• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4783505)   Today's Articles (2917)
For: Rogers M, Knowles P, Baron A, Mcpherson M, Dooley D. Characterization of the active site of galactose oxidase and its active site mutational variants Y495F/H/K and W290H by circular dichroism spectroscopy. Inorganica Chim Acta 1998;275-276:175-81. [DOI: 10.1016/s0020-1693(97)06142-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Number Cited by Other Article(s)
1
Koschorreck K, Alpdagtas S, Urlacher VB. Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. ENGINEERING MICROBIOLOGY 2022;2:100037. [PMID: 39629025 PMCID: PMC11611005 DOI: 10.1016/j.engmic.2022.100037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/06/2024]
2
Shima S, Vogt S, Göbels A, Bill E. Iron-Chromophore Circular Dichroism of [Fe]-Hydrogenase: The Conformational Change Required for H2 Activation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201006255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
3
Shima S, Vogt S, Göbels A, Bill E. Iron-Chromophore Circular Dichroism of [Fe]-Hydrogenase: The Conformational Change Required for H2 Activation. Angew Chem Int Ed Engl 2010;49:9917-21. [DOI: 10.1002/anie.201006255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
4
Rogers MS, Hurtado-Guerrero R, Firbank SJ, Halcrow MA, Dooley DM, Phillips SEV, Knowles PF, McPherson MJ. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Biochemistry 2008;47:10428-39. [PMID: 18771294 DOI: 10.1021/bi8010835] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
5
Rokhsana D, Dooley DM, Szilagyi RK. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures. J Biol Inorg Chem 2007;13:371-83. [PMID: 18057969 DOI: 10.1007/s00775-007-0325-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/14/2007] [Indexed: 12/01/2022]
6
Rokhsana D, Dooley DM, Szilagyi RK. Structure of the oxidized active site of galactose oxidase from realistic in silico models. J Am Chem Soc 2007;128:15550-1. [PMID: 17147339 DOI: 10.1021/ja062702f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
7
Whittaker JW. The radical chemistry of galactose oxidase. Arch Biochem Biophys 2005;433:227-39. [PMID: 15581579 DOI: 10.1016/j.abb.2004.08.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 08/31/2004] [Indexed: 11/15/2022]
8
Whittaker JW. Galactose oxidase. ADVANCES IN PROTEIN CHEMISTRY 2003;60:1-49. [PMID: 12418174 DOI: 10.1016/s0065-3233(02)60050-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
9
Catalytic oxidations using ruthenium porphyrins. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/0-306-47816-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
10
Whittaker MM, Kersten PJ, Cullen D, Whittaker JW. Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 1999;274:36226-32. [PMID: 10593910 DOI: 10.1074/jbc.274.51.36226] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
11
McGuirl MA, Dooley DM. Copper-containing oxidases. Curr Opin Chem Biol 1999;3:138-44. [PMID: 10226045 DOI: 10.1016/s1367-5931(99)80025-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA