1
|
Smith CW, Nagy Z, Geer MJ, Pike JA, Patel P, Senis YA, Mazharian A. LAIR-1 and PECAM-1 function via the same signaling pathway to inhibit GPVI-mediated platelet activation. Res Pract Thromb Haemost 2024; 8:102557. [PMID: 39318773 PMCID: PMC11421324 DOI: 10.1016/j.rpth.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Background Inhibition of platelet responsiveness is important for controlling thrombosis. It is well established that platelet endothelial cell adhesion molecule-1 (PECAM-1) serves as a physiological negative regulator of platelet-collagen interactions. We recently demonstrated that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a negative regulator of platelet production and reactivity. It is however not known if LAIR-1 and PECAM-1 function in the same or different inhibitory pathways. Objectives In this study, we investigated the role of LAIR-1 alongside PECAM-1 in megakaryocyte development and platelet production and determined the functional redundancy through characterization of a LAIR-1/PECAM-1 double knockout (DKO) mouse model. Methods LAIR-1 and PECAM-1 expression in megakaryocytes were evaluated by western blotting. Megakaryocyte ploidy and proplatelet formation were evaluated by flow cytometry and fluorescent microscopy. Platelet function and signalling were compared in wild-type, LAIR-1 -/- , PECAM-1 -/- and DKO mice using aggregometry, flow cytometry and western blotting. Thrombosis was evaluated using the FeCl 3 carotid artery model. Results We show that LAIR-1/PECAM-1 DKO mice exhibit a 17% increase in platelet count. Bone marrow-derived megakaryocytes from all 3 mouse models had normal ploidy in vitro, suggesting that neither LAIR-1 nor PECAM-1 regulates megakaryocyte development. Furthermore, relative to wild-type platelets, platelets derived from LAIR-1, PECAM-1, and DKO mice were equally hyperresponsive to collagen in vitro, indicating that LAIR-1 and PECAM-1 participate in the same inhibitory pathway. Interestingly, DKO mice exhibited normal thrombus formation in vivo due to DKO mouse platelets lacking the enhanced Src family kinase activation previously shown in platelets from LAIR-1-deficient mice. Conclusion Findings from this study reveal that LAIR-1 and PECAM-1 act to inhibit GPVI-mediated platelet activation via the same signaling pathway. Mice lacking LAIR-1 and PECAM-1 do not however exhibit an increase in thrombus formation despite minor increase in platelet count and reactivity to collagen. This study adds to the growing evidence that immunoreceptor tyrosine-based inhibition motif-containing receptors are important regulators of platelet count and function.
Collapse
Affiliation(s)
- Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Mitchell J Geer
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, New York, USA
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pushpa Patel
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale (INSERM), Etablissement Français du Sang (EFS) Grand-Est, Unité Mixte de Recherche (UMR)-S 1255, Université de Strasbourg, Strasbourg, France
| | - Alexandra Mazharian
- Institut National de la Santé et de la Recherche Médicale (INSERM), Etablissement Français du Sang (EFS) Grand-Est, Unité Mixte de Recherche (UMR)-S 1255, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
|
3
|
Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 2013; 11:1800-13. [PMID: 24015866 DOI: 10.1111/jth.12359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 08/31/2023]
Abstract
Platelet activation must be tightly controlled in order to allow platelets to respond rapidly to vascular injury and prevent thrombosis from occurring. Protein-tyrosine phosphorylation is one of the main ways in which activation signals are transmitted in platelets. Although much is known about the protein-tyrosine kinases (PTKs) that initiate and propagate activation signals, relatively little is known about the protein-tyrosine phosphatases (PTPs) that modulate these signals in platelets. PTPs are a family of enzymes that dephosphorylate tyrosine residues in proteins and regulate signals transmitted within cells. PTPs have been implicated in a variety of pathological conditions, including cancer, diabetes and autoimmunity, but their functions in hemostasis and thrombosis remain largely undefined. Exciting new findings from a number of groups have revealed that PTPs are in fact critical regulators of platelet activation and thrombosis. The primary aim of this review is to highlight the unique and important functions of PTPs in regulating platelet activity. Establishing the functions of PTPs in platelets is essential to better understand the molecular basis of thrombosis and may lead to the development of improved antithrombotic therapies.
