1
|
Peña FJ, O'Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips G, Gil MC, Ortega Ferrusola C. The Stallion Spermatozoa: A Valuable Model to Help Understand the Interplay Between Metabolism and Redox (De)regulation in Sperm Cells. Antioxid Redox Signal 2022; 37:521-537. [PMID: 35180830 DOI: 10.1089/ars.2021.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Proper functionality of the spermatozoa depends on the tight regulation of their redox status; at the same time these cells are highly energy demanding and in the energetic metabolism, principally in the electron transport chain in the mitochondria, reactive oxygen species are continuously produced, in addition to that observed in the Krebs cycle and during the β-oxidation of fatty acids. Recent Advances: In addition, in glycolysis, elimination of phosphate groups from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate results in the byproducts glyoxal (G) and methylglyoxal (MG); these products are 2-oxoaldehydes. The presence of adjacent carbonyl groups makes them strong electrophiles that react with nucleophiles in proteins, lipids, and DNA, forming advanced glycation end products. Critical Issues: This mechanism is behind subfertility in diabetic patients; in the animal breeding industry, commercial extenders for stallion semen contain a supraphysiological concentration of glucose that promotes MG production, constituting a potential model of interest. Future Directions: Increasing our knowledge of sperm metabolism and its interactions with redox regulation may improve current sperm technologies in use, and shall provide new clues to understanding infertility in males. Moreover, stallion spermatozoa due to its accessibility, intense metabolism, and suitability for proteomics/metabolomic studies may constitute a suitable model for studying regulation of metabolism and interactions between metabolism and redox homeostasis. Antioxid. Redox Signal. 37, 521-537.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristian O'Flaherty
- Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics and Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - José M Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
2
|
Lagares MDA, da Silva GC, Cortes SF, Moreira FHM, Neves FCD, Alves NDC, Viegas RN, Diniz TF, Lemos VS, de Rezende ASC, Freitas MM, Stahlberg R, Nicolino RR. L-carnitine added to post-thawed semen acts as an antioxidant and a stimulator of equine sperm metabolism. Andrologia 2021; 54:e14338. [PMID: 34878673 DOI: 10.1111/and.14338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022] Open
Abstract
The objective of this study was to enhance the in vitro sperm quality and in vivo fertility of frozen-thawed equine semen by the addition of l-carnitine (LC) to post-thawed semen. Different concentrations of LC were added to thawed samples to obtain four treatments control and 0.5, 1 and 2 mM LC. In the in vitro experiments, sperm motility and kinematics, membrane integrity and intracellular calcium ion concentration ([Ca2+ ]i ) were investigated, and the antioxidant bioactivity of LC was assessed by measuring hydrogen peroxide and nitrite concentrations (NO2 - ). The fertility rate was assessed via the artificial insemination of mares. The treatment with 1 mM LC increased sperm [Ca2+ ]i (60.6 ± 0.05 AU), reduced nitrite concentration (39.1 ± 14.9 µM/µg protein), increased the sperm straightness percentage (STR: 78.3 ± 5.3%) and increased the pregnancy rate (75%) as compared to the control ([Ca2+ ]i 48.4 ± 0.05 AU, NO2 - concentration 63.1 ± 14.4 µM/µg protein, STR 67.5 ± 7.9%, 12.5% pregnancy rate, p < 0.05). These results suggest that 1 mM LC acts as an antioxidant and stimulator of sperm metabolism in post-thawed equine semen, increasing the fertility rate. Thus, addition of LC might be an alternative to improve the fertility of poor quality post-thawed equine semen.
