1
|
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, James D, Nass K, Furrer A, Kekilli D, Ma P, Brünle S, Casadei CM, Martiel I, Dworkowski F, Gashi D, Skopintsev P, Wranik M, Knopp G, Panepucci E, Panneels V, Cirelli C, Ozerov D, Schertler GFX, Wang M, Milne C, Standfuss J, Schapiro I, Heberle J, Nogly P. Dynamics and mechanism of a light-driven chloride pump. Science 2022; 375:845-851. [PMID: 35113649 DOI: 10.1126/science.abj6663] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.
Collapse
Affiliation(s)
- Sandra Mous
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Guillaume Gotthard
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Philip J M Johnson
- Laboratory of Nonlinear Optics, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Karol Nass
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Demet Kekilli
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Pikyee Ma
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Steffen Brünle
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Cecilia Maria Casadei
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Isabelle Martiel
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Florian Dworkowski
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dardan Gashi
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland.,Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Petr Skopintsev
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gregor Knopp
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Valerie Panneels
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Claudio Cirelli
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gebhard F X Schertler
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Meitian Wang
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Chris Milne
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Smitienko OA, Nekrasova OV, Kudriavtsev AV, Yakovleva MA, Shelaev IV, Gostev FE, Dolgikh DA, Kolchugina IB, Nadtochenko VA, Kirpichnikov MP, Feldman TB, Ostrovsky MA. Femtosecond and picosecond dynamics of recombinant bacteriorhodopsin primary reactions compared to the native protein in trimeric and monomeric forms. BIOCHEMISTRY (MOSCOW) 2017; 82:490-500. [DOI: 10.1134/s0006297917040113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
4
|
Abstract
Rhodopsins are photochemically reactive membrane proteins that covalently bind retinal chromophores. Type I rhodopsins are found in both prokaryotes and eukaryotic microbes, whereas type II rhodopsins function as photoactivated G-protein coupled receptors (GPCRs) in animal vision. Both rhodopsin families share the seven transmembrane α-helix GPCR fold and a Schiff base linkage from a conserved lysine to retinal in helix G. Nevertheless, rhodopsins are widely cited as a striking example of evolutionary convergence, largely because the two families lack detectable sequence similarity and differ in many structural and mechanistic details. Convergence entails that the shared rhodopsin fold is so especially suited to photosensitive function that proteins from separate origins were selected for this architecture twice. Here we show, however, that the rhodopsin fold is not required for photosensitive activity. We engineered functional bacteriorhodopsin variants with novel folds, including radical noncircular permutations of the α-helices, circular permutations of an eight-helix construct, and retinal linkages relocated to other helices. These results contradict a key prediction of convergence and thereby provide an experimental attack on one of the most intractable problems in molecular evolution: how to establish structural homology for proteins devoid of discernible sequence similarity.
Collapse
|
5
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
6
|
Bombarda E, Becker T, Ullmann GM. Influence of the Membrane Potential on the Protonation of Bacteriorhodopsin: Insights from Electrostatic Calculations into the Regulation of Proton Pumping. J Am Chem Soc 2006; 128:12129-39. [PMID: 16967962 DOI: 10.1021/ja0619657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton binding and release are elementary steps for the transfer of protons within proteins, which is a process that is crucial in biochemical catalysis and biological energy transduction. Local electric fields in proteins affect the proton binding energy compared to aqueous solution. In membrane proteins, also the membrane potential affects the local electrostatics and can thus be crucial for protein function. In this paper, we introduce a procedure to calculate the protonation probability of titratable sites of a membrane protein in the presence of a membrane potential. In the framework of continuum electrostatics, we use a modified Poisson-Boltzmann equation to include the influence of the membrane potential. Our method considers that in a transmembrane protein each titratable site is accessible for protons from only one side of the membrane depending on the hydrogen bond pattern of the protein. We show that the protonation of sites receiving their protons from different sides of the membrane is differently influenced by the membrane potential. In addition, the effect of the membrane potential is combined with the effect of the pH gradient resulting from proton pumping. Our method is applied to bacteriorhodopsin, a light-activated proton pump. We find that the proton pumping of this protein might be regulated by Asp115, a conserved residue for which no function has been identified yet. According to our calculations, the interaction of Asp115 with Asp85 leads to the protonation of the latter if the pH gradient or the membrane potential becomes too large. Since Asp85 is the primary proton acceptor in the photocycle, bacteriorhodopsin molecules in which Asp85 is protonated cannot pump protons. Furthermore, we estimate how the membrane potential affects the energetics of the individual proton-transfer reactions of the photocycle. Most reactions, except the initial proton transfer from the Schiff base to Asp85, are influenced. Our calculations give new insights into the mechanism with which bacteriorhodopsin senses the membrane potential and the pH gradient and how the proton pumping is regulated by these parameters.
Collapse
Affiliation(s)
- Elisa Bombarda
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, 95447 Bayreuth, Germany
| | | | | |
Collapse
|
7
|
Lanyi JK. Proton transfers in the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1012-8. [PMID: 16376293 DOI: 10.1016/j.bbabio.2005.11.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 11/23/2022]
Abstract
The steps in the mechanism of proton transport in bacteriorhodopsin include examples for most kinds of proton transfer reactions that might occur in a transmembrane pump: proton transfer via a bridging water molecule, coupled protonation/deprotonation of two buried groups separated by a considerable distance, long-range proton migration over a hydrogen-bonded aqueous chain, and capture as well as release of protons at the membrane-water interface. The conceptual and technical advantages of this system have allowed close examination of many of these model reactions, some at an atomic level.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Kandt C, Gerwert K, Schlitter J. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Proteins 2006; 58:528-37. [PMID: 15609339 DOI: 10.1002/prot.20343] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proton transfer pathway in a heptahelical membrane protein, the light-driven proton pump bacteriorhodopsin (BR), is probed by a combined approach of structural analysis of recent X-ray models and molecular dynamics (MD) simulations that provide the diffusion pathways of internal and external water molecules. Analyzing the hydrogen-bond contact frequencies of the water molecules with protein groups, the complete proton pathway through the protein is probed. Beside the well-known proton binding sites in the protein interior-the protonated Schiff base, Asp85 and Asp96, and the H(5)O(2) (+) complex stabilized by Glu204 and Glu194-the proton release and uptake pathways to the protein surfaces are described in great detail. Further residues were identified, by mutation of which the proposed pathways can be verified. In addition the diffusion pathway of water 502 from Lys216 to Asp96 is shown to cover the positions of the intruding waters 503 and 504 in the N-intermediate. The transiently established water chain in the N-state provides a proton pathway from Asp96 to the Schiff base in the M- to N-transition in a Grotthus-like mechanism, as concluded earlier from time-resolved Fourier transform infrared experiments [le Coutre et al., Proc Nat Acad Sci USA 1995;92:4962-4966].
