanto, não incluíram anteriormente variáveis intervenientes e interativas que deveriam ter sido controladas. A partir da evidência científica, baseada em estudos epidemiológicos e ensaios experimentais recentes, e da elucidação dos mecanismos de atuação de fitoquímicos relacionados à maior proteção contra o câncer, conclui-se que a alimentação rica em carotenóides provenientes das frutas, legumes e verduras, representa um possível fator de proteção contra o desenvolvimento do câncer.
Collapse
|
22
|
Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage:repair balance in human lymphocytes. Br J Nutr 2007; 91:63-72. [PMID: 14748939 DOI: 10.1079/bjn20031001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological evidence has shown that the habitual consumption of diets high in fruits and vegetables is associated with reduced risk of cancers. The challenge is to identify causal mechanisms of effect. The aim of the current study was to determine whether an increase in rate of removal of DNA single-strand breaks (SSB) following oxidative challenge could be provokedex vivoin peripheral blood lymphocytes (PBL). The PBL were isolated from apparently healthy volunteers following dietary intervention with: (1) a mixed carotene capsule; (2) a daily portion of cooked minced carrots; (3) a matched placebo; (4) a portion of mandarin oranges; (5) vitamin C tablets. Single-cell gel electrophoresis was employed to measure baseline levels of SSB and DNA susceptibility to oxidative damage, and to monitor the number of SSB over 4 h, in both unchallenged and H2O2-treated PBL. The enzymatic capacity for repair of different types of DNA oxidative lesions was also measured using two related cell-free assays. There was no evidence that any of the dietary supplementation regimens altered baseline levels of SSB, provided any direct antioxidant protection or altered DNA repair capacity, with two exceptions: the number of SSB following exposure to H2O2decreased more rapidly in PBL from volunteers given the mixed carotene capsules and repair patch synthesis activity in PBL increased from volunteers given the cooked carrots. These results suggest that carotenoids and carotenoid-rich foods can influence DNA damage:repair by modulation of discrete stages in the DNA repair mechanisms.
Collapse
Affiliation(s)
- Siân B Astley
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | |
Collapse
|
23
|
Astley SB, Hughes DA, Wright AJA, Elliott RM, Southon S. DNA damage and susceptibility to oxidative damage in lymphocytes: effects of carotenoidsin vitroandin vivo. Br J Nutr 2007; 91:53-61. [PMID: 14748938 DOI: 10.1079/bjn20031028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reports on the effects of carotenoids are conflicting. The present paper examines similarities and differences from contiguous studiesin vitroandin vivo. Single-cell gel electrophoresis was used to measure the frequency of single-strand breaks (SSB) in the cell line MOLT-17 (as a model system) and human peripheral blood lymphocytes (PBL). MOLT-17 cells were supplemented with β-carotene, lutein or lycopene at a range of concentrations (0·00–8·00 μmol/l) using a liposome delivery method. Uptake was dose-dependent. β-Carotene concentration in the media had no effect on SSB in control cells, but incubation with lycopene or lutein (>2·00 μmol/l) increased the numbers of SSB in control cells. MOLT-17 DNA was less susceptible to oxidative damage (100 μmol H2O2/l, 5 min, 4 °C) following incubation with carotenoids between 0·50 and 1·00 μmol/l; at >1·00 μmol/l the effects were ambiguous. Apparently healthy male volunteers supplemented their habitual diets with lutein, β-carotene or lycopene (natural isolate capsules, 15 mg/d, 4 weeks) in three independent studies, raising plasma concentrations to different extents. Lycopene and lutein had no effect on SSB in control PBL or following oxidative challenge. However, increased plasma β-carotene was associated with more SSB in control cells whilst PBL DNA resistance to oxidative damageex vivowas unaffected. These results suggest that the carotenoids are capable of exerting two overlapping but distinct effects: antioxidant protection by scavenging DNA-damaging free radicals and modulation of DNA repair mechanisms.
Collapse
Affiliation(s)
- Siân B Astley
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
24
|
Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V. Transplatin Is Cytotoxic When Photoactivated: Enhanced Formation of DNA Cross-Links. J Med Chem 2006; 49:7792-8. [PMID: 17181161 DOI: 10.1021/jm0606692] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well-known that although cisplatin, [cis-[PtCl2(NH3)2], is an anticancer drug, its isomer transplatin is not cytotoxic. Here we show that transplatin is almost as cytotoxic as cisplatin when treated cells (human keratinocytes HaCaT and ovarian cancer A2780 cells) are irradiated with UVA light (50 min, 1.77 mW cm-2). Chemical studies show that light activates both chloride ligands of transplatin, and experiments on pSP73 plasmid DNA and a 23 base-pair DNA duplex show that irradiation can greatly enhance formation of interstrand cross-links and of DNA-protein cross-links (which are not formed in the dark). Comet assays showed that UVA irradiation of transplatin-treated cells resulted in an increased inhibition of H2O2-induced DNA migration, supporting the conclusion that the cytotoxicity of photoactivated transplatin is mainly due to formation of DNA interstrand and DNA-protein cross-links.
