1
|
Wang S, Bitran A, Samatova E, Shakhnovich EI, Rodnina MV. Cotranslational Protein Folding Through Non-Native Structural Intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648002. [PMID: 40291668 PMCID: PMC12027329 DOI: 10.1101/2025.04.09.648002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cotranslational protein folding follows a distinct pathway shaped by the vectorial emergence of the peptide and spatial constraints of the ribosome exit tunnel. Variations in translation rhythm can cause misfolding linked to disease; however, predicting cotranslational folding pathways remains challenging. Here we computationally predict and experimentally validate a vectorial hierarchy of folding resolved at the atomistic level, where early intermediates are stabilized through non-native hydrophobic interactions before rearranging into the native-like fold. Disrupting these interactions destabilizes intermediates and impairs folding. The chaperone Trigger Factor alters the cotranslational folding pathway by keeping the nascent peptide dynamic until the full domain emerges. Our results highlight an unexpected role of surface-exposed residues in protein folding on the ribosome and provide tools to improve folding prediction and protein design.
Collapse
|
2
|
Kumar U, Singhal S, Khan AA, Alanazi AM, Gurjar P, Khandia R. Insights into genetic architecture and disease associations of genes associated with different human blood group systems using codon usage bias. J Biomol Struct Dyn 2025:1-21. [PMID: 39988946 DOI: 10.1080/07391102.2025.2466710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 02/25/2025]
Abstract
The differential use of synonymous codons of an amino acid is an imperative evolutionary phenomenon, termed codon usage bias, that functions across various levels of organisms. It is accustomed to providing an understanding of a gene's differential architecture driven by functional regulation of gene expression. Numerous synonymous mutations are linked to various diseases, demonstrating that silent mutations can be deleterious. We employed bioinformatics methods to examine codon usage trends in 263 coding sequences of 44 blood group systems. The blood group systems were categorized into two groups based on association with a sort of neurodegenerative disorder. We performed a CUB study to investigate how multiple components, such as selection, mutation and biased nucleotide composition are accountable for the evolution of the transcripts of the blood group antigens. The compositional analysis implicated blood group genes were GC-rich. RSCU analysis showed G/C-ending codon choice among synonymous codons. Also, a distinct codon choice was found in both blood groups for serine and proline. Moreover, the leucine-coding CTG codon was found the most overrepresented in all the genes, indicating selectional pressure substantially impacts overall codon usage. This was also supported by biplot analysis. Additionally, CpC and GpG overrepresentation is in concordance with the results concerning neurodegenerative disorders where CpC has been attributed to non-CpG methylation and linked to several neurodegenerative ailments. Both the Z-test analysis and rare codon choice showed a substantial difference in codon usage by the genes of both groups.
Collapse
Affiliation(s)
- Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Schrock MN, Parsawar K, Hughes KT, Chevance FFV. D-stem mutation in an essential tRNA increases translation speed at the cost of fidelity. PLoS Genet 2025; 21:e1011569. [PMID: 39903774 PMCID: PMC11805395 DOI: 10.1371/journal.pgen.1011569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/07/2025] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The efficiency with which aminoacyl-tRNA and GTP-bound translation elongation factor EF-Tu recognizes the A-site codon of the ribosome is dependent on codons and tRNA species present in the polypeptide (P) and exit (E) codon sites. To understand how codon context affects the efficiency of codon recognition by tRNA-bound EF-Tu, a genetic system was developed to select for fast translation through slow-translating codon combinations. Selection for fast translation through the slow-translated UCA-UAC pair, flanked by histidine codons, resulted in the isolation of an A25G base substitution mutant in the D-stem of an essential tRNA LeuZ, which recognizes the UUA and UUG leucine codons. The LeuZ(A25G) substitution allowed for faster translation through all codon pairs tested that included the UCA codon. Insertion of leucine at the UCA serine codon was enhanced in the presence of LeuZ(A25G) tRNA. This work, taken in context with the Hirsh UGA nonsense suppressor G24A mutation in TrpT tRNA, provides genetic evidence that the post-GTP hydrolysis proofreading step by elongation factor Tu may be controlled by structural interactions in the hinge region of tRNA species. Our results support a model in which the tRNA bending component of the accommodation step in mRNA translation allows EF Tu time to enhance its ability to differentiate tRNA interactions between cognate and near-cognate mRNA codons.
Collapse
Affiliation(s)
- Madison N. Schrock
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, Arizona, United States of America
| | - Kelly T. Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Fabienne F. V. Chevance
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
4
|
Wong DPH, Wong KH, Park S, Boël G, Hunt JF, Aalberts DP. OPT: Codon optimize gene sequences for E. coli protein overexpression. J Mol Biol 2025:168965. [PMID: 40133777 DOI: 10.1016/j.jmb.2025.168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/27/2025]
Abstract
The ability to overexpress proteins is valuable for biotechnology, but not all sequences are compatible with high yield. We previously analyzed the sequence features and mRNA folding stability of a large data set of 6,384 distinct gene constructs, and developed a model for protein yield. Our OPT.williams.edu server (1) predicts the probability an input sequence will produce protein at a high level when overexpressed in E. coli, and (2) returns optimized synonymous sequences designed to boost protein expression. Here we also present experimental evidence of the high yields of our OPT constructs for eight commercially produced proteins.
Collapse
Affiliation(s)
- Daniel P H Wong
- Physics Department, Williams College, Williamstown, MA 01267, USA
| | - Kam-Ho Wong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sunjae Park
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Universite Paris Cite, Institut de Biologie Physio-Chimique, F-75005 Paris, France.
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
5
|
Fang Y, Chen X, Sun Z, Yan X, Shi L, Jin C. Discovery and investigation of the truncation of the (GGGGS)n linker and its effect on the productivity of bispecific antibodies expressed in mammalian cells. Bioprocess Biosyst Eng 2025; 48:159-170. [PMID: 39488806 DOI: 10.1007/s00449-024-03100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, increased safety, reduced immunogenicity, and improved delivery. Fusion proteins are an important group of therapeutic compounds that often require an ideal linker to combine diverse domains to fulfill the desired function. GGGGS [(G4S)n] linkers are commonly used during the engineering of proteins because of their flexibility and resistance to proteases. However, unexpected truncation was observed in the linker of a bispecific antibody, which presented challenges in terms of production and quality. In this work, a bispecific antibody containing 5*G4S was investigated, and the truncation position of the linkers was confirmed. Our investigation revealed that codon optimization, which can overcome the negative influence of a high repetition rate and high GC content in the (G4S)n linker, may reduce the truncation rate from 5-10% to 1-5%. Moreover, the probability of truncation when a shortened 3* or 4*G4S linker was used was much lower than that when a 5*G4S linker was used in mammalian cells. In the case of expressing a bispecific antibody, the bioactivity and purity of the product containing a shorter G4S linker were further investigated and are discussed.