Collapse
Affiliation(s)
- Christian Kandt
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
9
|
Wang L, Shen Z, Wang J, Li B, Chen F, Yang W, Feng X. The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light. Biochem Biophys Res Commun 2006; 343:899-903. [PMID: 16564498 DOI: 10.1016/j.bbrc.2006.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 05/08/2023]
Abstract
The pH-dependence of the O and P intermediates in the photocycle of bacteriorhodopsin (bR) on the intensity and duration of the exciting flash was investigated for bR glycerol suspensions and bR gelatin films. Green and red laser flashes (532 and 670 nm) were utilized to generate a photoequilibrium state of bR and O at ambient temperature, and UV-vis spectroscopy was used to determine the photoconversion for the bR suspensions and films. The maximal concentration of the O intermediate was observed to be pH-dependent and the dependency was most pronounced at a slightly alkaline pH values. The photochemical conversion from the O to P intermediate was investigated for both bR suspensions and films. The P intermediate was only found in bR gelatin film. These results indicate that bR gelatin film may be an attractive candidate for the information storage based on P intermediate. It is possible, with red light, to create photoproducts which are thermally stable at ambient temperature and that can be photochemically erased.
Collapse
Affiliation(s)
- Liping Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cieplak M, Filipek S, Janovjak H, Krzyśko KA. Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:537-44. [PMID: 16678120 DOI: 10.1016/j.bbamem.2006.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/11/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Mechanical unfolding of single bacteriorhodopsins from a membrane bilayer is studied using molecular dynamics simulations. The initial conformation of the lipid membrane is determined through all-atom simulations and then its coarse-grained representation is used in the studies of stretching. A Go-like model with a realistic contact map and with Lennard-Jones contact interactions is applied to model the protein-membrane system. The model qualitatively reproduces the experimentally observed differences between force-extension patterns obtained on bacteriorhodopsin at different temperatures and predicts a lack of symmetry in the choice of the terminus to pull by. It also illustrates the decisive role of the interactions of the protein with the membrane in determining the force pattern and thus the stability of transmembrane proteins.
Collapse
Affiliation(s)
- Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | | | | | |
Collapse
|
11
|
Zimányi L, Saltiel J, Brown LS, Lanyi JK. A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed. J Phys Chem A 2006; 110:2318-21. [PMID: 16480288 PMCID: PMC2561303 DOI: 10.1021/jp056874v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resolution of the spectra of the intermediates in the photocycle of wild-type bacteriorhodopsin (BR) was achieved by singular value decomposition with exponential-fit-assisted self-modeling (SVD-EFASM) treatment of multichannel difference spectra measured at 5 degrees C during the course of the photocycle. New is the finding that two spectrally distinct L intermediates, L(1) and L(2), form sequentially. Our conclusion is that the photocycle is more complex than most published schemes. The dissection of the spectrally different L forms eliminates stoichiometric discrepancies usually appearing as systematically varying total intermediate concentrations before the onset of BR recovery. In addition, our analysis reveals that the red tails in the spectra of K and L(1) are more substantial than those of L(2) and BR. We suggest that these subtle differences in the shapes of the spectra reflect torsional and/or environmental differences in the retinyl chromophore.
Collapse
Affiliation(s)
- László Zimányi
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, P.O.Box 521, Szeged, Hungary, H-6701
| | - Jack Saltiel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390 USA
| | - Leonid S. Brown
- Department of Physics, University of Guelph, Guelph, ON, Canada
| | - Janos K. Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Jia W, Li H, Jian L, Ming M, Qing-Guo L, Jian-Dong D. Directional Self-assembly in Archaerhodopsin-Reconstituted Phospholipid Liposomes. CHINESE J CHEM 2005. [DOI: 10.1002/cjoc.200590330] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 2005; 7:19-42. [DOI: 10.1039/b412180e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Kandt C, Schlitter J, Gerwert K. Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys J 2004; 86:705-17. [PMID: 14747309 PMCID: PMC1303921 DOI: 10.1016/s0006-3495(04)74149-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protonated networks of internal water molecules appear to be involved in proton transfer in various integral membrane proteins. High-resolution x-ray studies of protein crystals at low temperature deliver mean positions of most internal waters, but only limited information about fluctuations within such H-bonded networks formed by water and residues. The question arises as to how water molecules behave inside and on the surface of a fluctuating membrane protein under more physiological conditions. Therefore, as an example, long-time molecular dynamics simulations of bacteriorhodopsin were performed with explicit membrane/water environment. Based on a recent x-ray model the bacteriorhodopsin trimer was inserted in a fully solvated 16 x 16 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-bilayer patch, resulting in a system of approximately 84,000 atoms. Unrestrained molecular dynamics calculations of 5 ns were performed using the GROMACS package and force field. Mean water densities were computed to describe the anisotropic distribution of internal water molecules. In the whole protein two larger areas of higher water density are identified. They are located between the central proton binding site, the Schiff base, and the extracellular proton release site. Separated by Arg-82 these water clusters could provide a proton release pathway in a Grotthus-like mechanism as indicated by a continuum absorbance change observed during the photocycle by time-resolved Fourier transform infrared spectroscopy. Residues are identified which are H-bonded to the water clusters and are therefore facilitating proton conduction. Their influence on proton transfer via the H-bonded network as indicated by the continuum absorbance change is predicted. This may explain why several site-directed mutations alter the proton release kinetics without a direct involvement in proton transfer.
