1
|
Koschorreck K, Alpdagtas S, Urlacher VB. Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. ENGINEERING MICROBIOLOGY 2022; 2:100037. [PMID: 39629025 PMCID: PMC11611005 DOI: 10.1016/j.engmic.2022.100037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/06/2024]
Abstract
Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of "auxiliary activities" in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.
Collapse
Affiliation(s)
- Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Saadet Alpdagtas
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Department of Biology, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Shima S, Vogt S, Göbels A, Bill E. Iron-Chromophore Circular Dichroism of [Fe]-Hydrogenase: The Conformational Change Required for H2 Activation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201006255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Shima S, Vogt S, Göbels A, Bill E. Iron-Chromophore Circular Dichroism of [Fe]-Hydrogenase: The Conformational Change Required for H2 Activation. Angew Chem Int Ed Engl 2010; 49:9917-21. [DOI: 10.1002/anie.201006255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Rogers MS, Hurtado-Guerrero R, Firbank SJ, Halcrow MA, Dooley DM, Phillips SEV, Knowles PF, McPherson MJ. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Biochemistry 2008; 47:10428-39. [PMID: 18771294 DOI: 10.1021/bi8010835] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galactose oxidase (GO) belongs to a class of proteins that self-catalyze assembly of their redox-active cofactors from active site amino acids. Generation of enzymatically active GO appears to require at least four sequential post-translational modifications: cleavage of a secretion signal sequence, copper-dependent cleavage of an N-terminal pro sequence, copper-dependent formation of a C228-Y272 thioether bond, and generation of the Y272 radical. The last two processes were investigated using a truncated protein (termed premat-GO) lacking the pro sequence and purified under copper-free conditions. Reactions of premat-GO with Cu(II) were investigated using optical, EPR, and resonance Raman spectroscopy, SDS-PAGE, and X-ray crystallography. Premat-GO reacted anaerobically with excess Cu(II) to efficiently form the thioether bond but not the Y272 radical. A potential C228-copper coordinated intermediate (lambda max = 406 nm) in the processing reaction, which had not yet formed the C228-Y272 cross-link, was identified from the absorption spectrum. A copper-thiolate protein complex, with copper coordinated to C228, H496, and H581, was also observed in a 3 min anaerobic soak by X-ray crystallography, whereas a 24 h soak revealed the C228-Y272 thioether bond. In solution, addition of oxygenated buffer to premat-GO preincubated with excess Cu(II) generated the Y272 radical state. On the basis of these data, a mechanism for the formation of the C228-Y272 bond and tyrosyl radical generation is proposed. The 406 nm complex is demonstrated to be a catalytically competent processing intermediate under anaerobic conditions. We propose a potential mechanism which is in common with aerobic processing by Cu(II) until the step at which the second electron acceptor is required.
Collapse
Affiliation(s)
- Melanie S Rogers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rokhsana D, Dooley DM, Szilagyi RK. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures. J Biol Inorg Chem 2007; 13:371-83. [PMID: 18057969 DOI: 10.1007/s00775-007-0325-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/14/2007] [Indexed: 12/01/2022]
Abstract
A systematic in silico approach has been employed to generate sound, experimentally validated active-site models for galactose oxidase (GO) using a hybrid density functional, B(38HF)P86. GO displays three distinct oxidation states: oxidized [Cu(II)-Y*]; semireduced [Cu(II)-Y]; and reduced [Cu(I)-Y]. Only the [Cu(II)-Y*] and the [Cu(I)-Y] states are assumed to be involved in the catalytic cycle, but their structures have not yet been determined. We have developed several models (1-7) for the [Cu(II)-Y*] state that were evaluated by comparison of our computational results with experimental data. An extended model system (6) that includes solvent molecules and second coordination sphere residues (R330, Y405, and W290) is essential to obtain an experimentally correct electronic structure of the active site. The optimized structure of 6 resulted in a five-coordinate Cu site with a protein radical centered on the Tyr-Cys cofactor. We further validated our converged model with the largest model (7) that included additional outer-sphere residues (Q406, H334, Y329, G513, and T580) and water molecules. Adding these residues did not affect significantly the active site's electronic and geometric structures. Using both 6 and 7, we explored the redox dependence of the active-site structure. We obtained four- and three-coordinate Cu sites for [Cu(II)-Y] and [Cu(I)-Y] states, respectively, that corroborate well with the experimental data. The relative energies of these states were validated by a comparison with experimental redox potentials. Collectively, our computational GO models well reproduce the physicochemical characteristics of the individual states, including their redox behaviors.