Collapse
Affiliation(s)
- Y A Senis
- Centre for Cardiovascular and Respiratory Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
4
|
Abstract
Filopodia are an important feature of actively motile cells, probing the pericellular environment for chemotactic factors and other molecular cues that enable and direct the movement of the cell. They also act as points of attachment to the extracellular matrix for the cell, generating tension that may act to pull the cell forward and/or stabilize the cell as it moves. Endothelial cell motility is a critical aspect of angiogenesis, but only a limited number of molecules have been identified as specific regulators of endothelial cell filopodia. Recent reports, however, provide evidence for the involvement of PECAM-1, an endothelial cell adhesion and signaling molecule, in the formation of endothelial cell filopodia. This commentary will focus on these studies and their suggestion that at least two PECAM-1-regulated pathways are involved in the processes that enable filopodial protrusions by endothelial cells. Developing a more complete understanding of the role of PECAM-1 in mediating various endothelial cell activities, such as the extension of filopodia, will be essential for exploiting the therapeutic potential of targeting PECAM-1.
Collapse
Affiliation(s)
- Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Moraes LA, Barrett NE, Jones CI, Holbrook LM, Spyridon M, Sage T, Newman DK, Gibbins JM. Platelet endothelial cell adhesion molecule-1 regulates collagen-stimulated platelet function by modulating the association of phosphatidylinositol 3-kinase with Grb-2-associated binding protein-1 and linker for activation of T cells. J Thromb Haemost 2010; 8:2530-41. [PMID: 20723025 PMCID: PMC3298659 DOI: 10.1111/j.1538-7836.2010.04025.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/06/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI-Fc receptor (FcR)γ-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI-FcRγ-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. OBJECTIVE To investigate the possibility that PECAM-1 regulates the formation of the Gab1-p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. METHODS The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. RESULTS PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2-p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.
Collapse
Affiliation(s)
- L A Moraes
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Eidelman O, Jozwik C, Huang W, Srivastava M, Rothwell SW, Jacobowitz DM, Ji X, Zhang X, Guggino W, Wright J, Kiefer J, Olsen C, Adimi N, Mueller GP, Pollard HB. Gender dependence for a subset of the low-abundance signaling proteome in human platelets. HUMAN GENOMICS AND PROTEOMICS : HGP 2010; 2010:164906. [PMID: 20981232 PMCID: PMC2958630 DOI: 10.4061/2010/164906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/05/2010] [Indexed: 11/23/2022]
Abstract
The incidence of cardiovascular diseases is ten-times higher in males than females, although the biological basis for this gender disparity is not known. However, based on the fact that antiplatelet drugs are the mainstay for prevention and therapy, we hypothesized that the signaling proteomes in platelets from normal male donors might be more activated than platelets from normal female donors. We report here that platelets from male donors express significantly higher levels of signaling cascade proteins than platelets from female donors. In silico connectivity analysis shows that the 24 major hubs in platelets from male donors focus on pathways associated with megakaryocytic expansion and platelet activation. By contrast, the 11 major hubs in platelets from female donors were found to be either negative or neutral for platelet-relevant processes. The difference may suggest a biological mechanism for gender discrimination in cardiovascular disease.
Collapse
Affiliation(s)
- Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Catherine Jozwik
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Wei Huang
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Stephen W. Rothwell
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - David M. Jacobowitz
- National Institute for Mental Health, NIH, 9500 Rockville Pike, Bethesda, MD 20892, USA
| | - Xiaoduo Ji
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiuying Zhang
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - William Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jerry Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jeffrey Kiefer
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Cara Olsen
- Department of Preventive Medicine and Biometrics, Uniformed Services University School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Nima Adimi
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, USU Center for Medical Proteomics, Uniformed Services University, School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
|
8
|
PECAM-1 expression and activity negatively regulate multiple platelet signaling pathways. FEBS Lett 2009; 583:3618-24. [PMID: 19850043 PMCID: PMC2791847 DOI: 10.1016/j.febslet.2009.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 01/13/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits platelet response to collagen and may also inhibit two other major platelet agonists ADP and thrombin although this has been less well explored. We hypothesized that the combined effect of inhibiting these three platelet activating pathways may act to significantly inhibit thrombus formation. We demonstrate a negative relationship between PECAM-1 surface expression and platelet response to cross-linked collagen related peptide (CRP-XL) and ADP, and an inhibitory effect of PECAM-1 clustering on platelet response to CRP-XL, ADP and thrombin. This combined inhibition of multiple signaling pathways results in a marked reduction in thrombus formation.