Collapse
Affiliation(s)
- Christian Kandt
- Lehrstuhl für Biophysik Ruhr-Universität Bochum, ND 04 44780 Bochum, Germany
| | | | | |
Collapse
|
15
|
Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Müller DJ. Probing the Energy Landscape of the Membrane Protein Bacteriorhodopsin. Structure 2004; 12:871-9. [PMID: 15130479 DOI: 10.1016/j.str.2004.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2003] [Revised: 02/26/2004] [Accepted: 03/02/2004] [Indexed: 11/29/2022]
Abstract
The folding and stability of transmembrane proteins is a fundamental and unsolved biological problem. Here, single bacteriorhodopsin molecules were mechanically unfolded from native purple membranes using atomic force microscopy and force spectroscopy. The energy landscape of individual transmembrane alpha helices and polypeptide loops was mapped by monitoring the pulling speed dependence of the unfolding forces and applying Monte Carlo simulations. Single helices formed independently stable units stabilized by a single potential barrier. Mechanical unfolding of the helices was triggered by 3.9-7.7 A extension, while natural unfolding rates were of the order of 10(-3) s(-1). Besides acting as individually stable units, helices associated pairwise, establishing a collective potential barrier. The unfolding pathways of individual proteins reflect distinct pulling speed-dependent unfolding routes in their energy landscapes. These observations support the two-stage model of membrane protein folding in which alpha helices insert into the membrane as stable units and then assemble into the functional protein.
Collapse
Affiliation(s)
- Harald Janovjak
- BIOTEC, University of Technology Dresden, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Ma C, Chang G. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:2852-7. [PMID: 14970332 PMCID: PMC365709 DOI: 10.1073/pnas.0400137101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 11/18/2022] Open
Abstract
Multidrug resistance efflux transporters threaten to reverse the progress treating infectious disease by extruding a wide range of drug and other cytotoxic compounds. One such drug transporter, EmrE, from the small multidrug resistance family, utilizes proton gradients as an energy source to drive substrate translocation. In an effort to understand the molecular structural basis of this transport mechanism, we have determined the structure of EmrE from Escherichia coli to 3.8 A. EmrE is a tetramer comprised of two conformational heterodimers related by a pseudo two-fold symmetry axis perpendicular to the cell membrane. Based on the structure and biochemical evidence, we propose a mechanism by which EmrE accomplishes multidrug efflux by coupling conformational changes between two heterodimers with proton gradient. Because of its simplicity and compact size, the structure of EmrE can serve as an ideal model for understanding the general structural basis of proton:drug antiport for other drug efflux systems.
Collapse
Affiliation(s)
- Che Ma
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | | |
Collapse
|
17
|
Janovjak H, Kessler M, Oesterhelt D, Gaub H, Müller DJ. Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J 2003; 22:5220-9. [PMID: 14517259 PMCID: PMC204492 DOI: 10.1093/emboj/cdg509] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The combination of high-resolution atomic force microscopy (AFM) imaging and single-molecule force-spectroscopy was employed to unfold single bacteriorhodopsins (BR) from native purple membrane patches at various physiologically relevant temperatures. The unfolding spectra reveal detailed insight into the stability of individual structural elements of BR against mechanical unfolding. Intermittent states in the unfolding process are associated with the stepwise unfolding of alpha-helices, whereas other states are associated with the unfolding of polypeptide loops connecting the alpha-helices. It was found that the unfolding forces of the secondary structures considerably decreased upon increasing the temperature from 8 to 52 degrees C. Associated with this effect, the probability of individual unfolding pathways of BR was significantly influenced by the temperature. At lower temperatures, transmembrane alpha-helices and extracellular polypeptide loops exhibited sufficient stability to individually establish potential barriers against unfolding, whereas they predominantly unfolded collectively at elevated temperatures. This suggests that increasing the temperature decreases the mechanical stability of secondary structural elements and changes molecular interactions between secondary structures, thereby forcing them to act as grouped structures.
Collapse
Affiliation(s)
- Harald Janovjak
- Max-Planck-Institute of Molecular Cell Biology and Genetics and BioTec, University of Technology, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
18
|
Schobert B, Brown LS, Lanyi JK. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J Mol Biol 2003; 330:553-70. [PMID: 12842471 DOI: 10.1016/s0022-2836(03)00576-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An M intermediate of wild-type bacteriorhodopsin and an N intermediate of the V49A mutant were accumulated in photostationary states at pH 5.6 and 295 K, and their crystal structures determined to 1.52A and 1.62A resolution, respectively. They appear to be M(1) and N' in the sequence, M(1)<-->M(2)<-->M'(2)<-->N<-->N'-->O-->BR, where M(1), M(2), and M'(2) contain an unprotonated retinal Schiff base before and after a reorientation switch and after proton release to the extracellular surface, while N and N' contain a reprotonated Schiff base, before and after reprotonation of Asp96 from the cytoplasmic surface. In M(1), we detect a cluster of three hydrogen-bonded water molecules at Asp96, not present in the BR state. In M(2), whose structure we reported earlier, one of these water molecules intercalates between Asp96 and Thr46. In N', the cluster is transformed into a single-file hydrogen-bonded chain of four water molecules that connects Asp96 to the Schiff base. We find a network of three water molecules near residue 219 in the crystal structure of the non-illuminated F219L mutant, where the residue replacement creates a cavity. This suggests that the hydration of the cytoplasmic region we observe in N' might have occurred spontaneously, beginning at an existing water molecule as nucleus, in the cavities from residue rearrangements in the photocycle.