Collapse
Affiliation(s)
- Pavla Heringova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
Anti-mitotic and anti-genotoxic effects of Plantago lanceolata aqueous extract on Allium cepa root tip meristem cells. Biologia (Bratisl) 2006. [DOI: 10.2478/s11756-006-0142-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Muzandu K, Ishizuka M, Sakamoto KQ, Shaban Z, El Bohi K, Kazusaka A, Fujita S. Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications. Toxicol Appl Pharmacol 2006; 215:330-40. [PMID: 16647730 DOI: 10.1016/j.taap.2006.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 03/16/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and beta-carotene, on peroxynitrite-mediated modifications in plasmid DNA as well as cellular DNA and proteins were investigated. In pUC18 plasmid DNA, these carotenoids strongly inhibited DNA strand breaks caused by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1). SIN-1 was also used to determine effects on DNA damage and protein tyrosine nitration in Chinese hamster lung fibroblasts. SIN-1 dose-dependently increased nitration of proteins in cells above basal levels as determined by Western blotting. This nitration was inhibited in the presence of the uric acid as well as lycopene. Physiological concentrations (0.31-10 microM) of lycopene and beta-carotene also had protective effects on DNA damage, as measured by the comet assay. Lycopene significantly reduced DNA damage particularly, in the median range of concentrations (2.5 microM). The protective effects of lycopene and beta-carotene could be due to their scavenging of reactive oxygen (ROS) and/or nitrogen species (RNS) as they reduce the amount of intracellular ROS/RNS produced following treatment with SIN-1 by as much as 47.5% and 42.4%, respectively. The results obtained in this study suggest that carotenoids may alleviate some of the deleterious effects of peroxynitrite and possibly other reactive nitrogen species as well in vivo.
Collapse
Affiliation(s)
- Kaampwe Muzandu
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Phenolic compounds protect HepG2 cells from oxidative damage: relevance of glutathione levels. Life Sci 2006; 79:2056-68. [PMID: 16857214 DOI: 10.1016/j.lfs.2006.06.042] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/22/2006] [Accepted: 06/30/2006] [Indexed: 01/16/2023]
Abstract
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.
Collapse
Affiliation(s)
- Cristovao F Lima
- Department of Biology, Centre of Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
28
|
Alija AJ, Bresgen N, Sommerburg O, Langhans CD, Siems W, Eckl PM. β-Carotene breakdown products enhance genotoxic effects of oxidative stress in primary rat hepatocytes. Carcinogenesis 2006; 27:1128-33. [PMID: 16418177 DOI: 10.1093/carcin/bgi342] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since it has to be expected that individuals exposed to oxidative stress who take supplements of beta-carotene are simultaneously exposed to both beta-carotene cleavage products (CPs) and oxidative stress, and both exposures have been demonstrated to cause genotoxic effects in primary rat hepatocytes, cyto- and genotoxic effects on primary rat hepatocytes after supplementation of the medium with increasing concentrations of a CP mixture during exposure to oxidative stress by treatment with either DMNQ (2,3-dimethoxy-1,4-naphthoquinone) or hypoxia/reoxygenation (Hy/Reox) was investigated. The cytological endpoints analysed were the mitotic indices, the percentages of apoptotic and necrotic cells, the percentages of micronucleated (MN) cells and the number of chromosomal aberrations (CAs) and sister chromatid exchanges (SCE). The results obtained clearly demonstrate that the CP mixture enhances the genotoxic effects of oxidative stress exposure, whereas it had no effect at all on the endpoints of cytotoxicity studied. These results further support the hypothesis that CP might be responsible for the reported carcinogenic response in the beta-CArotene and Retinol Efficacy Trial (CARET) and Alpha-Tocopherol Beta-carotene Cancer prevention (ATBC) chemoprevention trials.
Collapse
Affiliation(s)
- A J Alija
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Moseley H, Ibbotson S, Woods J, Brancaleon L, Lesar A, Goodman C, Ferguson J. Clinical and research applications of photodynamic therapy in dermatology: Experience of the scottish PDT centre. Lasers Surg Med 2006; 38:403-16. [PMID: 16788933 DOI: 10.1002/lsm.20369] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES The Scottish PDT Centre has carried out 3,442 treatments on 762 patients with superficial skin lesions, especially superficial basal cell carcinoma (sBCC), Bowen's disease (BD) and actinic keratosis (AK). STUDY DESIGN MATERIALS AND METHODS: The article reviews our experience of various light sources and associated dosimetry; thereafter we discuss clinical outcome followed by some of our research studies in clinically important areas. RESULTS We show that improved dosimetry is required to ensure an optimal light dose is delivered to the tumour. We have shown that photosensitizers and proteins interact in such a way that their photophysical and photochemical properties are modified. We have also demonstrated the presence of DNA strand breaks with two different photosensitizers, but there is no evidence that PDT is significantly mutagenic in clinical practice. CONCLUSIONS In our experience, topical PDT is generally well tolerated and is an effective treatment of sBCC, BD, AK, field change and lesions at sites of poor healing.