Collapse
Affiliation(s)
| | | | - Steyner Franca Cortes
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | | - Rodrigo Novaes Viegas
- Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Frederico Diniz
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Virginia Soares Lemos
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Marina Morra Freitas
- Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rubens Stahlberg
- Faculty of Veterinary Medicine, Pontifical Catholic University (PUC- Minas) of Minas Gerais, Betim, Brazil
| | | |
Collapse
|
3
|
Catalán J, Papas M, Trujillo-Rojas L, Blanco-Prieto O, Bonilla-Correal S, Rodríguez-Gil JE, Miró J, Yeste M. Red LED Light Acts on the Mitochondrial Electron Chain of Donkey Sperm and Its Effects Depend on the Time of Exposure to Light. Front Cell Dev Biol 2020; 8:588621. [PMID: 33365309 PMCID: PMC7750462 DOI: 10.3389/fcell.2020.588621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
This work aimed to investigate how stimulation of donkey sperm with red LED light affects mitochondrial function. For this purpose, freshly diluted donkey semen was stimulated with red light for 1, 5, and 10 min, in the presence or absence of oligomycin A (Omy A), a specific inhibitor of mitochondrial ATP synthase, or FCCP, a specific disruptor of mitochondrial electron chain. The results obtained in the present study indicated that the effects of red LED light on fresh donkey sperm function are related to changes in mitochondria function. In effect, irradiation of donkey sperm resulted in an increase in mitochondrial membrane potential (MMP), the activity of cytochrome C oxidase and the rate of oxygen consumption. In addition, in the absence of oligomycin A and FCCP, light-stimulation augmented the average path velocity (VAP) and modified the structure of motile sperm subpopulations, increasing the fastest and most linear subpopulation. In contrast, the presence of either Omy A or FCCP abolished the aforementioned effects. Interestingly, our results also showed that the effects of red light depend on the exposure time applied, as indicated by the observed differences between irradiation protocols. In conclusion, our results suggest that exposing fresh donkey sperm to red light modulates the function of their mitochondria through affecting the activity of the electron chain. However, the extent of this effect depends on the irradiation pattern and does not exclude the existence of other mechanisms, such as those related to thermotaxis.
Collapse
Affiliation(s)
- Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marion Papas
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Lina Trujillo-Rojas
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Olga Blanco-Prieto
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Sebastián Bonilla-Correal
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Jordi Miró
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
4
|
Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. The role of mitochondria in energy production for human sperm motility. ACTA ACUST UNITED AC 2011; 35:109-24. [DOI: 10.1111/j.1365-2605.2011.01218.x] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Jimenez-Gonzalez C, Michelangeli F, Harper CV, Barratt CLR, Publicover SJ. Calcium signalling in human spermatozoa: a specialized 'toolkit' of channels, transporters and stores. Hum Reprod Update 2005; 12:253-67. [PMID: 16338990 DOI: 10.1093/humupd/dmi050] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ca(2+) is a ubiquitous intracellular messenger which encodes information by temporal and spatial patterns of concentration. In spermatozoa, several key functions, including acrosome reaction and motility, are regulated by cytoplasmic Ca(2+) concentration. Despite the very small size and apparent structural simplicity of spermatozoa, evidence is accumulating that they possess sophisticated mechanisms for regulation of cytoplasmic Ca(2+) concentration and generation of complex Ca(2+) signals. In this review, we consider the various components of the Ca(2+)-signalling 'toolkit' that have been characterized in somatic cells and summarize the evidence for their presence and activity in spermatozoa. In particular, data accumulated over the last few years show that spermatozoa possess one (and probably two) Ca(2+) stores as well as a range of plasma membrane pumps and channels. Selective regulation of the various components of the 'toolkit' by agonists probably allows spermatozoa to generate localized Ca(2+) signals despite their very small cytoplasmic volume, permitting the discrete and selective activation of cell functions.