Collapse
Affiliation(s)
- Brigitte Schobert
- Department of Physiology and Biophysics, University of California, D345 Medical Science I, Irvine, CA 92697, USA
| | | | | |
Collapse
|
19
|
Alexiev U, Rimke I, Pöhlmann T. Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: a time-resolved fluorescence depolarization study. J Mol Biol 2003; 328:705-19. [PMID: 12706727 DOI: 10.1016/s0022-2836(03)00326-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformation of the AB-loop and EF-loop of bacteriorhodopsin and of the fourth cytoplasmic loop (helix VIII) of bovine rhodopsin were assessed by a combination of time-resolved fluorescence depolarization and site-directed fluorescence labeling. The fluorescence anisotropy decays were measured employing a tunable Ti:sapphire laser/microchannel plate based single-photon counting apparatus with picosecond time resolution. This method allows measurement of the diffusional dynamics of the loops directly on a nanosecond time-scale. We implemented the method to study model peptides and two-helix systems representing sequences of bacteriorhodopsin. Thus, we systematically analyzed the anisotropic behavior of four different fluorescent dyes covalently bound to a single cysteine residue on the protein surface and assigned the anisotropy decay components to the modes of motion of the protein and its segments. We have identified two mechanisms of loop conformational changes in the functionally intact proteins bacteriorhodopsin and bovine rhodopsin. First, we found a surface potential-dependent transition between two conformational states of the EF-loop of bacteriorhodopsin, detected with the fluorescent dye bound to position 160. A transition between the two conformational states at 150mM KCl and 20 degrees C requires a surface potential change that corresponds to Deltasigma approximately -1.0e(-)/bacteriorhodopsin molecule. We suggest, that the surface potential-based switch of the EF-loop is the missing link between the movement of helix F and the transient surface potential change detected during the photocycle of bacteriorhodopsin. Second, in the visual pigment rhodopsin, with the fluorescent dye bound to position 316, a particularly striking pH-dependent conformational change of the fourth loop on the cytoplasmic surface was analyzed. The loop mobility increased from pH 5 to 8. The midpoint of this transition is at pH 6.2 and correlates with the midpoint of the pH-dependent equilibrium between the active metarhodopsin II and the inactive metarhodopsin I state.
Collapse
Affiliation(s)
- U Alexiev
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
20
|
Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys J 2002; 83:3578-88. [PMID: 12496125 PMCID: PMC1302433 DOI: 10.1016/s0006-3495(02)75358-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane alpha-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the alpha-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR.
Collapse
Affiliation(s)
- Daniel J Müller
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Mills DA, Ferguson-Miller S. Influence of structure, pH and membrane potential on proton movement in cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:96-100. [PMID: 12206898 DOI: 10.1016/s0005-2728(02)00261-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytochrome c oxidase (CcO) reconstituted into phospholipid vesicles and subject to a membrane potential, exhibits different characteristics than the free enzyme, with respect to effects of mutations, pH, inhibitors, and native structural differences between CcO from different species. The results indicate that the membrane potential influences the conformation of CcO and the direction of proton movement in the exit path. The importance of the protein structure above the hemes in proton exit, back leak and respiratory control is discussed.
Collapse
Affiliation(s)
- Denise A Mills
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing 48824, USA.
| | | |
Collapse
|
22
|
Wang J, Link S, Heyes CD, El-Sayed MA. Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Biophys J 2002; 83:1557-66. [PMID: 12202380 PMCID: PMC1302253 DOI: 10.1016/s0006-3495(02)73925-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.
Collapse
Affiliation(s)
- Jianping Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 USA
| | | | | | | |
Collapse
|
23
|
Schobert B, Cupp-Vickery J, Hornak V, Smith S, Lanyi J. Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 2002; 321:715-26. [PMID: 12206785 DOI: 10.1016/s0022-2836(02)00681-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The K state, an early intermediate of the bacteriorhodopsin photocycle, contains the excess free energy used for light-driven proton transport. The energy gain must reside in or near the photoisomerized retinal, but in what form has long been an open question. We produced the K intermediate in bacteriorhodopsin crystals in a photostationary state at 100K, with 40% yield, and determined its X-ray diffraction structure to 1.43 A resolution. In independent refinements of data from four crystals, the changes are confined mainly to the photoisomerized retinal. The retinal is 13-cis,15-anti, as known from vibrational spectroscopy. The C13=C14 bond is rotated nearly fully to cis from the initial trans configuration, but the C14-C15 and C15=NZ bonds are partially counter-rotated. This strained geometry keeps the direction of the Schiff base N-H bond vector roughly in the extracellular direction, but the angle of its hydrogen bond with water 402, that connects it to the anionic Asp85 and Asp212, is not optimal. Weakening of this hydrogen bond may account for many of the reported features of the infrared spectrum of K, and for its photoelectric signal, as well as the deprotonation of the Schiff base later in the cycle. Importantly, although 13-cis, the retinal does not assume the expected bent shape of this configuration. Comparison of the calculated energy of the increased angle of C12-C13=C14, that allows this distortion, with the earlier reported calorimetric measurement of the enthalpy gain of the K state indicates that a significant part of the excess energy is conserved in the bond strain at C13.
Collapse
Affiliation(s)
- Brigitte Schobert
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
24
|
Lanyi J, Schobert B. Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J Mol Biol 2002; 321:727-37. [PMID: 12206786 DOI: 10.1016/s0022-2836(02)00682-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We illuminated bacteriorhodopsin crystals at 210K to produce, in a photostationary state with 60% occupancy, the earliest M intermediate (M1) of the photocycle. The crystal structure of this state was then determined from X-ray diffraction to 1.43 A resolution. When the refined model is placed after the recently determined structure for the K intermediate but before the reported structures for two later M states, a sequence of structural changes becomes evident in which movements of protein atoms and bound water are coordinated with relaxation of the initially strained photoisomerized 13-cis,15-anti retinal. In the K state only retinal atoms are displaced, but in M1 water 402 moves also, nearly 1A away from the unprotonated retinal Schiff base nitrogen. This breaks the hydrogen bond that bridges them, and initiates rearrangements of the hydrogen-bonded network of the extracellular region that develop more fully in the intermediates that follow. In the M1 to M2 transition, relaxation of the C14-C15 and C15=NZ torsion angles to near 180 degrees reorients the retinylidene nitrogen atom from the extracellular to the cytoplasmic direction, water 402 becomes undetectable, and the side-chain of Arg82 is displaced strongly toward Glu194 and Glu204. Finally, in the M2 to M2' transition, correlated with release of a proton to the extracellular surface, the retinal assumes a virtually fully relaxed bent shape, and the 13-methyl group thrusts against the indole ring of Trp182 which tilts in the cytoplasmic direction. Comparison of the structures of M1 and M2 reveals the principal switch in the photocycle: the change of the angle of the C15=NZ-CE plane breaks the connection of the unprotonated Schiff base to the extracellular side and establishes its connection to the cytoplasmic side.