Collapse
Affiliation(s)
- Yan Fang
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China.
| | - Xi Chen
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Zhen Sun
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Xiaodan Yan
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Lani Shi
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Congcong Jin
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| |
Collapse
|
6
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
7
|
Zaytsev K, Bogatyreva N, Fedorov A. Link Between Individual Codon Frequencies and Protein Expression: Going Beyond Codon Adaptation Index. Int J Mol Sci 2024; 25:11622. [PMID: 39519173 PMCID: PMC11546221 DOI: 10.3390/ijms252111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
An important role of a particular synonymous codon composition of a gene in its expression level is well known. There are a number of algorithms optimizing codon usage of recombinant genes to maximize their expression in host cells. Nevertheless, the underlying mechanism remains unsolved and is of significant relevance. In the realm of modern biotechnology, directing protein production to a specific level is crucial for metabolic engineering, genome rewriting and a growing number of other applications. In this study, we propose two new simple statistical and empirical methods for predicting the protein expression level from the nucleotide sequence of the corresponding gene: Codon Expression Index Score (CEIS) and Codon Productivity Score (CPS). Both of these methods are based on the influence of each individual codon in the gene on the overall expression level of the encoded protein and the frequencies of isoacceptors in the species. Our predictions achieve a correlation level of up to r = 0.7 with experimentally measured quantitative proteome data of Escherichia coli, which is superior to any previously proposed methods. Our work helps understand how codons determine protein abundances. Based on these methods, it is possible to design proteins optimized for expression in a particular organism.
Collapse
Affiliation(s)
| | | | - Alexey Fedorov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
8
|
Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, Li J, Milenkovic T, Huber PW, Champion MM, Emrich SJ, Clark PL. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proc Natl Acad Sci U S A 2024; 121:e2405510121. [PMID: 39190361 PMCID: PMC11388325 DOI: 10.1073/pnas.2405510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Synonymous codons were originally viewed as interchangeable, with no phenotypic consequences. However, substantial evidence has now demonstrated that synonymous substitutions can perturb a variety of gene expression and protein homeostasis mechanisms, including translational efficiency, translational fidelity, and cotranslational folding of the encoded protein. To date, most studies of synonymous codon-derived perturbations have focused on effects within a single gene. Here, we show that synonymous codon substitutions made far within the coding sequence of Escherichia coli plasmid-encoded chloramphenicol acetyltransferase (cat) can significantly increase expression of the divergent upstream tetracycline resistance gene, tetR. In four out of nine synonymously recoded cat sequences tested, expression of the upstream tetR gene was significantly elevated due to transcription of a long antisense RNA (asRNA) originating from a transcription start site within cat. Surprisingly, transcription of this asRNA readily bypassed the native tet transcriptional repression mechanism. Even more surprisingly, accumulation of the TetR protein correlated with the level of asRNA, rather than total tetR RNA. These effects of synonymous codon substitutions on transcription and translation of a neighboring gene suggest that synonymous codon usage in bacteria may be under selection to both preserve the amino acid sequence of the encoded gene and avoid DNA sequence elements that can significantly perturb expression of neighboring genes. Avoiding such sequences may be especially important in plasmids and prokaryotic genomes, where genes and regulatory elements are often densely packed. Similar considerations may apply to the design of genetic circuits for synthetic biology applications.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jacob D. Diehl
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Gabriel S. Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Christopher D. Bonar
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Taylor J. Lundgren
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - McKenze J. Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN46556
| | - Tijana Milenkovic
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Paul W. Huber
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN37996
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
9
|
Komar AA, Samatova E, Rodnina MV. Translation Rates and Protein Folding. J Mol Biol 2024; 436:168384. [PMID: 38065274 DOI: 10.1016/j.jmb.2023.168384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
The mRNA coding sequence defines not only the amino acid sequence of the protein, but also the speed at which the ribosomes move along the mRNA while making the protein. The non-uniform local kinetics - denoted as translational rhythm - is similar among mRNAs coding for related protein folds. Deviations from this conserved rhythm can result in protein misfolding. In this review we summarize the experimental evidence demonstrating how local translation rates affect cotranslational protein folding, with the focus on the synonymous codons and patches of charged residues in the nascent peptide as best-studied examples. Alterations in nascent protein conformations due to disturbed translational rhythm can persist off the ribosome, as demonstrated by the effects of synonymous codon variants of several disease-related proteins. Charged amino acid patches in nascent chains also modulate translation and cotranslational protein folding, and can abrogate translation when placed at the N-terminus of the nascent peptide. During cotranslational folding, incomplete nascent chains navigate through a unique conformational landscape in which earlier intermediate states become inaccessible as the nascent peptide grows. Precisely tuned local translation rates, as well as interactions with the ribosome, guide the folding pathway towards the native structure, whereas deviations from the natural translation rhythm may favor pathways leading to trapped misfolded states. Deciphering the 'folding code' of the mRNA will contribute to understanding the diseases caused by protein misfolding and to rational protein design.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ekaterina Samatova
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
10
|
Lan PD, Nissley DA, Sitarik I, Vu QV, Jiang Y, To P, Xia Y, Fried SD, Li MS, O'Brien EP. Synonymous Mutations Can Alter Protein Dimerization Through Localized Interface Misfolding Involving Self-entanglements. J Mol Biol 2024; 436:168487. [PMID: 38341172 PMCID: PMC11260358 DOI: 10.1016/j.jmb.2024.168487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.
Collapse
Affiliation(s)
- Pham Dang Lan
- Institute for Computational Sciences and Technology, Ho Chi Minh City, Viet Nam; Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam
| | - Daniel Allen Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA; Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mai Suan Li
- Institute for Computational Sciences and Technology, Ho Chi Minh City, Viet Nam; Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. Synonymous codon usage regulates translation initiation. Cell Rep 2023; 42:113413. [PMID: 38096059 PMCID: PMC10790568 DOI: 10.1016/j.celrep.2023.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.