Collapse
|
9
|
Korporaal SJA, Akkerman JWN. Platelet activation by low density lipoprotein and high density lipoprotein. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:270-80. [PMID: 16877876 DOI: 10.1159/000093220] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease is the main cause of death and disability in the Western society. Lipoproteins are important in the development of cardiovascular disease since they change the properties of different cells involved in atherosclerosis and thrombosis. The interaction of platelets with lipoproteins has been under intense investigation. Particularly the initiation of platelet signaling pathways by low density lipoprotein (LDL) has been studied thoroughly, since platelets of hypercholesterolemic patients, whose plasma contains elevated LDL levels due to absent or defective LDL receptors, show hyperaggregability in vitro and enhanced activity in vivo. These observations suggest that LDL enhances platelet responsiveness. Several signaling pathways induced by LDL have been revealed in vitro, such as signaling via p38 mitogen-activated protein kinase and p125 focal adhesion kinase. High density lipoprotein (HDL) consists of two subtypes, HDL(2) and HDL(3), which have opposing effects on platelet activation. This review provides a summary of the activation of signaling pathways after platelet-LDL and platelet-HDL interaction, with special emphasis on their role in the development of thrombosis and atherosclerosis.
Collapse
Affiliation(s)
- Suzanne J A Korporaal
- Thrombosis and Haemostasis Laboratory, Department of Haematology, University Medical Center Utrecht and The Institute for Biomembranes, University of Utrecht, The Netherlands.
| | | |
Collapse
|
10
|
Elrayess MA, Webb KE, Bellingan GJ, Whittall RA, Kabir J, Hawe E, Syvänne M, Taskinen MR, Frick MH, Nieminen MS, Kesäniemi YA, Pasternack A, Miller GJ, Humphries SE. R643G polymorphism in PECAM-1 influences transendothelial migration of monocytes and is associated with progression of CHD and CHD events. Atherosclerosis 2004; 177:127-35. [PMID: 15488875 DOI: 10.1016/j.atherosclerosis.2004.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 06/22/2004] [Indexed: 11/19/2022]
Abstract
The 643R allele of R643G polymorphism (also known as R670G in the premature protein) in PECAM-1 has been associated with risk of myocardial infarction (MI), while the 643G allele has been associated with risk of coronary artery stenosis (CAS). The aim of this study was to investigate this apparently conflicting association. The association of R643G with risk of MI was determined in the second Northwick Park Heart study (2037 men with 138 CHD events; mean age: 56 years). Smokers homozygous for the 643R allele showed increased risk of MI with a hazard ratio of 2.47 (95% CI: 1.23-4.97; P=0.01) compared to smokers homozygous for the 643G allele. Progression of disease was determined in the Lopid Coronary Angiography Trial (279 men; mean age: 58.9 years). The 643G homozygotes showed greater focal (-0.08 +/- 0.02 mm) and diffuse (-0.01 +/- 0.01 mm) progression of CAS compared to 643R homozygotes (-0.02 +/- 0.02 mm and 0.001 +/- 0.01 mm, respectively; P=0.04). While there was no genotype effect on platelet aggregation, PECAM-1 tyrosine phosphorylation in HUVECs of GG genotype was 2.4-fold greater (P <0.01) than cells of RR genotype, and the level of transendothelial migration of monocytes of GG genotype was greater than that of monocytes of RR genotype following stimulation with either IL-1beta (12% higher, P <0.01) or TNF-alpha (10% higher, P=0.05). These data confirm the association of the R643G polymorphism with MI and CAS and suggest that greater influx of monocytes in individuals homozygous for the 643G may explain the association with CAS.