Collapse
|
6
|
Adams SH, Esser V, Brown NF, Ing NH, Johnson L, Foster DW, McGarry JD. Expression and possible role of muscle-type carnitine palmitoyltransferase I during sperm development in the rat. Biol Reprod 1998; 59:1399-405. [PMID: 9828184 DOI: 10.1095/biolreprod59.6.1399] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because we had found whole testis from adult rats to be much richer in the messenger RNA for the muscle (M) than for the liver (L) form of mitochondrial carnitine palmitoyltransferase I (CPT I), we sought to determine which cell type(s) accounts for this expression pattern and how it might relate to reproductive function. Studies with immature (14-day-old) and adult animals included 1) Northern blot analysis of testis mRNA; 2) in situ hybridization with slices of testis; 3) enzyme assays for CPT I, CPT II, and carnitine acetyltransferase (CAT) in testicular germ cells and nongerm cells, together with measurement of the malonyl-coenzyme A (CoA) sensitivity and affinity for carnitine of CPT I; 4) labeling of testicular CPT I with [3H]etomoxir, a covalent inhibitor of the enzyme; and 5) the response of testicular and nontesticular CPT I to dietary etomoxir. The data established the following: 1) L-CPT I was the sole isoform detected in immature testis. 2) Expression of the M-CPT I gene was associated only with meiotic and postmeiotic germ cells. 3) Adult testis contains a mixture of the L- and M-CPT I enzymes, the L and M form dominating in extratubular cells and spermatids, respectively. Mature epididymal spermatozoa appear to be devoid of CPT I activity while possessing abundant levels of CPT II and CAT. 4) Five days of dietary etomoxir treatment at a dose that resulted in essentially complete inhibition of CPT I in liver, heart, skeletal muscle, and kidney was totally without effect on either the L- or M-type enzyme in the testis of mature rats. The data point to an important role for transient expression of M-CPT I, coupled with sustained activity of CAT, in the maturation and/or function of rat sperm. They also suggest that, at least in the case of one CPT I inhibitor (etomoxir), the testis is unusually resistant to the agent when given orally.
Collapse
Affiliation(s)
- S H Adams
- Departments of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 75235-9135, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Ashizawa K, Kamiya T, Tamura I, Tsuzuki Y. Inhibition of flagellar motility of fowl spermatozoa by L-carnitine: its relationship with respiration and phosphorylation of axonemal proteins. Mol Reprod Dev 1994; 38:318-25. [PMID: 7917283 DOI: 10.1002/mrd.1080380313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The action of carnitine in regulating fowl sperm motility was investigated. As the concentration of L-carnitine was increased (0-20 mM), the motility of intact and demembranated fowl spermatozoa was reduced at 30 degrees C. Even the presence of 1 mM CaCl2 before the addition of 10 mM carnitine could not prevent the inhibition of motility at 30 degrees C and 40 degrees C. However, motility was restored by reducing the concentrations of carnitine. Carnitine also inhibited the oxygen consumption and ATP concentrations of intact spermatozoa, and caused a reduction in intracellular free Ca2+ concentrations. Phosphorylation of a 50 kDa protein and dephosphorylation of 24 kDa and 30 kDa proteins of demembranated spermatozoa were observed after the addition of carnitine. In contrast, the flagellar ATPase activity of crude dynein extract was not affected by the addition of carnitine. These results suggest that inhibitory effect of carnitine for motility may be directly on the axonemal phosphoproteins, but not directly on the dynein ATPase activity. The physiological role of carnitine for fowl spermatozoa in the ductus deferens is discussed.