Collapse
Affiliation(s)
- Chloe L Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda L Koch
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma R Horton
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan J Morrison
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha Tisa
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia S Rissland
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Bajaj P, Bhasin M, Varadarajan R. Molecular bases for strong phenotypic effects of single synonymous codon substitutions in the E. coli ccdB toxin gene. BMC Genomics 2023; 24:732. [PMID: 38049728 PMCID: PMC10694988 DOI: 10.1186/s12864-023-09817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Single synonymous codon mutations typically have only minor or no effects on gene function. Here, we estimate the effects on cell growth of ~ 200 single synonymous codon mutations in an operonic context by mutating almost all positions of ccdB, the 101-residue long cytotoxin of the ccdAB Toxin-Antitoxin (TA) operon to most degenerate codons. Phenotypes were assayed by transforming the mutant library into CcdB sensitive and resistant E. coli strains, isolating plasmid pools, and subjecting them to deep sequencing. Since autoregulation is a hallmark of TA operons, phenotypes obtained for ccdB synonymous mutants after transformation in a RelE toxin reporter strain followed by deep sequencing provided information on the amount of CcdAB complex formed. RESULTS Synonymous mutations in the N-terminal region involved in translation initiation showed the strongest non-neutral phenotypic effects. We observe an interplay of numerous factors, namely, location of the codon, codon usage, t-RNA abundance, formation of anti-Shine Dalgarno sequences, predicted transcript secondary structure, and evolutionary conservation in determining phenotypic effects of ccdB synonymous mutations. Incorporation of an N-terminal, hyperactive synonymous mutation, in the background of the single synonymous codon mutant library sufficiently increased translation initiation, such that mutational effects on either folding or termination of translation became more apparent. Introduction of putative pause sites not only affects the translational rate, but might also alter the folding kinetics of the protein in vivo. CONCLUSION In summary, the study provides novel insights into diverse mechanisms by which synonymous mutations modulate gene function. This information is useful in optimizing heterologous gene expression in E. coli and understanding the molecular bases for alteration in gene expression that arise due to synonymous mutations.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Present address: Department of Bioengineering and Therapeutic Sciences, University of CA - San Francisco, San Francisco, CA, 94158, USA
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Boudignon E, Foulquier C, Soucaille P. Improvement of the Genome Editing Tools Based on 5FC/5FU Counter Selection in Clostridium acetobutylicum. Microorganisms 2023; 11:2696. [PMID: 38004708 PMCID: PMC10672894 DOI: 10.3390/microorganisms11112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Several genetic tools have been developed for genome engineering in Clostridium acetobutylicum utilizing 5-fluorouracil (5FU) or 5-fluorocytosine (5FC) resistance as a selection method. In our group, a method based on the integration, by single crossing over, of a suicide plasmid (pCat-upp) followed by selection for the second crossing over using a counter-selectable marker (the upp gene and 5FU resistance) was recently developed for genome editing in C. acetobutylicum. This method allows genome modification without leaving any marker or scar in a strain of C. acetobutylicum that is ∆upp. Unfortunately, 5FU has strong mutagenic properties, inducing mutations in the strain's genome. After numerous applications of the pCat-upp/5FU system for genome modification in C. acetobutylicum, the CAB1060 mutant strain became entirely resistant to 5FU in the presence of the upp gene, resulting in failure when selecting on 5FU for the second crossing over. It was found that the potential repressor of the pyrimidine operon, PyrR, was mutated at position A115, leading to the 5FU resistance of the strain. To fix this problem, we created a corrective replicative plasmid expressing the pyrR gene, which was shown to restore the 5FU sensitivity of the strain. Furthermore, in order to avoid the occurrence of the problem observed with the CAB1060 strain, a preventive suicide plasmid, pCat-upp-pyrR*, was also developed, featuring the introduction of a synthetic codon-optimized pyrR gene, which was referred to as pyrR* with low nucleotide sequence homology to pyrR. Finally, to minimize the mutagenic effect of 5FU, we also improved the pCat-upp/5FU system by reducing the concentration of 5FU from 1 mM to 5 µM using a defined synthetic medium. The optimized system/conditions were used to successfully replace the ldh gene by the sadh-hydG operon to convert acetone into isopropanol.
Collapse
Affiliation(s)
- Eglantine Boudignon
- Toulouse Biotechnology Institute (TBI), National Institute of Applied Sciences (INSA), Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France; (E.B.); (C.F.)
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), UMR 792, 24 chemin de Borde Rouge-Auzeville, 31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique (CNRS), UMR 5504, 16 Avenue Edouard Belin, 31055 Toulouse cedex 4, France
| | - Céline Foulquier
- Toulouse Biotechnology Institute (TBI), National Institute of Applied Sciences (INSA), Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France; (E.B.); (C.F.)
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), UMR 792, 24 chemin de Borde Rouge-Auzeville, 31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique (CNRS), UMR 5504, 16 Avenue Edouard Belin, 31055 Toulouse cedex 4, France
| | - Philippe Soucaille
- Toulouse Biotechnology Institute (TBI), National Institute of Applied Sciences (INSA), Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4, France; (E.B.); (C.F.)
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAe), UMR 792, 24 chemin de Borde Rouge-Auzeville, 31326 Castanet-Tolosan, France
- Centre National de la Recherche Scientifique (CNRS), UMR 5504, 16 Avenue Edouard Belin, 31055 Toulouse cedex 4, France
- (BBSRC)/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
14
|
Davyt M, Bharti N, Ignatova Z. Effect of mRNA/tRNA mutations on translation speed: Implications for human diseases. J Biol Chem 2023; 299:105089. [PMID: 37495112 PMCID: PMC10470029 DOI: 10.1016/j.jbc.2023.105089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Recent discoveries establish tRNAs as central regulators of mRNA translation dynamics, and therefore cotranslational folding and function of the encoded protein. The tRNA pool, whose composition and abundance change in a cell- and tissue-dependent manner, is the main factor which determines mRNA translation velocity. In this review, we discuss a group of pathogenic mutations, in the coding sequences of either protein-coding genes or in tRNA genes, that alter mRNA translation dynamics. We also summarize advances in tRNA biology that have uncovered how variations in tRNA levels on account of genetic mutations affect protein folding and function, and thereby contribute to phenotypic diversity in clinical manifestations.