Collapse
Affiliation(s)
- Mohamed A Elrayess
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Rayne Building, 5 University Street, UCL, London WC1E 6JF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review focuses on the non-receptor Src-homology 2 domain-containing protein tyrosine phosphatase SHP-2 and its role in signal transduction, hematopoiesis, and leukemogenesis. Specifically, we discuss the role of inherited and somatic mutations that result in SHP-2 gain-of-function in human disease, including myeloid malignancies. RECENT FINDINGS Up-regulation of RAS signaling is a major perturbation that drives the aberrant growth of malignant myeloid cells. Leukemia-associated SHP-2 mutations define a novel type of molecular events resulting in hyperactive RAS function. SUMMARY SHP-2 plays an important role in intracellular signaling elicited by growth factors, hormones, and cytokines, and it is required during development and hematopoiesis. Gain of function mutations in PTPN11, the gene encoding SHP-2, is observed in Noonan syndrome and related development disorders, as well as in myeloid malignancies. Fully characterizing the incidence and spectrum of PTPN11 mutations in hematologic malignancies, and in other forms of cancer, is an area of active investigation.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
12
|
O'Brien CD, Cao G, Makrigiannakis A, DeLisser HM. Role of immunoreceptor tyrosine-based inhibitory motifs of PECAM-1 in PECAM-1-dependent cell migration. Am J Physiol Cell Physiol 2004; 287:C1103-13. [PMID: 15201144 DOI: 10.1152/ajpcell.00573.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1's ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility.
Collapse
Affiliation(s)
- Christopher D O'Brien
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
13
|
Ragab A, Bodin S, Viala C, Chap H, Payrastre B, Ragab-Thomas J. The tyrosine phosphatase 1B regulates linker for activation of T-cell phosphorylation and platelet aggregation upon FcgammaRIIa cross-linking. J Biol Chem 2003; 278:40923-32. [PMID: 12857726 DOI: 10.1074/jbc.m303602200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human platelets express the receptor for immunoglobulin G, FcgammaRIIa, that triggers cell aggregation upon interaction with immune complexes. Here, we report that the rapid tyrosine phosphorylation of the Linker for Activation of T-cell (LAT) in human platelets stimulated by FcgammaRIIa cross-linking was followed by its complete dephosphorylation in an alphaIIb/beta3 integrin-dependent manner. Concomitant to LAT dephosphorylation, the protein tyrosine phosphatase 1B (PTP1B) was activated through a mechanism involving its proteolysis by calpains downstream of integrins. Both PTP1B and LAT were associated with the actin cytoskeleton complex formed during platelet aggregation. Moreover, phospho-LAT appeared as a good substrate of activated PTP1B in vitro and these two proteins interacted upon platelet activation by FcgammaRIIa cross-linking. The permeant substrate-trapping PTP1B (TAT-PTP1B D181A) partly inhibited LAT dephosphorylation in human platelets, strongly suggesting that this tyrosine phosphatase was involved in this regulatory pathway. Using a pharmacological inhibitor, we provide evidence that PTP1B activation and LAT dephosphorylation processes were required for irreversible platelet aggregation. Altogether, our results demonstrate that PTP1B plays an important role in the integrin-mediated dephosphorylation of LAT in human platelets and is involved in the control of irreversible aggregation upon FcgammaRIIa stimulation.
Collapse
Affiliation(s)
- Ashraf Ragab
- INSERM U563, Centre de Physiopathologie de Toulouse-Purpan, Institut Fédératif de Recherche 30, Universite Paul Sabatier, Hôpital Purpan, 31059 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 2003; 23:953-64. [PMID: 12689916 DOI: 10.1161/01.atv.0000071347.69358.d9] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies of platelet endothelial cell adhesion molecule-1 (PECAM-1 [CD31])-deficient mice have revealed that this molecule plays an important role in controlling the activation and survival of cells on which it is expressed. In this review, we focus on the complex cytoplasmic domain of PECAM-1 and describe what is presently known about its structure, posttranslational modifications, and binding partners. In addition, we summarize findings that implicate PECAM-1 as an inhibitor of cellular activation via protein tyrosine kinase-dependent signaling pathways, an activator of integrins, and a suppressor of cell death via pathways that depend on damage to the mitochondria. The challenge of future research will be to bridge our understanding of the functional and biochemical properties of PECAM-1 by establishing mechanistic links between signals transduced by the PECAM-1 cytoplasmic domain and discrete cellular responses.