Collapse
Affiliation(s)
- H Moseley
- The Photobiology Unit & Scottish PDT Centre, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Based on extensive epidemiological observation, fruits and vegetables that are a rich source of carotenoids are thought to provide health benefits by decreasing the risk of various diseases, particularly certain cancers and eye diseases. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Additionally, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.
Collapse
Affiliation(s)
- Norman I Krinsky
- Department of Biochemistry, School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111-1837, USA.
| | | |
Collapse
|
31
|
Lapshina EA, Zavodnik IB, Labieniec M, Rekawiecka K, Bryszewska M. Cytotoxic and genotoxic effects of tert-butyl hydroperoxide on Chinese hamster B14 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 583:189-97. [PMID: 15927872 DOI: 10.1016/j.mrgentox.2005.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/10/2005] [Accepted: 03/24/2005] [Indexed: 11/29/2022]
Abstract
The organic hydroperoxide, tert-butyl hydroperoxide (t-BHP), is a useful model compound to study mechanisms of oxidative cell injury. In the present work, we examined the features of the interactions of this oxidant with Chinese hamster B14 cells. The aim of our study was to reveal a possible role of structural modifications in membranes and loss of DNA integrity in t-BHP-induced cell injury and death. The tert-butyl hydroperoxide treatment (100-1000 microM, 37 degrees C for 1h) did not decrease cell viability (as measured by cell-specific functional activity with an MTT test), but completely prevented cell growth. We observed intracellular reduced glutathione (GSH) oxidation and total glutathione (GSH+GSSG) depletion, a slight increase in the level of lipid-peroxidation products, an enhancement of membrane fluidity, intracellular potassium leakage and a significant decrease of membrane potential. At oxidant concentrations of 100-1500 microM, a significant damage to DNA integrity was observed as revealed by the Comet assay. The inhibition of cell proliferation (cell-growth arrest) may be explained by genotoxicity of t-BHP, by disturbance of the cellular redox-equilibrium (GSH oxidation) and by structural membrane modifications, which result in ion-non-selective pore formation. The disturbance in passive membrane permeability and the DNA damage may be the most dramatic cell impairments induced by t-BHP treatment. The presence of another oxidant, hypochlorous acid (HOCl), completely prevented t-BHP-induced DNA strand breaks, perhaps due to extracellular oxidation of t-BHP by HOCl.
Collapse
Affiliation(s)
- Elena A Lapshina
- Institute of Biochemistry, National Academy of Sciences of Belarus, BLK-50, 230017 Grodno, Belarus
| | | | | | | | | |
Collapse
|
32
|
Palozza P. Can β-carotene regulate cell growth by a redox mechanism? An answer from cultured cells. Biochim Biophys Acta Mol Basis Dis 2005; 1740:215-21. [PMID: 15949689 DOI: 10.1016/j.bbadis.2004.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/17/2004] [Accepted: 12/08/2004] [Indexed: 11/30/2022]
Abstract
Many studies suggest a protective role of beta-carotene against cancer. However, the ATBC and the CARET trials have shown that beta-carotene increases the incidence of lung cancer in heavy smokers and asbestos workers. To explain this paradox, it can be hypothesized that beta-carotene modulates intracellular redox status and through this mechanism, it affects redox-sensitive molecular pathways involved in the regulation of cell cycle progression and apoptosis. Studies conducted in cultured cells seem to confirm such a hypothesis. At low concentrations, the carotenoid may serve as an antioxidant, inhibiting free radical production, while at relatively high concentrations and/or in the presence of a chronic oxidative stress (i.e. smoke), it may behave as a prooxidant, propagating free radical-induced reactions, consuming endogenous antioxidants and inducing DNA oxidative damage. In this context, it may regulate cell growth and death by the modulation of redox-sensitive genes and transcription factors.
Collapse
Affiliation(s)
- Paola Palozza
- Institute of General Pathology, Catholic University, L.go F. Vito, 1, 00168 Rome, Italy.
| |
Collapse
|
33
|
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2005; 266:37-56. [PMID: 15646026 DOI: 10.1023/b:mcbi.0000049134.69131.89] [Citation(s) in RCA: 1057] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC --> TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.
Collapse
Affiliation(s)
- Marian Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
34
|
El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 2004; 430:37-48. [PMID: 15325910 DOI: 10.1016/j.abb.2004.03.007] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/03/2004] [Indexed: 11/24/2022]
Abstract
The purpose of this review is to summarise the current state of knowledge of (i) the kinetics and mechanisms of radical reactions with carotenoids, (ii) the properties of carotenoid radicals, and (iii) the antioxidant/pro-oxidant properties of carotenoids.