Collapse
Affiliation(s)
- Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Nikhil Bharti
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
15
|
Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. How soluble misfolded proteins bypass chaperones at the molecular level. Nat Commun 2023; 14:3689. [PMID: 37344452 DOI: 10.1038/s41467-023-38962-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so. Thus, some misfolded subpopulations commonly bypass chaperones. Using multi-scale simulation models we observe that the misfolded structures that bypass various chaperones can do so because their structures are highly native like, leading to a situation where chaperones do not distinguish between the folded and near-native-misfolded states. More broadly, these results provide a mechanism by which long-time scale changes in protein structure and function can persist in cells because some misfolded states can bypass components of the proteostasis machinery.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyun Rao
- Molecular, Cellular and Integrative Biosciences Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
- Institute for Computational Sciences and Technology; Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Identification and in silico characterization of CSRP3 synonymous variants in dilated cardiomyopathy. Mol Biol Rep 2023; 50:4105-4117. [PMID: 36877346 DOI: 10.1007/s11033-023-08314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Synonymous variations have always been ignored while studying the underlying genetic mechanisms for most of the human diseases. However, recent studies have suggested that these silent changes in the genome can alter the protein expression and folding. METHODS AND RESULTS CSRP3, which is a well-known candidate gene associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), was screened for 100 idiopathic DCM cases and 100 controls. Three synonymous variations were identified viz., c.96G > A, p.K32=; c.336G > A, p.A112=; c.354G > A, p.E118=. A comprehensive in silico analysis was performed using various web based widely accepted tools, Mfold, Codon Usage, HSF3.1 and RNA22. Mfold predicted structural changes in all the variants except c.96 G > A (p.K32=), however it predicted changes in the stability of mRNA due to all the synonymous variants. Codon bias was observed as evident by the Relative Synonymous Codon Usage and Log Ratio of Codon Usage Frequencies. The Human Splicing Finder also predicted remarkable changes in the regulatory elements in the variants c.336G > A and c.354 G > A. The miRNA target prediction using varied modes available in RNA22 revealed that 70.6% of the target sites of miRNAs in CSRP3 were altered due to variant c.336G > A while 29.41% sites were completely lost. CONCLUSION Findings of the present study suggest that synonymous variants revealed striking deviations in the structural conformation of mRNA, stability of mRNA, relative synonymous codon usage, splicing and miRNA binding sites from the wild type suggesting their possible role in the pathogenesis of DCM, either by destabilizing the mRNA structure, or codon usage bias or else altering the cis-acting regulatory elements during splicing.
Collapse
|
17
|
Jiang Y, Neti SS, Sitarik I, Pradhan P, To P, Xia Y, Fried SD, Booker SJ, O'Brien EP. How synonymous mutations alter enzyme structure and function over long timescales. Nat Chem 2023; 15:308-318. [PMID: 36471044 PMCID: PMC11267483 DOI: 10.1038/s41557-022-01091-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The specific activity of enzymes can be altered over long timescales in cells by synonymous mutations that alter a messenger RNA molecule's sequence but not the encoded protein's primary structure. How this happens at the molecular level is unknown. Here, we use multiscale modelling of three Escherichia coli enzymes (type III chloramphenicol acetyltransferase, D-alanine-D-alanine ligase B and dihydrofolate reductase) to understand experimentally measured changes in specific activity due to synonymous mutations. The modelling involves coarse-grained simulations of protein synthesis and post-translational behaviour, all-atom simulations to test robustness and quantum mechanics/molecular mechanics calculations to characterize enzymatic function. We show that changes in codon translation rates induced by synonymous mutations cause shifts in co-translational and post-translational folding pathways that kinetically partition molecules into subpopulations that very slowly interconvert to the native, functional state. Structurally, these states resemble the native state, with localized misfolding near the active sites of the enzymes. These long-lived states exhibit reduced catalytic activity, as shown by their increased activation energies for the reactions they catalyse.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Syam Sundar Neti
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Priya Pradhan
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
19
|
Chandra S, Gupta K, Khare S, Kohli P, Asok A, Mohan SV, Gowda H, Varadarajan R. The High Mutational Sensitivity of ccdA Antitoxin Is Linked to Codon Optimality. Mol Biol Evol 2022; 39:msac187. [PMID: 36069948 PMCID: PMC9555053 DOI: 10.1093/molbev/msac187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, nonactive-site residues are tolerant to mutations. Here, we show that the ccdA antitoxin component of the Escherichia coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed ccdA mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and nonsynonymous point mutations than inferred previously.
Collapse
Affiliation(s)
- Soumyanetra Chandra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kritika Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Pehu Kohli
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aparna Asok
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Harsha Gowda
- Institute of Bioinformatics, Bangalore 560100, India
| | | |
Collapse
|
20
|
Katneni UK, Alexaki A, Hunt RC, Hamasaki-Katagiri N, Hettiarachchi GK, Kames JM, McGill JR, Holcomb DD, Athey JC, Lin B, Parunov LA, Kafri T, Lu Q, Peters R, Ovanesov MV, Freedberg DI, Bar H, Komar AA, Sauna ZE, Kimchi-Sarfaty C. Structural, functional, and immunogenicity implications of F9 gene recoding. Blood Adv 2022; 6:3932-3944. [PMID: 35413099 PMCID: PMC9278298 DOI: 10.1182/bloodadvances.2022007094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Hemophilia B is a blood clotting disorder caused by deficient activity of coagulation factor IX (FIX). Multiple recombinant FIX proteins are currently approved to treat hemophilia B, and several gene therapy products are currently being developed. Codon optimization is a frequently used technique in the pharmaceutical industry to improve recombinant protein expression by recoding a coding sequence using multiple synonymous codon substitutions. The underlying assumption of this gene recoding is that synonymous substitutions do not alter protein characteristics because the primary sequence of the protein remains unchanged. However, a critical body of evidence shows that synonymous variants can affect cotranslational folding and protein function. Gene recoding could potentially alter the structure, function, and in vivo immunogenicity of recoded therapeutic proteins. Here, we evaluated multiple recoded variants of F9 designed to further explore the effects of codon usage bias on protein properties. The detailed evaluation of these constructs showed altered conformations, and assessment of translation kinetics by ribosome profiling revealed differences in local translation kinetics. Assessment of wild-type and recoded constructs using a major histocompatibility complex (MHC)-associated peptide proteomics assay showed distinct presentation of FIX-derived peptides bound to MHC class II molecules, suggesting that despite identical amino acid sequence, recoded proteins could exhibit different immunogenicity risks. Posttranslational modification analysis indicated that overexpression from gene recoding results in suboptimal posttranslational processing. Overall, our results highlight potential functional and immunogenicity concerns associated with gene-recoded F9 products. These findings have general applicability and implications for other gene-recoded recombinant proteins.