Collapse
Affiliation(s)
- Peter J Newman
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, PO Box 2178, 638 N. 18th St, Milwaukee, Wis 53201, USA.
| | | |
Collapse
|
15
|
Hers I, Bell CJ, Poole AW, Jiang D, Denton RM, Schaefer E, Tavaré JM. Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem J 2002; 368:875-84. [PMID: 12220227 PMCID: PMC1223033 DOI: 10.1042/bj20020903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 08/16/2002] [Accepted: 09/09/2002] [Indexed: 11/17/2022]
Abstract
Signalling by the insulin receptor substrate (IRS) proteins is critically dependent on the tyrosine phosphorylation of specific binding sites that recruit Src homology 2 (SH2)-domain-containing proteins, such as the p85 subunit of phosphoinositide 3-kinase (PI 3-kinase), the tyrosine phosphatase SHP-2 and the adapter protein Grb2. Here we show that stimulation by insulin of freshly isolated primary adipocytes resulted in the expected rapid tyrosine phosphorylation of the insulin receptor, IRS-1 and IRS-3. Inhibition of PI 3-kinase enhanced the insulin-stimulated phosphorylation of IRS-1 on (i) Tyr(612) and Tyr(941) (p85 binding sites), concomitant with an increased association of the p85 subunit of PI 3-kinase; (ii) Tyr(896) (a Grb2 binding site); and (iii) Tyr(1229) (an SHP-2 binding site), although little or no binding of SHP-2 to IRS-1 was detectable under any conditions. In contrast, inhibition of PI 3-kinase led to a decrease in insulin-stimulated p85 binding to IRS-3, but had no effect on SHP-2 binding. Furthermore, insulin-induced insulin receptor tyrosine phosphorylation, phosphorylation of Tyr(1158) and insulin receptor tyrosine kinase activity were all reduced by inhibition of PI 3-kinase at later time points (>or=20 min). The results demonstrate that, in primary adipocytes, PI 3-kinase feedback control of signalling by the insulin receptor and IRS proteins is multifaceted and reciprocal, illustrating the complexity of predicting the net flux of the insulin signal(s) through the IRS proteins.
Collapse
Affiliation(s)
- Ingeborg Hers
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Pawlowski M, Ragab A, Rosa JP, Bryckaert M. Selective dephosphorylation of the threonine(183) residue of ERK2 upon (alpha)llb(beta)3 engagement in platelets. FEBS Lett 2002; 521:145-51. [PMID: 12096712 DOI: 10.1016/s0014-5793(02)02862-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thrombin-induced extracellular signal-regulated kinase 2 (ERK2) activation is negatively regulated in conditions of all bP3 integrin engagement and platelet aggregation. Here we show by Western blotting with antibodies against mono- and biphosphorylated forms of ERK2 that the dephosphorylation of ERK2 by alpha llb beta 3 engagement affects threonine183 and not tyrosine185. Addition of a potent serine/threonine phosphatase inhibitor, okadaic acid (OA), restored thrombin-induced threonine phosphorylation of ERK2 in conditions of platelet aggregation, whereas OA had no effect in the absence of alpha llb beta 3 engagement. These observations are consistent with alpha llb beta 3 engagement acting via at least one serine/threonine phosphatase,which dephosphorylates the phosphothreonine183 residue of ERK2. Moreover, a small amount (14%) of ERK2 was translocated to the alpha llb beta 3-dependent cytoskeleton, mostly ina monophosphorylated (i.e. inactive) form, suggesting that cytoskeleton-associated ERK2 plays only a minor role, if any. Finally, we show that negative regulation (i.e. dephosphorylation)occurs primarily or totally in the cytosol and that the alpha llb beta 3-dependent ERK2 Thr183-specific phosphatase is different from phosphatase 1 (PP1) or PP2A. We conclude that all alpha llb beta 3 engagement down-regulates ERK2 through selective dephosphorylation of the phosphothreonine183 residue by a cytosolic serine/threonine phosphatase different from known platelet phosphatases.