Collapse
Affiliation(s)
- Ali El-Agamey
- Lennard-Jones Laboratories, School of Chemistry and Physics, Keele University, Keele, Staffs ST5 5BG, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 2004; 198:315-28. [PMID: 15138058 DOI: 10.1016/j.tox.2004.02.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article gives an overview of the results of genotoxicity tests, which have been conducted within the last 5 years with the human liver cell line HepG2. It is an update of an earlier review from 1998 (by Knasmüller et al.). In addition, a number of publications are discussed which are relevant for the use of human derived liver cell lines in genetic toxicology. They concern the establishment of new endpoints, the development of new cell lines and possible pitfalls and problems. HepG2 cells have been used to test a wide variety of compounds over the last years. The most interesting observations are that the cells are highly sensitive toward polycyclic aromatic hydrocarbons and that genotoxic effects are seen with a number of carcinogenic mycotoxins, that give negative results in other in vitro assays. Carcinogenic metals such as As and Cd caused positive results as well, whereas only marginal or negative results were seen with nitrosamines. The low sensitivity toward these latter carcinogens is probably due to a lack of cytochrome P4502E1 which catalyses their activation. Also, a number of structurally different synthetic pesticides as well as bioactive plant constituents ("natural pesticides") have been tested and with some of them genotoxic effects were found. In most experiments, the formation of micronuclei was used as an endpoint; however also the single cell gel electrophoresis assay is increasingly used. Several transfectant lines of HepG2 have been constructed which express increased levels of phase I enzymes (such as CYP1A1, CYP1A2, CYP2E1 etc.); furthermore, cell lines became available which express human glutathione-S-transferases. These new clones might be particularly useful for the investigation of specific classes of genotoxicants and also for mechanistic studies. Apart from HepG2 cells, a number of other human derived liver cell lines have been isolated, but so far no data from genotoxicity experiments are available, except for Hep3B cells, which were compared with HepG2 and found to be less sensitive in general. Studies with HepG2 clones of a different origin indicate that the cells differ in regard to their sensitivity toward genotoxicants; also medium effects and the cultivation time might affect the outcome of genotoxicity studies. Overall, the results support the assumption that HepG2 cells are a suitable tool for genotoxicity testing.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Gordon M Lowe
- School of Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | | | | |
Collapse
|
37
|
Palozza P, Serini S, Di Nicuolo F, Piccioni E, Calviello G. Prooxidant effects of β-carotene in cultured cells. Mol Aspects Med 2003; 24:353-62. [PMID: 14585306 DOI: 10.1016/s0098-2997(03)00031-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a growing body of interest on the role of beta-carotene and other carotenoids in human chronic diseases, including cancer. While epidemiological evidence shows that people who ingest more dietary carotenoids exhibit a reduced risk for cancer, results from intervention trials indicate that supplemental beta-carotene enhances lung cancer incidence and mortality among smokers. A possible mechanism which can explain the dual role of beta-carotene as both a beneficial and a harmful agent in cancer as well as in other chronic diseases is its ability in modulating intracellular redox status. beta-Carotene may serve as an antioxidant or as a prooxidant, depending on its intrinsic properties as well as on the redox potential of the biological environment in which it acts. This review summarizes the available evidence for a prooxidant activity of beta-carotene in cultured cells, focusing on biochemical and molecular markers of oxidative stress, which have been reported to be enhanced by the carotenoid.
Collapse
Affiliation(s)
- Paola Palozza
- Institute of General Pathology, Catholic University, L go F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
38
|
Astley SB, Elliott RM, Archer DB, Southon S. Increased cellular carotenoid levels reduce the persistence of DNA single-strand breaks after oxidative challenge. Nutr Cancer 2003; 43:202-13. [PMID: 12588700 DOI: 10.1207/s15327914nc432_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Dietary antioxidants, such as the carotenoids, may protect DNA from oxidative damage. This has been proposed to explain the epidemiological association between higher consumption of fruits and vegetables, which are rich in antioxidants, and lower incidence of cancer. However, this remains to be demonstrated conclusively. The effects of carotenoid supplementation on 1) baseline DNA damage, 2) susceptibility of cellular DNA to oxidative attack, and 3) DNA repair were measured in the human lymphocyte cell line Molt-17. Baseline DNA damage, susceptibility to oxidant attack (100 mumol/l H2O2 for 5 min at 4 degrees C), and disappearance of DNA single-strand breaks (SSB) after oxidative challenge were monitored by single-cell gel electrophoresis. DNA repair patch synthesis activity in cell extracts was determined using assays that measure nucleotide incorporation during repair of oxidative lesions in template DNA. Unlike single-cell gel electrophoresis, the parameters measured with these assays are not dependent on strand break religation. There was no evidence that beta-carotene, lutein, or beta-cryptoxanthin supplementation protected cellular DNA from oxidation under basal conditions or after oxidative challenge. However, only carotenoid-supplemented cells exhibited a significant decrease in numbers of SSB over a 2-h period after treatment with H2O2. Carotenoid supplementation did not provoke any detectable change in repair patch synthesis activity. We conclude that supplementation with carotenoids at 8 mumol/l does not provide significant antioxidant protection for DNA in Molt-17 lymphocytes but may enhance recovery of cells from oxidative challenge, as measured by loss of SSB. We argue that these data are most consistent with carotenoids acting to enhance DNA strand break repair.