Collapse
Affiliation(s)
- Janos Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
25
|
Heyes CD, El-Sayed MA. The role of the native lipids and lattice structure in bacteriorhodopsin protein conformation and stability as studied by temperature-dependent Fourier transform-infrared spectroscopy. J Biol Chem 2002; 277:29437-43. [PMID: 12058039 DOI: 10.1074/jbc.m203435200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the effect of partial delipidation and monomerization on the protein conformational changes of bacteriorhodopsin (bR) as a function of temperature. Removal of up to 75% of the lipids is known to have the lattice structure of the purple membrane, albeit as a smaller unit cell, whereas treatment by Triton monomerizes bR into micelles. The effects of these modifications on the protein secondary structure is analyzed by monitoring the protein amide I and amide II bands in the Fourier transform-infrared (FT-IR) spectra. It is found that removal of the first 75% of the lipids has only a slight effect on the secondary structure at physiological temperature, whereas monomerizing bR into micelles alters the secondary structure considerably. Upon heating, the bR monomer is found to have a very low thermal stability compared with the native bR with its melting point reduced from 97 to 65 degrees C, and the pre-melting transition in which the protein changes conformation in native bR at 80 degrees C could not be observed. Also, the N[bond]H to N[bond]D exchange of the amide II band is effectively complete at room temperature, suggesting that there are no hydrophobic regions that are protected from the aqueous medium, possibly explaining the low thermal stability of the monomer. On the other hand, 75% delipidated bR has its melting temperature close to that of the native bR and does have a pre-melting transition, although the pre-melting transition occurs at significantly higher temperature than that of the native bR (91 degrees C compared with 80 degrees C) and is still reversible. Furthermore, we have also observed that the reversibility of this pre-melting transition of both native and partially delipidated bR is time-dependent and becomes irreversible upon holding at 91 degrees C between 10 and 30 min. These results are discussed in terms of the lipid and lattice contribution to the protein thermal stability of native bR.
Collapse
Affiliation(s)
- Colin D Heyes
- Laser Dynamics Laboratory, School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | |
Collapse
|
26
|
Patzelt H, Simon B, terLaak A, Kessler B, Kühne R, Schmieder P, Oesterhelt D, Oschkinat H. The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy. Proc Natl Acad Sci U S A 2002; 99:9765-70. [PMID: 12119389 PMCID: PMC125008 DOI: 10.1073/pnas.132253899] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis,15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis,15-syn forms shows a shift in position of about 0.25 A within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12[bond]C14 region, while leaving W182 and T178 essentially unchanged. The N[bond]H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N[bond]H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole.
Collapse
Affiliation(s)
- Heiko Patzelt
- Max-Planck-Institut für Biochemie, Abteilung Membranbiochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nachliel E, Gutman M, Tittor J, Oesterhelt D. Proton transfer dynamics on the surface of the late M state of bacteriorhodopsin. Biophys J 2002; 83:416-26. [PMID: 12080130 PMCID: PMC1302157 DOI: 10.1016/s0006-3495(02)75179-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cytoplasmic surface of the BR (initial) state of bacteriorhodopsin is characterized by a cluster of three carboxylates that function as a proton-collecting antenna. Systematic replacement of most of the surface carboxylates indicated that the cluster is made of D104, E161, and E234 (Checover, S., Y. Marantz, E. Nachliel, M. Gutman, M. Pfeiffer, J. Tittor, D. Oesterhelt, and N. Dencher. 2001. Biochemistry. 40:4281-4292), yet the BR state is a resting configuration; thus, its proton-collecting antenna can only indicate the presence of its role in the photo-intermediates where the protein is re-protonated by protons coming from the cytoplasmic matrix. In the present study we used the D96N and the triple (D96G/F171C/F219L) mutant for monitoring the proton-collecting properties of the protein in its late M state. The protein was maintained in a steady M state by continuous illumination and subjected to reversible pulse protonation caused by repeated excitation of pyranine present in the reaction mixture. The re-protonation dynamics of the pyranine anion was subjected to kinetic analysis, and the rate constants of the reaction of free protons with the surface groups and the proton exchange reactions between them were calculated. The reconstruction of the experimental signal indicated that the late M state of bacteriorhodopsin exhibits an efficient mechanism of proton delivery to the unoccupied-most basic-residue on its cytoplasmic surface (D38), which exceeds that of the BR configuration of the protein. The kinetic analysis was carried out in conjunction with the published structure of the M state (Sass, H., G. Büldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, and P. Ormos. 2000. Nature. 406:649-653), the model that resolves most of the cytoplasmic surface. The combination of the kinetic analysis and the structural information led to identification of two proton-conducting tracks on the protein's surface that are funneling protons to D38. One track is made of the carboxylate moieties of residues D36 and E237, while the other is made of D102 and E232. In the late M state the carboxylates of both tracks are closer to D38 than in the BR (initial) state, accounting for a more efficient proton equilibration between the bulk and the protein's proton entrance channel. The triple mutant resembles in the kinetic properties of its proton conducting surface more the BR-M state than the initial state confirming structural similarities with the BR-M state and differences to the BR initial state.