Collapse
Affiliation(s)
- Upendra K. Katneni
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Ryan C. Hunt
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Gaya K. Hettiarachchi
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Jacob M. Kames
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Joseph R. McGill
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - David D. Holcomb
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - John C. Athey
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Brian Lin
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Leonid A. Parunov
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Mikhail V. Ovanesov
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT; and
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Zuben E. Sauna
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| |
Collapse
|
21
|
Nissley DA, Jiang Y, Trovato F, Sitarik I, Narayan KB, To P, Xia Y, Fried SD, O'Brien EP. Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional. Nat Commun 2022; 13:3081. [PMID: 35654797 PMCID: PMC9163053 DOI: 10.1038/s41467-022-30548-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/05/2022] [Indexed: 01/12/2023] Open
Abstract
Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.
Collapse
Affiliation(s)
- Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Karthik B Narayan
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Fedorov AN. Biosynthetic Protein Folding and Molecular Chaperons. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S128-S19. [PMID: 35501992 DOI: 10.1134/s0006297922140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.
Collapse
Affiliation(s)
- Alexey N Fedorov
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
23
|
Pines G, Pines A, Eckert CA. Highly Efficient Libraries Design for Saturation Mutagenesis. Synth Biol (Oxf) 2022; 7:ysac006. [PMID: 35734540 PMCID: PMC9205323 DOI: 10.1093/synbio/ysac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Saturation mutagenesis is a semi-rational approach for protein engineering where sites are saturated either entirely or partially to include amino acids of interest. We previously reported on a codon compression algorithm, where a set of minimal degenerate codons are selected according to user-defined parameters such as the target organism, type of saturation and usage levels. Here, we communicate an addition to our web tool that considers the distance between the wild-type codon and the library, depending on its purpose. These forms of restricted collections further reduce library size, lowering downstream screening efforts or, in turn, allowing more comprehensive saturation of multiple sites. The library design tool can be accessed via http://www.dynamcc.com/dynamcc_d/.
Graphical Abstract
Collapse
Affiliation(s)
- Gur Pines
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeTsiyon, 7528809, Israel
| | | | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6060, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
24
|
Kaissarian NM, Meyer D, Kimchi-Sarfaty C. Synonymous Variants: Necessary Nuance in our Understanding of Cancer Drivers and Treatment Outcomes. J Natl Cancer Inst 2022; 114:1072-1094. [PMID: 35477782 PMCID: PMC9360466 DOI: 10.1093/jnci/djac090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, miRNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and are play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.
Collapse
Affiliation(s)
- Nayiri M Kaissarian
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
25
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Decoding the codon usage patterns in Y-domain region of hepatitis E viruses. J Genet Eng Biotechnol 2022; 20:56. [PMID: 35404024 PMCID: PMC9001762 DOI: 10.1186/s43141-022-00319-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a positive-sense RNA virus belonging to the family Hepeviridae. The genome of HEV is organized into three open-reading frames (ORFs): ORF1, ORF2, and ORF3. The ORF1 non-structural Y-domain region (YDR) has been demonstrated to play an important role in the HEV pathogenesis. The nucleotide composition, synonymous codon usage bias in conjunction with other factors influencing the viral YDR genes of HEV have not been studied. Codon usage represents a significant mechanism in establishing the host-pathogen relationship. The present study for the first time elucidates the detailed codon usage patterns of YDR among HEV and HEV-hosts (Human, Rabbit, Mongoose, Pig, Wild boar, Camel, Monkey). RESULTS The overall nucleotide composition revealed the abundance of C and U nucleotides in YDR genomes. The relative synonymous codon usage (RSCU) analysis indicated biasness towards C and U over A and G ended codons in HEV across all hosts. Codon frequency comparative analyses among HEV-hosts showed both similarities and discrepancies in usage of preferred codons encoding amino acids, which revealed that HEV codon preference neither completely differed nor completely showed similarity with its hosts. Thus, our results clearly indicated that the synonymous codon usage of HEV is a mixture of the two types of codon usage: coincidence and antagonism. Mutation pressure from virus and natural selection from host seems to be accountable for shaping the codon usage patterns in YDR. The study emphasised that the influence of compositional constraints, codon usage biasness, mutational alongside the selective forces were reflected in the occurrence of YDR codon usage patterns. CONCLUSIONS Our study is the first in its kind to have reported the analysis of codon usage patterns on a total of seven different natural HEV hosts. Therefore, knowledge of preferred codons obtained from our study will not only augment our understanding towards molecular evolution but is also envisaged to provide insight into the efficient viral expression, viral adaptation, and host effects on the HEV YDR codon usage.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
26
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Falak S, Sajed M, Rashid N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00994-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Wright G, Rodriguez A, Li J, Milenkovic T, Emrich SJ, Clark PL. CHARMING: Harmonizing synonymous codon usage to replicate a desired codon usage pattern. Protein Sci 2022; 31:221-231. [PMID: 34738275 PMCID: PMC8740841 DOI: 10.1002/pro.4223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023]
Abstract
There is a growing appreciation that synonymous codon usage, although historically regarded as phenotypically silent, can instead alter a wide range of mechanisms related to functional protein production, a term we use here to describe the net effect of transcription (mRNA synthesis), mRNA half-life, translation (protein synthesis) and the probability of a protein folding correctly to its active, functional structure. In particular, recent discoveries have highlighted the important role that sub-optimal codons can play in modifying co-translational protein folding. These results have drawn increased attention to the patterns of synonymous codon usage within coding sequences, particularly in light of the discovery that these patterns can be conserved across evolution for homologous proteins. Because synonymous codon usage differs between organisms, for heterologous gene expression it can be desirable to make synonymous codon substitutions to match the codon usage pattern from the original organism in the heterologous expression host. Here we present CHARMING (for Codon HARMonizING), a robust and versatile algorithm to design mRNA sequences for heterologous gene expression and other related codon harmonization tasks. CHARMING can be run as a downloadable Python script or via a web portal at http://www.codons.org.