Collapse
Affiliation(s)
- Siân B Astley
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | |
Collapse
|
39
|
Palozza P, Serini S, Torsello A, Boninsegna A, Covacci V, Maggiano N, Ranelletti FO, Wolf FI, Calviello G. Regulation of cell cycle progression and apoptosis by beta-carotene in undifferentiated and differentiated HL-60 leukemia cells: possible involvement of a redox mechanism. Int J Cancer 2002; 97:593-600. [PMID: 11807783 DOI: 10.1002/ijc.10094] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although epidemiologic studies have demonstrated that a high intake of vegetables containing beta-carotene lowers the risk of cancer, recent intervention studies have revealed that beta-carotene supplementation to smokers resulted in a high incidence of lung cancer. We hypothesized that beta-carotene may act as a pro- or anticancerogenic agent by modulating pathways involved in cell growth and that such a modulation may involve a redox mechanism. To test this hypothesis, cell proliferation, apoptosis and redox status were evaluated in undifferentiated and dimethylsulfoxide-differentiated HL-60 cells exposed to beta-carotene. The carotenoid modified cell cycle progression and induced apoptosis in a dose-dependent manner. These effects were more remarkable in undifferentiated cells than in differentiated cells. In accord with these findings, in undifferentiated cells, beta-carotene was more effective in decreasing cyclin A and Bcl-2 expression and in increasing p21 and p27 expression. Neither Bcl-xL nor Bax expression were significantly modified by the carotenoid. From a mechanistic point of view, the delay in cell growth by beta-carotene was highly coincident with the increased intracellular reactive oxygen species production and oxidized glutathione content induced by the carotenoid. Moreover, alpha-tocopherol minimized the effects of beta-carotene on cell growth. These data provide evidence that beta-carotene modulates molecular pathways involved in cell cycle progression and apoptosis and support the hypothesis that a redox mechanism may be implicated. They also suggest that differentiated cells may be less susceptible to the carotenoid than highly neoplastic undifferentiated cells.
Collapse
Affiliation(s)
- Paola Palozza
- Institute of General Pathology, Catholic University, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Larry Machlin had many and varied interests in nutrition in general and antioxidants in particular. Although he was interested primarily in vitamin E, he shared a curiosity about the actions of carotenoids that most nutritionists have. He served on the Organizing Committee of the 8th International Symposium on Carotenoids that was held in Boston in June 1987. In that role, he was an active participant in helping to select sessions and then identifying the speakers who spoke at those sessions. As part of that Organizing Committee, I had the opportunity to grasp his breadth of science and his knowledge about the most current work, even in fields in which he was not directly involved. His loss has been felt, not only for his scientific contributions but also the warmth and kindness of his personality.
Collapse
Affiliation(s)
- N I Krinsky
- Department of Biochemistry, School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111-1837, USA.
| |
Collapse
|
41
|
Crabb DW, Pinairs J, Hasanadka R, Fang M, Leo MA, Lieber CS, Tsukamoto H, Motomura K, Miyahara T, Ohata M, Bosron W, Sanghani S, Kedishvili N, Shiraishi H, Yokoyama H, Miyagi M, Ishii H, Bergheim I, Menzl I, Parlesak A, Bode C. Alcohol and retinoids. Alcohol Clin Exp Res 2001. [PMID: 11391073 DOI: 10.1111/j.1530-0277.2001.tb02398.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Hirokazu Yokoyama and David Crabb. The presentations were (1) Roles of vitamin A, retinoic acid, and retinoid receptors in the expression of liver ALDH2, by J. Pinaire, R. Hasanadka, M. Fang, and David W. Crabb; (2) Alcohol, vitamin A, and beta-carotene: Adverse interactions, by M. A. Leo and Charles S. Lieber; (3) Retinoic acid, hepatic stellate cells, and Kupffer cells, by Hidekazu Tsukamoto, K. Motomura, T. Miyahara, and M. Ohata; (4) Retinoid storage and metabolism in liver, by William Bosron, S. Sanghani, and N. Kedishvili; (5) Characterization of oxidation pathway from retinol to retinoic acid in esophageal mucosa, by Haruko Shiraishi, Hirokazu Yokoyama, Michiko Miyagi, and Hiromasa Ishii; and (6) Ethanol in an inhibitor of the cytosolic oxidation of retinol in the liver and the large intestine of rats as well as in the human colon mucosa, by Ina Bergheim, Ina Menzl, Alexandr Parlesak, and Christiane Bode.
Collapse
Affiliation(s)
- D W Crabb
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5124, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The ability of dietary carotenoids such as beta-carotene and lycopene to act as antioxidants in biological systems is dependent upon a number of factors. While the structure of carotenoids, especially the conjugated double bond system, gives rise to many of the fundamental properties of these molecules, it also affects how these molecules are incorporated into biological membranes. This, in turn, alters the way these molecules interact with reactive oxygen species, so that the in vivo behavior may be quite different from that seen in solution. The effectiveness of carotenoids as antioxidants is also dependent upon their interaction with other coantioxidants, especially vitamins E and C. Carotenoids may, however, lose their effectiveness as antioxidants at high concentrations or at high partial pressures of oxygen. It is unlikely that carotenoids actually act as prooxidants in biological systems; rather they exhibit a tendency to lose their effectiveness as antioxidants.