Collapse
Affiliation(s)
- Esther Nachliel
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
28
|
Lazarova T, Sanz C, Sepulcre F, Querol E, Padrós E. Specific effects of chloride on the photocycle of E194Q and E204Q mutants of bacteriorhodopsin as measured by FTIR spectroscopy. Biochemistry 2002; 41:8176-83. [PMID: 12069610 DOI: 10.1021/bi025654u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-temperature Fourier transform infrared spectroscopy has been used to study mutants of Glu194 and Glu204, two amino acids that are involved in proton release to the extracellular side of bacteriorhodopsin. Difference spectra of films of E194Q, E204Q, E194Q/E204Q, E9Q/E194Q/E204Q, and E9Q/E74Q/E194Q/E204Q at 243, 277, and 293 K and several pH values were obtained by continuous illumination. A specific effect of Cl(-) ions was found for the mutants, promoting a N-like intermediate at alkaline pH and an O' intermediate at neutral or acid pH. The apparent pK(a) of Asp85 in the M intermediate was found to be decreased for E194Q in the presence of Cl(-) (pK(a) of 7.6), but it was unchanged for E204Q, as compared to wild-type. In the absence of Cl(-) (i.e., in the presence of SO(4)(2)(-)), mutation of Glu194 or of Glu204 produces M- (or M(N), M(G))-like intermediates under all of the conditions examined. The absence of N, O, and O' intermediates suggests a long-range effect of the mutation. Furthermore, it is suggested that Cl(-) acts by reaching the interior of the protein, rather than producing surface effects. The effect of low water content was also examined, in the presence of Cl(-). Similar spectra corresponding to the M(1) intermediate were found for dry samples of both mutants, indicating that the effects of the mutations or of Cl(-) ions are confined to the second part of the photocycle. The water O-H stretching data further confirms altered photocycles and the effect of Cl(-) on the accumulation of the N intermediate.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona 08193, Spain
| | | | | | | | | |
Collapse
|
29
|
Tittor J, Paula S, Subramaniam S, Heberle J, Henderson R, Oesterhelt D. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. J Mol Biol 2002; 319:555-65. [PMID: 12051928 DOI: 10.1016/s0022-2836(02)00307-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unlike wild-type bacteriorhodopsin (BR), the BR triple mutant D96G/F171C/F219L has been shown to undergo only minor structural rearrangements during its photocycle. Nonetheless, the mutant is capable of transporting protons at a rate of 125(+/-40) H+/BR per minute under light-saturating conditions. Light adaptation of the triple mutant's retinal proceeds in a pH-dependent manner up to a maximum of 63% all-trans. These two findings imply that the transport activity of the triple mutant comprises 66% of the wild-type activity. Time-resolved spectroscopy reveals that the identity and sequence of intermediates in the photocycle of the triple mutant in the all-trans configuration correspond to that of wild-type BR. The only differences relate to a slower rise and decay of the M and O intermediates, and a significant spectral contribution from a 13-cis component. No indication for accumulation of the N intermediate is found under a variety of conditions that normally favor the formation of this species in wild-type BR. The Fourier transform infrared (FTIR) spectrum of the M intermediate in the triple mutant resembles that of wild type. Minor changes in the amide I region during the photocycle suggest that only small movements of the protein backbone occur. Electron microscopy reveals large differences in conformation between the unilluminated state of the mutant protein and wild-type but no light-induced changes in time-resolved measurements. Evidently, proton transport by the triple mutant does not require the major conformational rearrangements that occur on the same time-scale with wild-type. Thus, we conclude that large conformational changes observed in the photocycle of the wild-type and many BR mutants are not a prerequisite for the change in accessibility of the Schiff base nitrogen atom that must occur during vectorial catalysis to allow proton transport.
Collapse
Affiliation(s)
- J Tittor
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Abdulaev NG, Strassmaier TT, Ngo T, Chen R, Luecke H, Oprian DD, Ridge KD. Grafting segments from the extracellular surface of CCR5 onto a bacteriorhodopsin transmembrane scaffold confers HIV-1 coreceptor activity. Structure 2002; 10:515-25. [PMID: 11937056 DOI: 10.1016/s0969-2126(02)00752-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Components from the extracellular surface of CCR5 interact with certain macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1) to mediate viral fusion and entry. To mimic these viral interacting site(s), the amino-terminal and extracellular loop segments of CCR5 were linked in tandem to form concatenated polypeptides, or grafted onto a seven-transmembrane bacteriorhodopsin scaffold to generate several chimeras. The chimera studies identified specific regions in CCR5 that confer HIV-1 coreceptor function, structural rearrangements in the transmembrane region that may modulate this activity, and a role for the extracellular surface in folding and assembly. Methods developed here may be applicable to the dissection of functional domains from other seven-transmembrane receptors and form a basis for future structural studies.
Collapse
Affiliation(s)
- Najmoutin G Abdulaev
- Center for Advanced Research in Biotechnology, National Institute of Standards and Technology and The University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Brown LS, Needleman R, Lanyi JK. Conformational change of the E-F interhelical loop in the M photointermediate of bacteriorhodopsin. J Mol Biol 2002; 317:471-8. [PMID: 11922678 DOI: 10.1006/jmbi.2002.5428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conformation of the structured EF interhelical loop of bacteriorhodopsin and its change in the M photointermediate were assessed by measuring the rate of reaction of 16 single engineered cysteine residues along the loop with water-soluble sulfhydryl reagents. The exposure to the bulk in the unilluminated state determined with the cysteine reaction correlated well with the degree of access to water calculated from the crystallographic structure of the loop. The EF-loop should be affected by the well-known outward tilt of helix F in the M and N intermediates of the photocycle. A second mutation in each cysteine mutant, the D96N residue replacement, allowed full conversion to the M state by illumination. The reaction rates measured under these conditions indicated that buried residues tend to become more exposed, and exposed residues become more buried in M. This is to be expected from tilt of helix F. However, the observation of increased exposure of four residues near the middle of the loop, where steric effects are only from other loop residues, indicate that the conformation of the EF-loop itself is changed. Thus, the motion of the loop in M is more complex than expected from simple tilt of helix F, and may include rotation that unwinds its twist.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
32
|
van Stokkum IHM, Lozier RH. Target Analysis of the Bacteriorhodopsin Photocycle Using a Spectrotemporal Model. J Phys Chem B 2002. [DOI: 10.1021/jp0127723] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics Applied Computer Science, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Richard H. Lozier
- Department of Physics Applied Computer Science, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Atkinson GH, Zhou Y, Ujj L, Aharoni A, Sheves M, Ottolenghi M. Dynamics and Retinal Structural Changes in the Photocycle of the Artificial Bacteriorhodopsin Pigment BR6.9. J Phys Chem A 2002. [DOI: 10.1021/jp011911d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. H. Atkinson
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - Y. Zhou
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - L. Ujj
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - A. Aharoni
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - M. Sheves
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - M. Ottolenghi
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| |
Collapse
|
34
|
Heyes CD, El-Sayed MA. Effect of temperature, pH, and metal ion binding on the secondary structure of bacteriorhodopsin: FT-IR study of the melting and premelting transition temperatures. Biochemistry 2001; 40:11819-27. [PMID: 11570882 DOI: 10.1021/bi002594o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have measured the temperature dependence of the FT-IR spectra of bacteriorhodopsin (bR) as a function of the pH and of the divalent cation regeneration with Ca(2+) and Mg(2+). It has been found that although the irreversible melting transition shows a strong dependence on the pH of the native bR, the premelting reversible transition at 78-80 degrees C shows very little variation over the pH range studied. It is further shown that the acid blue bR shows a red-shifted amide I spectrum at physiological temperature, which shows a more typical alpha-helical frequency component at 1652 cm(-)(1) and could be the reason for the observed reduction of its melting temperature and lack of an observed premelting transition. Furthermore, the thermal transitions for Ca(2+)- and Mg(2+)-regenerated bR (Ca-bR and Mg-bR, respectively) each show a premelting transition at the same 78-80 degrees C temperature as the native purple membrane, but the irreversible melting transition has a slight dependence on the cation identity. The pH dependence of the Ca(2+)-regenerated bR is studied, and neither transition varies over the pH range studied. These results are discussed in terms of the cation contribution to the secondary structural stability in bR.