Collapse
Affiliation(s)
- Gabriel Wright
- Department of Computer Science & EngineeringUniversity of Notre DameNotre DameIndianaUSA,Present address:
Department of Electrical Engineering and Computer ScienceMilwaukee School of EngineeringMilwaukeeWIUSA
| | - Anabel Rodriguez
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jun Li
- Department of Applied and Computational Mathematics & StatisticsUniversity of Notre DameNotre DameIndianaUSA
| | - Tijana Milenkovic
- Department of Computer Science & EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Scott J. Emrich
- Department of Electrical Engineering & Computer ScienceUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
29
|
McBride JM, Tlusty T. Slowest-first protein translation scheme: Structural asymmetry and co-translational folding. Biophys J 2021; 120:5466-5477. [PMID: 34813729 PMCID: PMC8715247 DOI: 10.1016/j.bpj.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and β strands at the N terminus. Furthermore, this α-β asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the "slowest-first" scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea; Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
30
|
Ovine Toll-like Receptor 9 ( TLR9) Gene Variation and Its Association with Flystrike Susceptibility. Animals (Basel) 2021; 11:ani11123549. [PMID: 34944323 PMCID: PMC8697942 DOI: 10.3390/ani11123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Flystrike is a major ectoparasitic disease of sheep and it creates both an economic impact and welfare issue for the sheep industry. Several factors control the responses of sheep to flystrike, and among these, immune response is regarded as an important factor. Toll-like receptors (TLRs) plays a crucial role in the innate immune system by recognizing pathogen-associated molecular patterns derived from various microbes. Of these receptors, TLR9 recognises unmethylated cytosine-phosphate-guanine (CpG) motifs that are known to be prevalent in bacterial genomes and are also reported in Dipteran insects, including Lucilia cuprina, one of the main species associated with flystrike in sheep. In this study, we used a polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique to investigate TLR9 variation in sheep with and without flystrike, and found that variation in a gene region containing the coding sequence of the putative CpG-DNA binding domain was associated with the likelihood of flystrike occurrence. This suggests that variation in ovine TLR9 may affect a sheep’s response to flystrike. Abstract Toll-like receptors (TLRs) are a family of proteins that play a role in innate immune responses by recognising pathogen-associated molecular patterns derived from various microbes. Of these receptors, TLR9 recognises bacterial and viral DNA containing unmethylated cytosine-phosphate-guanine (CpG) motifs, and variation in TLR9 has been associated with resistance to various infectious diseases. Flystrike is a problem affecting the sheep industry globally and the immune response of the sheep has been suggested as one factor that influences the response to the disease. In this study, variation in ovine TLR9 from 178 sheep with flystrike and 134 sheep without flystrike was investigated using a polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) approach. These sheep were collected from both commercial and stud farms throughout New Zealand and they were of 13 different breeds, cross-breds and composites. Four alleles of TLR9 were detected, including three previously identified alleles (*01, *02 and *03) and a new allele (*04). In total six single nucleotide polymorphisms (SNPs) were found. Of the three common alleles in the sheep studied, the presence of *03 was found to be associated with a reduced likelihood of flystrike being present (OR = 0.499, p = 0.024). This suggests that variation in ovine TLR9 may affect a sheep’s response to flystrike, and thus the gene may have value as a genetic marker for improving resistance to the disease.
Collapse
|
31
|
Li Y, Wang R, Wang H, Pu F, Feng X, Jin L, Ma Z, Ma XX. Codon Usage Bias in Autophagy-Related Gene 13 in Eukaryotes: Uncovering the Genetic Divergence by the Interplay Between Nucleotides and Codon Usages. Front Cell Infect Microbiol 2021; 11:771010. [PMID: 34804999 PMCID: PMC8602353 DOI: 10.3389/fcimb.2021.771010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.
Collapse
Affiliation(s)
- Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
32
|
Guzman-Luna V, Fuchs AM, Allen AJ, Staikos A, Cavagnero S. An intrinsically disordered nascent protein interacts with specific regions of the ribosomal surface near the exit tunnel. Commun Biol 2021; 4:1236. [PMID: 34716402 PMCID: PMC8556260 DOI: 10.1038/s42003-021-02752-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
The influence of the ribosome on nascent chains is poorly understood, especially in the case of proteins devoid of signal or arrest sequences. Here, we provide explicit evidence for the interaction of specific ribosomal proteins with ribosome-bound nascent chains (RNCs). We target RNCs pertaining to the intrinsically disordered protein PIR and a number of mutants bearing a variable net charge. All the constructs analyzed in this work lack N-terminal signal sequences. By a combination chemical crosslinking and Western-blotting, we find that all RNCs interact with ribosomal protein L23 and that longer nascent chains also weakly interact with L29. The interacting proteins are spatially clustered on a specific region of the large ribosomal subunit, close to the exit tunnel. Based on chain-length-dependence and mutational studies, we find that the interactions with L23 persist despite drastic variations in RNC sequence. Importantly, we also find that the interactions are highly Mg+2-concentration-dependent. This work is significant because it unravels a novel role of the ribosome, which is shown to engage with the nascent protein chain even in the absence of signal or arrest sequences.
Collapse
Affiliation(s)
- Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Anna J Allen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
33
|
Zutz A, Hamborg L, Pedersen LE, Kassem MM, Papaleo E, Koza A, Herrgård MJ, Jensen SI, Teilum K, Lindorff-Larsen K, Nielsen AT. A dual-reporter system for investigating and optimizing protein translation and folding in E. coli. Nat Commun 2021; 12:6093. [PMID: 34667164 PMCID: PMC8526717 DOI: 10.1038/s41467-021-26337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2021] [Indexed: 01/29/2023] Open
Abstract
Strategies for investigating and optimizing the expression and folding of proteins for biotechnological and pharmaceutical purposes are in high demand. Here, we describe a dual-reporter biosensor system that simultaneously assesses in vivo protein translation and protein folding, thereby enabling rapid screening of mutant libraries. We have validated the dual-reporter system on five different proteins and find an excellent correlation between reporter signals and the levels of protein expression and solubility of the proteins. We further demonstrate the applicability of the dual-reporter system as a screening assay for deep mutational scanning experiments. The system enables high throughput selection of protein variants with high expression levels and altered protein stability. Next generation sequencing analysis of the resulting libraries of protein variants show a good correlation between computationally predicted and experimentally determined protein stabilities. We furthermore show that the mutational experimental data obtained using this system may be useful for protein structure calculations.