Collapse
Affiliation(s)
- A J Young
- School of Biological and Earth Sciences, Liverpool John Moores University, UK.
| | | |
Collapse
|
43
|
Kovary K, Louvain TS, Costa e Silva MC, Albano F, Pires BB, Laranja GA, Lage CL, Felzenszwalb I. Biochemical behaviour of norbixin during in vitro DNA damage induced by reactive oxygen species. Br J Nutr 2001; 85:431-40. [PMID: 11348557 DOI: 10.1079/bjn2000287] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Naturally occurring antioxidants such as carotenoids are extensively studied for their potential in reducing the risk for cancer and other chronic diseases. In the present study, the radical-scavenger activity of the food additive norbixin, a water-soluble carotenoid extracted from Bixa orellana seeds and commercialized as annatto, was evaluated under conditions of DNA damage induced by reactive oxygen species, particularly by hydroxyl radicals. The cell-free scavenger activity of norbixin was evaluated using plasmid DNA as target molecule and Sn2+ or Fe2+ as oxidant. The addition of H2O2 enhanced DNA breakage induced by metal ions, particularly Fe2+. Under these conditions, norbixin started to protect plasmid DNA against single- and double-strand breakage at a metal:norbixin ratio of 1:1 (Sn2+) and 1:10 (Fe2+). However, at lower ratios to Sn2+, norbixin enhanced Sn2+-induced DNA breakage (P < 0.05). The ability of norbixin to protect genomic DNA against oxidative damage was assessed in murine fibroblasts submitted to H2O2-induced oxidative stress and the results were evaluated by the comet assay. Under low serum conditions (2 % fetal bovine serum (FBS)), a protective effect of norbixin against H2O2-induced DNA breakage was inversely related to its concentration, a protection ranging from 41 % (10 microm) to 21 % (50 microm). At higher concentrations of norbixin, however, oxidative DNA breakage was still enhanced, even in the presence of a high serum concentration (10 % FBS). Under normal conditions, norbixin per se has no detectable genotoxic or cytotoxic effects on murine fibroblasts. The antimutagenic potential of norbixin against oxidative mutagens was also evaluated by the Salmonella typhimurium assay, with a maximum inhibition of 87 % against the mutagenicity induced by H2O2. Although plasmid DNA and Ames data indicated that norbixin can protect DNA against oxidative damage, it seems to be a risky guardian of genomic DNA as it can also increase the extent of oxidative damage.
Collapse
Affiliation(s)
- K Kovary
- Departamento de Bioquímica, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Crabb DW, Pinairs J, Hasanadka R, Fang M, Leo MA, Lieber CS, Tsukamoto H, Motomura K, Miyahara T, Ohata M, Bosron W, Sanghani S, Kedishvili N, Shiraishi H, Yokoyama H, Miyagi M, Ishii H, Bergheim I, Menzl I, Parlesak A, Bode C. Alcohol and retinoids. Alcohol Clin Exp Res 2001; 25:207S-217S. [PMID: 11391073 DOI: 10.1097/00000374-200105051-00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Hirokazu Yokoyama and David Crabb. The presentations were (1) Roles of vitamin A, retinoic acid, and retinoid receptors in the expression of liver ALDH2, by J. Pinaire, R. Hasanadka, M. Fang, and David W. Crabb; (2) Alcohol, vitamin A, and beta-carotene: Adverse interactions, by M. A. Leo and Charles S. Lieber; (3) Retinoic acid, hepatic stellate cells, and Kupffer cells, by Hidekazu Tsukamoto, K. Motomura, T. Miyahara, and M. Ohata; (4) Retinoid storage and metabolism in liver, by William Bosron, S. Sanghani, and N. Kedishvili; (5) Characterization of oxidation pathway from retinol to retinoic acid in esophageal mucosa, by Haruko Shiraishi, Hirokazu Yokoyama, Michiko Miyagi, and Hiromasa Ishii; and (6) Ethanol in an inhibitor of the cytosolic oxidation of retinol in the liver and the large intestine of rats as well as in the human colon mucosa, by Ina Bergheim, Ina Menzl, Alexandr Parlesak, and Christiane Bode.