Collapse
Affiliation(s)
- C D Heyes
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | |
Collapse
|
35
|
Dioumaev AK, Brown LS, Needleman R, Lanyi JK. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin. Biochemistry 2001; 40:11308-17. [PMID: 11560478 DOI: 10.1021/bi011027d] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the N to O reaction of the bacteriorhodopsin photocycle, Asp-96 is protonated from the cytoplasmic surface, and coupled to this, the retinal isomerizes from 13-cis,15-anti back to the initial all-trans configuration. To dissect the two steps, and to better understand how and why they occur, we describe the properties of two groups of site-specific mutants in which the N intermediate has greatly increased lifetime. In the first group, with the mutations near the retinal, an unusual N state is produced in which the retinal is 13-cis,15-anti but Asp-96 has a protonated carboxyl group. The apparent pK(a) for the protonation is 7.5, as in the wild-type. It is likely that here the interference with N decay is the result of steric conflict of side-chains with the retinal or with the side-chain of Lys-216 connected to the retinal, which delays the reisomerization after protonation of Asp-96. In the second group, with the mutations located near Asp-96 or between Asp-96 and the cytoplasmic surface, reprotonation of Asp-96 is strongly perturbed. The reisomerization of the retinal occurs only after recovery from a long-living protein conformation in which reprotonation of Asp-96 is either entirely blocked or blocked at low pH.
Collapse
Affiliation(s)
- A K Dioumaev
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
36
|
Chizhov I, Engelhard M. Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 2001; 81:1600-12. [PMID: 11509373 PMCID: PMC1301638 DOI: 10.1016/s0006-3495(01)75814-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photocycle kinetics of halorhodopsin from Natronobacterium pharaonis (pHR(575)) was analyzed at different temperatures and chloride concentrations as well as various halides. Over the whole range of modified parameters the kinetics can be adequately modeled with six apparent rate constants. Assuming a model in which the observed rates are assigned to irreversible transitions of a single relaxation chain, six kinetically distinguishable states (P(1-6)) are discernible that are formed from four chromophore states (spectral archetypes S(j): K(570), L(N)(520), O(600), pHR'(575)). Whereas P(1) coincides with K(570) (S(1)), both P(2) and P(3) have identical spectra resembling L(520) (S(2)), thus representing a true spectral silent transition between them. P(4) constitutes a fast temperature-dependent equilibrium between the chromophore states S(2) and S(3) (L(520) and O(600), respectively). The subsequent equilibrium (P(5)) of the same spectral archetypes is only moderately temperature dependent but shows sensitivity toward the type of anion and the chloride concentration. Therefore, S(2) and S(3) occurring in P(4) as well as in P(5) have to be distinguished and are assigned to L(520)<--> O(1)(600) and O(2)(600)<--> N(520) equilibrium, respectively. It is proposed that P(4) and P(5) represent the anion release and uptake steps. Based on the experimental data affinities of the halide binding sites are estimated.
Collapse
Affiliation(s)
- I Chizhov
- Max-Planck-Institut für Molekulare Physiologie, 44227 Dortmund, Germany.
| | | |
Collapse
|
37
|
Gottschalk M, Dencher NA, Halle B. Microsecond exchange of internal water molecules in bacteriorhodopsin. J Mol Biol 2001; 311:605-21. [PMID: 11493013 DOI: 10.1006/jmbi.2001.4895] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-conducting pathway of bacteriorhodopsin (BR) contains at least nine internal water molecules that are thought to be key players in the proton translocation mechanism. Here, we report the results of a multinuclear (1H, 2H, 17O) magnetic relaxation dispersion (MRD) study with the primary goal of determining the rate of exchange of these internal water molecules with bulk water. This rate is of interest in current attempts to elucidate the molecular details of the proton translocation mechanism. The relevance of water exchange kinetics is underscored by recent crystallographic findings of substantial variations in the number and locations of internal water molecules during the photocycle. Moreover, internal water exchange is believed to be governed by conformational fluctuations in the protein and can therefore provide information about the thermal accessibility of functionally important conformational substates. The present 2H and 17O MRD data show that at least seven water molecules, or more if they are orientationally disordered, in BR have residence times (inverse exchange rate constant) in the range 0.1-10 micros at 277 K. At least five of these water molecules have residence times in the more restrictive range 0.1-0.5 micros. These results show that most or all of the deeply buried water molecules in BR exchange on a time-scale that is short compared to the rate-limiting step in the photocycle. The MRD measurements were performed on BR solubilized in micelles of octyl glucoside. From the MRD data, the rotational correlation time of detergent-solubilized BR was determined to 35 ns at 300 K, consistent with a monomeric protein in complex with about 150 detergent molecules. The solubilized protein was found to be stable in the dark for at least eight months at 277 K.