Collapse
Affiliation(s)
- K Ashizawa
- Laboratory of Animal Reproduction, Faculty of Agriculture, Miyazaki University, Japan
| | | | | | | |
Collapse
|
8
|
Bruns K, Casillas ER. Partial purification and characterization of an acetylcarnitine hydrolase from bovine epididymal spermatozoa. Arch Biochem Biophys 1990; 277:1-7. [PMID: 2306112 DOI: 10.1016/0003-9861(90)90542-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported that intact epididymal spermatozoa from bulls and hamsters oxidize [1-14C]acetyl-L-carnitine to 14CO2 at about the same rate as they oxidize [1-14C]acetate. In addition, we showed that acetylcarnitine is hydrolyzed by a hydrolase present in the plasma membrane and that the carnitine moiety does not enter the cell. Here we report the partial purification of the acetylcarnitine hydrolase from bovine spermatozoa and describe some of its properties. The detergent-extracted enzyme was purified by FPLC using an anion-exchange Mono-Q column. The hydrolase activity eluted from the column with the application of 0.22 to 0.30 M NaCl and was separated from acetylcholinesterase activity, which eluted with 0.35 to 0.40 M NaCl. Specific inhibitors of acetylcholinesterase had little effect on acetylcarnitine hydrolase but p-hydroxymercuriphenylsulfonate was a potent inhibitor of the hydrolase. Kinetic studies of the hydrolase yielded a K'm of 6-10 mM for acetylcarnitine and a V'max of 0.16 nmol min-1 mg protein-1. Similar studies with the acetylcholinesterase yielded a K'm for acetylcholine of about 300 microM and a V'max of 165 nmol min-1 mg protein-1. Acetylcarnitine was a poor substrate for the acetylcholinesterase. Several acyl-L-carnitines were tested as substrates for the hydrolase and the preferred substrate was acetylcarnitine. The role of acetylcarnitine hydrolase in the metabolism of acetylcarnitine by epididymal spermatozoa is discussed.
Collapse
Affiliation(s)
- K Bruns
- Department of Chemistry, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
9
|
Deana R, Indino M, Rigoni F, Foresta C. Effect of L-carnitine on motility and acrosome reaction of human spermatozoa. ARCHIVES OF ANDROLOGY 1988; 21:147-53. [PMID: 3245711 DOI: 10.3109/01485018808986736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
L-carnitine added to the suspension medium decreases the glucose-sustained progressive motility of human spermatozoa. Addition of 20 mM L-carnitine to the capacitation medium causes an inhibition of the occurrence of the acrosome reaction parallel to a viability enhancement and negligible changes of the cellular content of ATP. The cellular efflux of glutamate-oxaloacetate transaminase was also inhibited by L-carnitine. A possible role of L-carnitine on membrane stability and metabolism of spermatozoa is briefly discussed.
Collapse
Affiliation(s)
- R Deana
- Department of Biological Chemistry, C.N.R., Padova, Italy
| | | | | | | |
Collapse
|
10
|
Abdel Aziz MT, El-Haggar S, Tawadrous GA, Hamada T, Shawky MA, Amin KS. Seminal lipids as energy substrate for the spermatozoa. Andrologia 1983; 15:259-63. [PMID: 6881560 DOI: 10.1111/j.1439-0272.1983.tb00372.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The level of fructose, NEFA, triglycerides and lipase activity were determined in the semen of 17 normozoospermic, 10 oligozoospermic and 10 azoospermic men. This was done immediately and 2 hours after seminal liquefaction. The levels of fructose and NEFA were significantly decreased while triglycerides show significant increase. These phenomena were more marked in normozoospermic, less marked in oligozoospermic and absent in azoospermic men. These results may indicate that both fructose and free fatty acids are utilized by sperms to supply energy or incorporated by them into triglycerides. No lipase activity was detected by the method used in the present work.