Collapse
Affiliation(s)
- Ariane Zutz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Louise Hamborg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Maher M Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
34
|
Komar AA. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. BIOCHEMISTRY (MOSCOW) 2021; 86:976-991. [PMID: 34488574 DOI: 10.1134/s0006297921080083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA. .,Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,DAPCEL, Inc., Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
36
|
First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection. Viruses 2021; 13:v13071290. [PMID: 34372496 PMCID: PMC8310241 DOI: 10.3390/v13071290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV), referred to as small ruminant lentiviruses (SRLVs), belong to the genus Lentivirus of the Retroviridae family. SRLVs infect both sheep and goats, causing significant economic losses and animal welfare damage. Recent findings suggest an association between serological status and allelic variants of different genes such as TMEM154, TLR9, MYD88 and CCR5. The aim of this work was to investigate the role of specific polymorphisms of these genes in SRLVs infection in some sheep flocks in Italy. In addition to those already known, novel variants in the TMEM154 (P7H, I74V, I105V) gene were detected in this study. The risk of infection was determined finding an association between the serological status and polymorphisms P7H, E35K, N70I, I74V, I105V of TMEM154, R447Q, A462S and G520R in TLR9 gene, H176H* and K190K* in MYD88 genes, while no statistical association was observed for the 4-bp deletion of the CCR5 gene. Since no vaccines or treatments have been developed, a genetically based approach could be an innovative strategy to prevent and to control SRLVs infection. Our findings are an important starting point in order to define the genetic resistance profile towards SRLVs infection.
Collapse
|
37
|
Hia F, Takeuchi O. The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci 2021; 78:1909-1928. [PMID: 33128106 PMCID: PMC11072601 DOI: 10.1007/s00018-020-03685-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
The central dogma of molecular biology entails that genetic information is transferred from nucleic acid to proteins. Notwithstanding retro-transcribing genetic elements, DNA is transcribed to RNA which in turn is translated into proteins. Recent advancements have shown that each stage is regulated to control protein abundances for a variety of essential physiological processes. In this regard, mRNA regulation is essential in fine-tuning or calibrating protein abundances. In this review, we would like to discuss one of several mRNA-intrinsic features of mRNA regulation that has been gaining traction of recent-codon bias and optimality. Specifically, we address the effects of codon bias with regard to codon optimality in several biological processes centred on translation, such as mRNA stability and protein folding among others. Finally, we examine how different organisms or cell types, through this system, are able to coordinate physiological pathways to respond to a variety of stress or growth conditions.
Collapse
Affiliation(s)
- Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
38
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
39
|
Samatova E, Daberger J, Liutkute M, Rodnina MV. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 2021; 11:619430. [PMID: 33505387 PMCID: PMC7829197 DOI: 10.3389/fmicb.2020.619430] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Protein homeostasis of bacterial cells is maintained by coordinated processes of protein production, folding, and degradation. Translational efficiency of a given mRNA depends on how often the ribosomes initiate synthesis of a new polypeptide and how quickly they read the coding sequence to produce a full-length protein. The pace of ribosomes along the mRNA is not uniform: periods of rapid synthesis are separated by pauses. Here, we summarize recent evidence on how ribosome pausing affects translational efficiency and protein folding. We discuss the factors that slow down translation elongation and affect the quality of the newly synthesized protein. Ribosome pausing emerges as important factor contributing to the regulatory programs that ensure the quality of the proteome and integrate the cellular and environmental cues into regulatory circuits of the cell.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan Daberger
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
40
|
Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. INSECTS 2020; 11:insects11120893. [PMID: 33352887 PMCID: PMC7767042 DOI: 10.3390/insects11120893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary A comparison of the genomes of the African malaria vectors, Anopheles gambiae and A. coluzzii, revealed that immune genes are highly diverged. Although these two species frequently co-occur within a single site, they occur in distinct larval habitats. Our results taken in the context of known differences in the larval habitats occupied by these taxa support the hypothesis that observed genetic divergence may be driven by immune response to microbial agents specific to these habitats. Strict within species mating may have subsequently evolved in part to maintain immunocompetence which might be compromised by dysregulation of immune pathways in hybrids. We conclude that the evolution of immune gene divergence among this important group of species may serve as a useful model to explore ecological speciation in general. Abstract During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.
Collapse
|
41
|
Newaz K, Wright G, Piland J, Li J, Clark PL, Emrich SJ, Milenković T. Network analysis of synonymous codon usage. Bioinformatics 2020; 36:4876-4884. [PMID: 32609328 DOI: 10.1093/bioinformatics/btaa603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Most amino acids are encoded by multiple synonymous codons, some of which are used more rarely than others. Analyses of positions of such rare codons in protein sequences revealed that rare codons can impact co-translational protein folding and that positions of some rare codons are evolutionarily conserved. Analyses of their positions in protein 3-dimensional structures, which are richer in biochemical information than sequences alone, might further explain the role of rare codons in protein folding. RESULTS We model protein structures as networks and use network centrality to measure the structural position of an amino acid. We first validate that amino acids buried within the structural core are network-central, and those on the surface are not. Then, we study potential differences between network centralities and thus structural positions of amino acids encoded by conserved rare, non-conserved rare and commonly used codons. We find that in 84% of proteins, the three codon categories occupy significantly different structural positions. We examine protein groups showing different codon centrality trends, i.e. different relationships between structural positions of the three codon categories. We see several cases of all proteins from our data with some structural or functional property being in the same group. Also, we see a case of all proteins in some group having the same property. Our work shows that codon usage is linked to the final protein structure and thus possibly to co-translational protein folding. AVAILABILITY AND IMPLEMENTATION https://nd.edu/∼cone/CodonUsage/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Khalique Newaz
- Department of Computer Science and Engineering.,Center for Network and Data Science.,Eck institute for Global Health
| | - Gabriel Wright
- Department of Computer Science and Engineering.,Eck institute for Global Health
| | - Jacob Piland
- Department of Computer Science and Engineering.,Center for Network and Data Science.,Eck institute for Global Health
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics
| | - Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Tijana Milenković
- Department of Computer Science and Engineering.,Center for Network and Data Science.,Eck institute for Global Health
| |
Collapse
|
42
|
Nonoptimal Codon Usage Is Critical for Protein Structure and Function of the Master General Amino Acid Control Regulator CPC-1. mBio 2020; 11:mBio.02605-20. [PMID: 33051373 PMCID: PMC7554675 DOI: 10.1128/mbio.02605-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Under amino acid starvation conditions, eukaryotic organisms activate a general amino acid control response. In Neurospora crassa, Cross Pathway Control Protein 1 (CPC-1), the ortholog of the Saccharomyces cerevisiae bZIP transcription factor GCN4, functions as the master regulator of the general amino acid control response. Codon usage biases are a universal feature of eukaryotic genomes and are critical for regulation of gene expression. Although codon usage has also been implicated in the regulation of protein structure and function, genetic evidence supporting this conclusion is very limited. Here, we show that Neurospora cpc-1 has a nonoptimal NNU-rich codon usage profile that contrasts with the strong NNC codon preference in the genome. Although substitution of the cpc-1 NNU codons with synonymous NNC codons elevated CPC-1 expression in Neurospora, it altered the CPC-1 degradation rate and abolished its amino acid starvation-induced protein stabilization. The codon-manipulated CPC-1 protein also exhibited different sensitivity to limited protease digestion. Furthermore, CPC-1 functions in rescuing the cell growth of the cpc-1 deletion mutant and activation of the expression of its target genes were impaired by the synonymous codon changes. Together, these results reveal the critical role of codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein folding.IMPORTANCE The general amino acid control response is critical for adaptation of organisms to amino acid starvation conditions. The preference to use certain synonymous codons is a universal feature of all genomes. Synonymous codon changes were previously thought to be silent mutations. In this study, we showed that the Neurospora cpc-1 gene has an unusual codon usage profile compared to other genes in the genome. We found that codon optimization of the cpc-1 gene without changing its amino acid sequence resulted in elevated CPC-1 expression, an altered protein degradation rate, and impaired protein functions due to changes in protein structure. Together, these results reveal the critical role of synonymous codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein structure.