Collapse
Affiliation(s)
- M Gottschalk
- Physical Chemistry 2, Lund University, Lund, SE-22100, Sweden
| | | | | |
Collapse
|
38
|
Kim JM, Booth PJ, Allen SJ, Khorana HG. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. J Mol Biol 2001; 308:409-22. [PMID: 11327776 DOI: 10.1006/jmbi.2001.4603] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriorhodopsin functions as a light-driven proton pump in Halobacterium salinarium. The functional protein consists of an apoprotein, bacterioopsin, with seven transmembrane alpha helices together with a covalently bound all-trans retinal chromophore. In order to study the role of the interhelical loop conformations in the structure and function of bacteriorhodopsin, we have constructed bacterioopsin genes where each loop is replaced, one at a time, by a peptide linker consisting of Gly-Gly-Ser- repeat sequences, which are believed to have flexible conformations. These mutant proteins have been expressed in Escherichia coli, purified and reconstituted with all-trans retinal in l-alpha-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-(3-cholamidopropyl)dimethylammonio-1-propane sulfonate (CHAPS)/SDS and l-alpha-1,2-dihexanoylphosphatidylcholine (DHPC)/DMPC/SDS micelles. Wild-type-like chromophore formation was observed in all the mutants containing single loop replacements. In the BC and FG mutants, an additional chromophore band with an absorption band at about 480 nm was observed, which was in equilibrium with the 550 nm, wild-type band. The position of the equilibrium depended on temperature, SDS and relative DMPC concentration. The proton pumping activity of all of the mutants was comparable to that of wild-type bR except for the BC and FG mutants, which had lower activity. All of the loop mutants were more sensitive to denaturation by SDS than the wild-type protein, except the mutant where the DE loop was replaced. These results suggest that a specific conformation of all the loops of bR, except the DE loop, contributes to bR stability and is required for the correct folding and function of the protein. An increase in the relative proportion of DHPC in DHPC/DMPC micelles, which reduces the micelle rigidity and alters the micelle shape, resulted in lower folding yields of all loop mutants except the BC and DE mutants. This effect of micelle rigidity on the bR folding yield correlated with a loss in stability of a partially folded, seven-transmembrane apoprotein intermediate state in SDS/DMPC/CHAPS micelles. The folding yield and stability of the apoprotein intermediate state both decreased for the loop mutants in the order WT approximately BC approximately DE>FG>AB>EF> or =CD, where the EF and CD loop mutants were the least stable.
Collapse
Affiliation(s)
- J M Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | | |
Collapse
|
39
|
Spudich JL, Yang CS, Jung KH, Spudich EN. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 2001; 16:365-92. [PMID: 11031241 DOI: 10.1146/annurev.cellbio.16.1.365] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinylidene proteins, containing seven membrane-embedded alpha-helices that form an internal pocket in which the chromophore retinal is bound, are ubiquitous in photoreceptor cells in eyes throughout the animal kingdom. They are also present in a diverse range of other organisms and locations, such as archaeal prokaryotes, unicellular eukaryotic microbes, the dermal tissue of frogs, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. Their functions include light-driven ion transport and phototaxis signaling in microorganisms, and retinal isomerization and various types of photosignal transduction in higher animals. The aims of this review are to examine this group of photoactive proteins as a whole, to summarize our current understanding of structure/function relationships in the best-studied examples, and to report recent new developments.
Collapse
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
40
|
Baudry J, Tajkhorshid E, Molnar F, Phillips J, Schulten K. Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane. J Phys Chem B 2001. [DOI: 10.1021/jp000898e] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jérôme Baudry
- Beckman Institute and Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- Beckman Institute and Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Ferenc Molnar
- Beckman Institute and Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - James Phillips
- Beckman Institute and Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute and Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
41
|
Yerushalmi H, Schuldiner S. A model for coupling of H(+) and substrate fluxes based on "time-sharing" of a common binding site. Biochemistry 2000; 39:14711-9. [PMID: 11101285 DOI: 10.1021/bi001892i] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both prokaryotic and eukaryotic cells contain an array of membrane transport systems maintaining the cellular homeostasis. Some of them (primary pumps) derive energy from redox reactions, ATP hydrolysis, or light absorption, whereas others (ion-coupled transporters) utilize ion electrochemical gradients for active transport. Remarkable progress has been made in understanding the molecular mechanism of coupling in some of these systems. In many cases carboxylic residues are essential for either binding or coupling. Here we suggest a model for the molecular mechanism of coupling in EmrE, an Escherichia coli 12-kDa multidrug transporter. EmrE confers resistance to a variety of toxic cations by removing them from the cell interior in exchange for two protons. EmrE has only one membrane-embedded charged residue, Glu-14, which is conserved in more than 50 homologous proteins. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate-binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux, and exchange reactions. The studies suggest that Glu-14 is an essential part of a binding site, which is common to substrates and protons. The occupancy of this site by H(+) and substrate is mutually exclusive and provides the basis of the simplest coupling for two fluxes.
Collapse
Affiliation(s)
- H Yerushalmi
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | |
Collapse
|
42
|
Lanyi JK. Molecular Mechanism of Ion Transport in Bacteriorhodopsin: Insights from Crystallographic, Spectroscopic, Kinetic, and Mutational Studies. J Phys Chem B 2000. [DOI: 10.1021/jp0023718] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janos K. Lanyi
- Department of Physiology & Biophysics, University of California, Irvine, California 92697
| |
Collapse
|
43
|
Abstract
Proton transfer into and out of proteins is important, both for many enzyme reaction mechanisms and proton pumping across membranes. Recent work on several proteins has revealed stringent requirements for amino-acid side chains and subtle reorganisation of hydrogen-bond networks involving bound water molecules.
Collapse
Affiliation(s)
- S J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
44
|
Lanyi JK. Crystallographic studies of the conformational changes that drive directional transmembrane ion movement in bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:339-45. [PMID: 11004449 DOI: 10.1016/s0005-2728(00)00170-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent advances in the determination of the X-ray crystallographic structures of bacteriorhodopsin, and some of its photointermediates, reveal the nature of the linkage between the relaxation of electrostatic and steric conflicts at the retinal and events elsewhere in the protein. The transport cycle can be now understood in terms of specific and well-described displacements of hydrogen-bonded water, and main-chain and side-chain atoms, that lower the pK(a)s of the proton release group in the extracellular region and Asp-96 in the cytoplasmic region. Thus, local electrostatic conflict of the photoisomerized retinal with Asp-85 and Asp-212 causes deprotonation of the Schiff base, and results in a cascade of events culminating in proton release to the extracellular surface. Local steric conflict of the 13-methyl group with Trp-182 causes, in turn, a cascade of movements in the cytoplasmic region, and results in reprotonation of the Schiff base. Although numerous questions concerning the mechanism of each of these proton (or perhaps hydroxyl ion) transfers remain, the structural results provide a detailed molecular explanation for how the directionality of the ion transfers is determined by the configurational relaxation of the retinal.
Collapse
Affiliation(s)
- J K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine 92697, USA.
| |
Collapse
|
45
|
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, TX 77030, USA
| |
Collapse
|