Collapse
Affiliation(s)
- Marc Pawlowski
- U348 INSERM, IFR-6 Circulation Lariboisière, Hôpital Lariboisière, Paris, France
| | | | | | | |
Collapse
|
17
|
Haspel HC, Scicli GM, McMahon G, Scicli AG. Inhibition of vascular endothelial growth factor-associated tyrosine kinase activity with SU5416 blocks sprouting in the microvascular endothelial cell spheroid model of angiogenesis. Microvasc Res 2002; 63:304-15. [PMID: 11969307 DOI: 10.1006/mvre.2001.2383] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The angiogenic vascular endothelial growth factor (VEGF) is believed to play a critical role in endothelial cell proliferation, differentiation, and sprouting. Small molecules that selectively inhibit the VEGF receptor-associated tyrosine kinase activities of Flk-1 (KDR) and Flt-1 have been developed. These agents, a prototype being SU5416, have effects on the proliferation of cultured endothelial cells, constrain angiogenesis in vivo, and have been proposed as antitumor drugs. Although SU5416 inhibits in vivo angiogenesis, it is not clear which of the complex processes leading to angiogenesis are impacted by VEGF receptor-associated tyrosine kinase inhibition. We utilized SU5416 and a microvascular endothelial cell line derived from mouse heart (SMHEC4) to specifically examine the role of VEGF receptor-associated tyrosine kinase activity on in vitro models of angiogenesis. We characterized spheroid formation and sprouting, a new model of angiogenesis, in this stable cell line. SU5416 inhibits (approximately 50%) VEGF (50 ng/ml) stimulated and basal DNA synthesis of SMHEC4 cultured in monolayer. SU5416 does not prevent the aggregation and organization of SMHEC4 into tri-dimensional spheroids. CD31, a marker of differentiated endothelial cells, is negligibly expressed in monolayer cultures but highly expressed in SMHEC4 spheroids. The content and biochemical characteristics of spheroidal CD31 are unaltered by SU5416. SU5416 also does not prevent the spontaneous and rapid (approximately 3-h) alignment into cords by SMHEC4 on Matrigel. These two models suggest that the organization and differentiation of endothelial cells is independent of VEGF receptor-associated tyrosine kinase signaling. SMHEC4 spheroids embedded in collagen gels spontaneously and rapidly (approximately 6 h) sprout capillary-like projections and subsequently (1-2 days) form complex self-anastomosing networks. In addition, VEGF (50 ng/ml) markedly stimulates sprouting of capillary-like projections from SMHEC4 spheroids. Both the spontaneous and the VEGF-stimulated sprouting are nearly eliminated by SU5416. This demonstrates that VEGF receptor-associated tyrosine kinase activity is essential to the formation of capillary-like structures from SMHEC4 spheroids. Overall, these observations demonstrate that (a) the spheroid sprouting model is appropriate for the study of angiogenesis since it appears to recapitulate many of its steps and (b) SU5416 can inhibit endothelial cell proliferation and sprouting without impacting the organization and differentiation of endothelial cells.
Collapse
Affiliation(s)
- Howard C Haspel
- Department of Anesthesiology, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
18
|
Cao G, O'Brien CD, Zhou Z, Sanders SM, Greenbaum JN, Makrigiannakis A, DeLisser HM. Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol Cell Physiol 2002; 282:C1181-90. [PMID: 11940533 DOI: 10.1152/ajpcell.00524.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet endothelial cell adhesion molecule (PECAM)-1 has been implicated in angiogenesis, but a number of issues remain unsettled, including the independent involvement of human PECAM-1 (huPECAM-1) in tumor angiogenesis and the mechanisms of its participation in vessel formation. We report for tumors grown in human skin transplanted on severe combined immunodeficiency mice that antibodies against huPECAM-1 (without simultaneous treatment with anti-VE-cadherin antibody) decreased the density of human, but not murine, vessels associated with the tumors. Anti-huPECAM-1 antibody also inhibited tube formation by human umbilical vein endothelial cells (HUVEC) and the migration of HUVEC through Matrigel-coated filters or during the repair of wounded cell monolayers. The involvement of huPECAM-1 in these processes was confirmed by the finding that expression of huPECAM-1 in cellular transfectants induced tube formation and enhanced cell motility. These data provide evidence of a role for PECAM-1 in human tumor angiogenesis (independent of VE-cadherin) and suggest that during angiogenesis PECAM-1 participates in adhesive and/or signaling phenomena required for the motility of endothelial cells and/or their subsequent organization into vascular tubes.