Collapse
|
43
|
Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal 2020; 18:145. [PMID: 32907610 PMCID: PMC7488015 DOI: 10.1186/s12964-020-00642-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined. Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now shows that codon usage regulates protein structure and gene expression through effects on co-translational protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating translation kinetics and co-translational protein folding. Video abstract
![]()
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, ND13.214A, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA.
| |
Collapse
|
44
|
Jakobson CM, Jarosz DF. What Has a Century of Quantitative Genetics Taught Us About Nature's Genetic Tool Kit? Annu Rev Genet 2020; 54:439-464. [PMID: 32897739 DOI: 10.1146/annurev-genet-021920-102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA; .,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
45
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
46
|
Combined Optimization of Codon Usage and Glycine Supplementation Enhances the Extracellular Production of a β-Cyclodextrin Glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli. Int J Mol Sci 2020; 21:ijms21113919. [PMID: 32486212 PMCID: PMC7313058 DOI: 10.3390/ijms21113919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/24/2022] Open
Abstract
Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM β-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of β-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. β-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant β-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular β-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly β-CGTase by the recombinant E. coli.
Collapse
|
47
|
Barbhuiya PA, Uddin A, Chakraborty S. Analysis of compositional properties and codon usage bias of mitochondrial CYB gene in anura, urodela and gymnophiona. Gene 2020; 751:144762. [PMID: 32407767 DOI: 10.1016/j.gene.2020.144762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
Abstract
We delineated the pattern of synonymous codon usage bias (CUB) and its determinants in mitochondrial CYB gene of respiratory chain across different amphibian groups namely orders anura, urodela and gymnophiona. We observed that CUB was low in CYB gene of amphibia. The gymnophionans had comparatively high bias followed by urodeles and anurans. The codons namely TCA, CCA, CAA, CGA, TGA, AAA and ACA were over-represented in all three orders. The codons such as GCC and TCC were over-represented in anura whereas in urodela, the over-represented codons were TTA, CTA, ATA, GTA, GAA, GGA and GCA. In gymnophiona, GCC, TTA, CTA, ATA, GTA, GAA and GGA codons were over-represented. The regression analysis between effective number of codons (ENC) and nucleobase at the 3rd position revealed that nucleobase A and C influenced CUB positively in order anura, while in urodela and gymnophiona, nucleobase A and T influenced the CUB positively. Mutation pressure and natural selection mutually illustrate the CUB of CYB gene (complex III gene) of amphibia as elucidated by correlation analysis between 3rd nucleotide in a codon and overall nucleotide content of the gene. However, neutrality plot showed that natural selection was the dominant evolutionary factor of CUB.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakand 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
48
|
Xing Y, Gong R, Xu Y, Liu K, Zhou M. Codon usage bias affects α-amylase mRNA level by altering RNA stability and cytosine methylation patterns in Escherichia coli. Can J Microbiol 2020; 66:521-528. [PMID: 32259457 DOI: 10.1139/cjm-2019-0624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Codon usage bias exists in almost every organism and is reported to regulate protein translation efficiency and folding. Besides translation, the preliminary role of codon usage bias on gene transcription has also been revealed in some eukaryotes such as Neurospora crassa. In this study, we took as an example the α-amylase-coding gene (amyA) and examined the role of codon usage bias in regulating gene expression in the typical prokaryote Escherichia coli. We confirmed the higher translation efficiency on codon-optimized amyA RNAs and found that the RNA level itself was also affected by codon optimization. The decreased RNA level was caused at least in part by altered mRNA stability at the post-transcriptional level. Codon optimization also altered the number of cytosine methylation sites. Examination on dcm knockouts suggested that cytosine methylation may be a minor mechanism adopted by codon bias to regulate gene RNA levels. More studies are required to verify the global effect of codon usage and to reveal its detailed mechanism on transcription.
Collapse
Affiliation(s)
- Yanzi Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ruiqing Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Kunshan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
49
|
Abstract
Messenger RNAs (mRNAs) consist of a coding region (open reading frame (ORF)) and two untranslated regions (UTRs), 5'UTR and 3'UTR. Ribosomes travel along the coding region, translating nucleotide triplets (called codons) to a chain of amino acids. The coding region was long believed to mainly encode the amino acid content of proteins, whereas regulatory signals reside in the UTRs and in other genomic regions. However, in recent years we have learned that the ORF is expansively populated with various regulatory signals, or codes, which are related to all gene expression steps and additional intracellular aspects. In this paper, we review the current knowledge related to overlapping codes inside the coding regions, such as the influence of synonymous codon usage on translation speed (and, in turn, the effect of translation speed on protein folding), ribosomal frameshifting, mRNA stability, methylation, splicing, transcription and more. All these codes come together and overlap in the ORF sequence, ensuring production of the right protein at the right time.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
50
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|