Collapse
Affiliation(s)
- D W Crabb
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5124, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang P, Omaye ST. DNA strand breakage and oxygen tension: effects of beta-carotene, alpha-tocopherol and ascorbic acid. Food Chem Toxicol 2001; 39:239-46. [PMID: 11278055 DOI: 10.1016/s0278-6915(00)00131-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA damage is involved in carcinogenesis, aging and other degenerative diseases. The relationship between DNA strand breakage and beta-carotene (0.1-1.6 microM) was examined under different O(2) tensions and with other antioxidants: alpha-tocopherol (5-80 microM), ascorbic acid (10-160 microM) and mixtures of these antioxidants. Supercoiled plasmid DNA pBR322 was incubated with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) to induce DNA strand breaks in the presence of antioxidants under 15, 150, and 760 torr of O(2) tension. Under 15 torr of O(2) tension, beta-carotene, alpha-tocopherol, ascorbic acid and mixtures of these antioxidants provided a dose-dependent protection against AAPH-induced DNA strand breaks. The best protection was achieved in the mixture of antioxidants. Under 150 torr of oxygen tension, the antioxidant effect of beta-carotene was diminished at > or = 0.8 microM. A prooxidant effect was found at 0.8 > or = microM beta-carotene, producing more single- and double-strand breaks. alpha-Tocopherol and ascorbic acid exhibited dose-dependent antioxidant effects at 150 torr of oxygen tension. Under 760 torr of O(2) tension, the prooxidant effect of 0.8 microM beta-carotene was significant, causing supercoiled DNA to completely breakdown to circular and linear forms. In addition, 760 torr of O(2) tension attenuated the antioxidant effects of alpha-tocopherol and ascorbic acid. Thus, beta-carotene causes concentration-dependent DNA breakdown at high O(2) tension. The protection of DNA from the prooxidant effects of beta-carotene afforded by alpha-tocopherol and/or ascorbic acid was limited at high O(2) tension.
Collapse
Affiliation(s)
- P Zhang
- Environmental Sciences and Health Graduate Program, Mail Stop 142, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
46
|
Abstract
In the past, alcoholic liver disease was attributed exclusively to dietary deficiencies, but experimental and judicious clinical studies have now established alcohol's hepatotoxicity. Despite an adequate diet, it can contribute to the entire spectrum of liver diseases, mainly by generating oxidative stress through its microsomal metabolism via cytochrome P4502E1 (CYP2E1). It also interferes with nutrient activation, resulting in changes in nutritional requirements. This is exemplified by methionine, one of the essential amino acids for humans, which needs to be activated to S-adenosylmethionine (SAMe), a process impaired by liver disease. Thus, SAMe rather than methionine is the compound that must be supplemented in the presence of significant liver disease. In baboons, SAMe attenuated mitochondrial lesions and replenished glutathione; it also significantly reduced mortality in patients with Child A or B cirrhosis. Similarly, decreased phosphatidylethanolamine methyltransferase activity is associated with alcoholic liver disease, resulting in phosphatidylcholine depletion and serious consequences for the integrity of membranes. This can be offset by polyenylphosphatidylcholine (PPC), a mixture of polyunsaturated phosphatidylcholines comprising dilinoleoylphosphatidylcholine (DLPC), which has high bioavailability. PPC (and DLPC) opposes major toxic effects of alcohol, with down-regulation of CYP2E1 and reduction of oxidative stress, deactivation of hepatic stellate cells, and increased collagenase activity, which in baboons, results in prevention of ethanol-induced septal fibrosis and cirrhosis. Corresponding clinical trials are ongoing.
Collapse
Affiliation(s)
- C S Lieber
- Mount Sinai School of Medicine and Alcohol Research and Treatment Center, Section of Liver Disease and Nutrition, Bronx Veterans Affairs Medical Center, Bronx, New York 10468, USA.
| |
Collapse
|
47
|
Lieber CS. Hepatic, metabolic, and nutritional disorders of alcoholism: from pathogenesis to therapy. Crit Rev Clin Lab Sci 2000; 37:551-84. [PMID: 11192332 DOI: 10.1080/10408360091174312] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Much progress has been made in the understanding of the pathogenesis of alcoholic liver disease, resulting in an improvement in treatment. Nutritional deficiencies should be corrected when present but, because of the alcohol-induced disease process, some of the nutritional requirements change. For instance, methionine, one of the essential amino acids for humans, must be activated to S-adenosylmethionine (SAMe), but, in severe liver disease, the activity of the corresponding enzyme is depressed. Therefore, the resulting deficiencies and associated pathology can be attenuated by the administration of SAMe, but not by methionine. Similarly, phosphatidylethanolamine methyltransferase (PEMT) activity, which is important for hepatic phosphatidylcholine (PC) synthesis, is also depressed in alcoholic liver disease, therefore calling for the administration of the products of the reaction. Inasmuch as free radical generation by the ethanol-induced CYP2E1 plays a key role in the oxidative stress, inhibitors of this enzyme have great promise and PPC, which is presently being evaluated clinically, is particularly interesting because of its innocuity. In view of the striking negative interaction between alcoholic liver injury and hepatitis C, an antiviral agent is eagerly awaited that, unlike Interferon, is not contraindicated in the alcoholic. Antiinflamatory agents may also be useful. In addition to steroids, down-regulators of cytokines and endotoxin are being considered. Finally, anticraving agents such as naltrexone or acamprosate should be incorporated into any contemplated therapeutic cocktail.