Collapse
|
11
|
Day-Francesconi M, Casillas ER. The intracellular localization and properties of carnitine acetyltransferase from ram spermatozoa. Arch Biochem Biophys 1982; 215:206-14. [PMID: 7092224 DOI: 10.1016/0003-9861(82)90296-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Carey JE, Olds-Clarke P, Storey BT. Oxidative metabolism of spermatozoa from inbred and random bred mice. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1981; 216:285-92. [PMID: 7241067 DOI: 10.1002/jez.1402160209] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epididymal spermatozoa from the random-bred CFW and from the inbred C57 BL/6 strains of mice were treated either hypotonically or with the antibiotic filipin in order to study the mitochondrial oxidative activities of the two strains in the absence of permeability barriers imposed by the plasma membrane. The percentage of motile spermatozoa from C57BL/6 mice was consistently higher than that of CFW mice, but sperm from the latter fertilized a higher percentage of eggs in vitro. In vivo, there was no apparent difference in fertilizing capacity in vivo: no significant difference between strains was observed. There is a strategy of oxidative metabolism in mouse spermatozoa which is common to the two genetic strains of the species tested, but which differs from that of rabbit and bull spermatozoa. The mitochondria of mouse spermatozoa oxidize L--3-glycerolphosphate but not glutamate in the presence of malate; both activities are present in bull spermatozoa but neither are present in rabbit spermatozoa. In common wit those of the mammalian species thus far studied, the mitochondria of mouse spermatozoa readily oxidize lactate and pyruvate in the presence of malate. They also oxidize acetyl CoA, acetyl carnitine, and long-chain acyl CoA esters directly, without the intermediacy of the carnitine esters. Mouse spermatozoa, therefore, have access to endogenous acyl CoA esters as a source of metabolic energy, which is consistent with their ability to maintain motility for 4-6 hours in the absence of added energy sources. Mouse spermatozoa are self-sufficient with regard to oxidative metabolism, which suggests that energy sources are not readily available to them in the mouse female reproductive tract.
Collapse
|
13
|
White IG. Epididymal compounds and their influence on the metabolism and survival of spermatozoa. Am J Primatol 1981; 1:143-155. [DOI: 10.1002/ajp.1350010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1980] [Accepted: 12/12/1980] [Indexed: 11/08/2022]
|
14
|
Storey BT. Strategy of oxidative metabolism in bull spermatozoa. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1980; 212:61-7. [PMID: 7411077 DOI: 10.1002/jez.1402120109] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Brooks DE. Activity and androgenic control of enzymes associated with the tricarboxylic acid cycle, lipid oxidation and mitochondrial shuttles in the epididymis and epididymal spermatozoa of the rat. Biochem J 1978; 174:741-52. [PMID: 728083 PMCID: PMC1185978 DOI: 10.1042/bj1740741] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Enzyme activities (units/g wet wt.) were determined in the caput and cauda epididymidis and in epididymal spermatozoa of the rat. 2. The activity of most enzymes in the cauda was between 50 and 100% of that in the caput, except that ATP citrate lyase was barely detectable in the cauda. 3. Spermatozoa, unlike epididymal tissue, contained sorbitol dehydrogenase but lacked ATP citrate lyase. NADP+-malate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, succinate dehydrogenase, carnitine acetyltransferase and citrate synthase were 5 to 400 times as active in spermatozoa as in epididymal tissue. 4. 2-Oxoglutarate dehydrogenase was the least active member of the tricarboxylic acid cycle in all tissues and most closely matched the measured flux through the cycle. 5. The concentrations of hydroxyacyl-CoA dehydrogenase and carnitine palmitoyltransferase were equivalent to the more active enzymes of the tricarboxylic acid cycle, indicating the capacity for extensive lipid oxidation, and the presence of 3-hydroxybutyrate dehydrogenase suggests that these tissues can also oxidize ketone bodies. 6. Transfer of reducing equivalents from cytoplasm to mitochondrion is unlikely to occur by means of the glycerol phosphate cycle because mitochondrial glycerol 3-phosphate dehydrogenase is relatively inactive in epididymal tissue, whereas the cytoplasmic enzyme has little activity in spermatozoa, but transfer may be accomplished by the malate-aspartate shuttle. 7. Transfer of acetyl units from mitochondrion to cytoplasm could be effected by the pyruvate-malate cycle in the caput of androgen-maintained rats, but not in the other tissues because of the low activity of ATP citrate lyase. Acetyl unit transfer could take place via acetylcarnitine, mediated by carnitine acetyltransferase. 8. Castration resulted in a decrease in the concentration of nearly all enzymes, although subsequent administration of testosterone restored concentrations to values similar to those in animals maintained by endogenous androgen. The extent to which enzyme concentration was changed by an alteration in androgen status was highly variable, but was most marked in the case of pyruvate carboxylase.
Collapse
|