Collapse
Affiliation(s)
- Gaoyuan Cao
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cicmil M, Thomas JM, Leduc M, Bon C, Gibbins JM. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets. Blood 2002; 99:137-44. [PMID: 11756163 DOI: 10.1182/blood.v99.1.137] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the recruitment of signaling proteins that bind by way of Src-homology domain 2 interactions. Proteins that have been implicated in the negative regulation of cellular activation by ITIM-bearing receptors include the tyrosine phosphatases SHP-1 and SHP-2. Tyrosine phosphorylation of immunoreceptor tyrosine-based activatory motif (ITAM)-bearing receptors such as the collagen receptor GPVI-Fc receptor gamma-chain complex on platelets leads to activation. Increasing evidence suggests that ITIM- and ITAM-containing receptors may act antagonistically when expressed on the same cell. In this study it is demonstrated that cross-linking PECAM-1 inhibits the aggregation and secretion of platelets in response to collagen and the GPVI-selective agonist convulxin. In these experiments thrombin-mediated platelet aggregation and secretion were also reduced, albeit to a lesser degree than for collagen, suggesting that PECAM-1 function may not be restricted to the inhibition of ITAM-containing receptor pathways. PECAM-1 activation also inhibited platelet protein tyrosine phosphorylation stimulated by convulxin and thrombin; this was accompanied by inhibition of the mobilization of calcium from intracellular stores. These data suggest that PECAM-1 may play a role in the regulation of platelet function in vivo.
Collapse
Affiliation(s)
- Milenko Cicmil
- School of Animal and Microbial Sciences, University of Reading, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Pasquet JM, Quek L, Pasquet S, Poole A, Matthews JR, Lowell C, Watson SP. Evidence of a role for SHP-1 in platelet activation by the collagen receptor glycoprotein VI. J Biol Chem 2000; 275:28526-31. [PMID: 10871605 DOI: 10.1074/jbc.m001531200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology (SH)2 domain-containing protein-tyrosine phosphatase SHP-1 is tyrosine phosphorylated in platelets in response to the glycoprotein VI (GPVI)-selective agonist collagen-related peptide (CRP), collagen, and thrombin. Two major unidentified tyrosine-phosphorylated bands of 28 and 32 kDa and a minor band of 130 kDa coprecipitate with SHP-1 in response to all three agonists. Additionally, tyrosine-phosphorylated proteins of 50-55 and 70 kDa specifically associate with SHP-1 following stimulation by CRP and collagen. The tyrosine kinases Lyn, which exists as a 53 and 56-kDa doublet, and Syk were identified as major components of these bands, respectively. Kinase assays on SHP-1 immunoprecipitates performed in the presence of the Src family kinase inhibitor PP1 confirmed the presence of a Src kinase in CRP- but not thrombin-stimulated cells. Lyn, Syk, and SLP-76, along with tyrosine-phosphorylated 28-, 32-, and 130-kDa proteins, bound selectively to a glutathione S-transferase protein encoding the SH2 domains of SHP-1, suggesting that this is the major site of interaction. Platelets isolated from motheaten viable mice (mev/mev) revealed the presence of a heavily tyrosine-phosphorylated 26-kDa protein that was not found in wild-type platelets. CRP-stimulated mev/mev platelets manifested hypophosphorylation of Syk and Lyn and reduced P-selectin expression relative to controls. These observations provide evidence of a functional role for SHP-1 in platelet activation by GPVI.
Collapse
Affiliation(s)
- J M Pasquet
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Cicmil M, Thomas JM, Sage T, Barry FA, Leduc M, Bon C, Gibbins JM. Collagen, Convulxin, and Thrombin Stimulate Aggregation-independent Tyrosine Phosphorylation of CD31 in Platelets. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61516-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|