Collapse
Affiliation(s)
- C S Lieber
- Alcohol Research and Treatment Center, Section of Liver Disease and Nutrition and Mount Sinai School of Medicine, Bronx Veterans Affairs Medical Center, New York 10468, USA
| |
Collapse
|
48
|
Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett 2000; 482:19-24. [PMID: 11018516 DOI: 10.1016/s0014-5793(00)02016-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Saccharomyces cerevisiae strain WYT, deficient in the YAP1 transcription factor, was used in a molecular screen to identify genes from Arabidopsis thaliana that could overcome the oxidative stress-sensitive phenotype of these yeast cells. A cDNA named CEO1 increased the tolerance to oxidative damage caused by tert-butylhydroperoxide of both the Yap1(-) mutant and the wild-type yeast. Additionally, in Yap1(-) yeast, CEO1 also induced cross-tolerance to oxidative damage caused by hydrogen peroxide and diamide. CEO1 was assigned as being part of a small gene family that, until now, is exclusively restricted to plants. In Arabidopsis, CEO1 was produced in all organs, especially in roots and stems. By using the yeast two-hybrid system, proteins that specifically interact with CEO1 in yeast were identified, and putative DNA-binding proteins were consistently recovered.
Collapse
Affiliation(s)
- E Belles-Boix
- Vakgroep Moleculaire Genetica and Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | | | | | | | | |
Collapse
|
49
|
Yusuf AT, Vian L, Sabatier R, Cano JP. In vitro detection of indirect-acting genotoxins in the comet assay using Hep G2 cells. Mutat Res 2000; 468:227-34. [PMID: 10882899 DOI: 10.1016/s1383-5718(00)00052-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The induction of DNA damage by four known promutagens (cyclophosphamide (CP), benzo(a)pyrene (BP), dimethylbenz(a)anthracene and 2-acetylaminofluorene (2AAF) was investigated on Hep G2 using the alkaline single cell electroporesis (SCGE) test, most often referred as the "comet assay". After a 3-day incubation, lysed cells embedded in agarose were electrophoresed under alkaline conditions, dyed with a SYBRgold fluorogen and analysed by the Komet software. Among the comet parameters provided by the image analysis program, statistical analysis did not identify any in particular that could best represent the DNA damages. All promutagens, when compared with the control, caused a statistically significant increase in DNA migration as determined by different parameters such as Olive tail moment, tail extent moment, tail/head or tail length. The data demonstrated the ability and the sensitivity of the comet assay when performed on Hep G2 in the detection of DNA damage induced by promutagens, and its suitability in mutagenicity testing in in vitro short-term assays.
Collapse
Affiliation(s)
- A T Yusuf
- Faculté de Pharmacie, Université Montpellier I, France
| | | | | | | |
Collapse
|
50
|
Bestwick CS, Milne L. Effects of beta-carotene on antioxidant enzyme activity, intracellular reactive oxygen and membrane integrity within post confluent Caco-2 intestinal cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:47-55. [PMID: 10699489 DOI: 10.1016/s0304-4165(99)00212-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As encountered with a plethora of other natural products, the antioxidant activity of beta-carotene has been proposed as one of the mechanisms by which diets rich in this pro-vitamin A active carotenoid apparently afford chemoprevention. Here, we report the ability of beta-carotene to alter endogenous reactive oxygen levels and antioxidant defences within non-stressed 'differentiated' monolayers of an intestinal epithelial cell line (Caco-2) and to subsequently effect resistance to general oxidative insult. The differentiated monolayers efficiently absorbed beta-carotene. Between 3 and 8 days post confluence, cultures exhibited a progressive increase in antioxidant enzyme activity and a corresponding reduction to intracellular ROS levels. The profile for antioxidant enzyme activity was unaffected by sustained daily supplementation with beta-carotene. However, after two daily treatments with 50 microM beta-carotene intracellular ROS levels were significantly reduced and there was a trend towards reduced intracellular ROS within monolayers subject to five daily treatments with 0.5 and 5 microM beta-carotene. Prolonged supplementation with 0.1 and 0.5 microM beta-carotene or short supplementation periods with 5 and 50 microM beta-carotene did not alter susceptibility to H(2)O(2). However, cultures treated daily between 3 and 8 days post confluence with 5 or 50 microM beta-carotene exhibited enhanced LDH release, increased non-adherence and enhanced Trypan blue staining when challenged with 10 mM H(2)O(2). In the absence of H(2)O(2), the beta-carotene treatments were not overtly toxic to the monolayers. These results indicate that beta-carotene does not enhance antioxidant defences within Caco-2 monolayers. The enhancement of H(2)O(2) toxicity by persistent, high doses of beta-carotene may contribute to the failure of this carotenoid to protect high risk individuals from certain degenerative conditions.
Collapse
Affiliation(s)
- C S Bestwick
- Antioxidant and Free-Radical Group, Cell Integrity Programme, Rowett Research Institute, Aberdeen, UK.
| | | |
Collapse
|