Collapse
Affiliation(s)
- Dalia Rokhsana
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
6
|
Rokhsana D, Dooley DM, Szilagyi RK. Structure of the oxidized active site of galactose oxidase from realistic in silico models. J Am Chem Soc 2007; 128:15550-1. [PMID: 17147339 DOI: 10.1021/ja062702f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A systematic in silico approach is employed to generate an accurate model for the catalytically important oxidized state of galactose oxidase (GO) using spectroscopically calibrated hybrid density-functional theory. GO displays three distinct oxidation states: oxidized [Cu(II)-Y*], semireduced [Cu(II)-Y], and fully reduced [Cu(I)-Y], but only the [Cu(II)-Y*] and the [Cu(I)-Y] states are assumed to be involved in catalysis. We have developed multiple models for the oxidized [Cu(II)-Y*] state, whose structure has not yet been fully characterized. These models were evaluated by comparison of calculated and experimental structural data, singlet-triplet energy gaps, and electronic transitions for the antiferromagnetically coupled oxidized [Cu(II)-Y*] state. An extended model system that includes explicit solvent molecules and second coordination sphere residues (R330, Y405, and W290) is essential to obtain the correct electronic structure of the active site. The model with all the residues that have been shown to affect the radical stability and catalysis resulted in a singlet ground state with the radical centered on the Y272-C228 cofactor. The optimized structure of the oxidized GO [Cu(II)-Y*] reveals a five-coordinated square pyramidal coordination geometry very similar to [Cu(II)-Y] with considerably different Cu-ligand distances. The hydrogen-bonding interactions involving Y495 modulates the spin density distribution and the singlet-triplet energy gaps. The final model as the most reasonable structure of the oxidized [Cu(II)-Y*] state in GO reproduces the spectroscopic signature of oxidized GO.
Collapse
Affiliation(s)
- Dalia Rokhsana
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
7
|
Whittaker JW. The radical chemistry of galactose oxidase. Arch Biochem Biophys 2005; 433:227-39. [PMID: 15581579 DOI: 10.1016/j.abb.2004.08.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 08/31/2004] [Indexed: 11/15/2022]
Abstract
Galactose oxidase is a free radical metalloenzyme containing a novel metalloradical complex, comprised of a protein radical coordinated to a copper ion in the active site. The unusually stable protein radical is formed from the redox-active side chain of a cross-linked tyrosine residue (Tyr-Cys). Biochemical studies on galactose oxidase have revealed a new class of oxidation mechanisms based on this free radical coupled-copper catalytic motif, defining an emerging family of enzymes, the radical-copper oxidases. Isotope kinetics and substrate reaction profiling have provided insight into the elementary steps of substrate oxidation in these enzymes, complementing structural studies on their active site. Galactose oxidase is remarkable in the extent to which free radicals are involved in all aspects of the enzyme function: serving as a key feature of the active site structure, defining the characteristic reactivity of the complex, and directing the biogenesis of the Tyr-Cys cofactor during protein maturation.
Collapse
Affiliation(s)
- James W Whittaker
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006, USA.
| |
Collapse
|
8
|
Abstract
The free radical-coupled copper catalytic motif has emerged as the unifying feature of a new family of enzymes, the radical copper oxidases. Their highly evolved active sites include a novel amino acid modification, the Tyr-Cys dimer, that forms spontaneously through self-processing of the protein during its maturation. The active site is remarkable in the extent to which metal ligands participate in the catalytic process. Rather than simply coordinating the metal ion, the ligands perform essential redox and proton-transfer functions in the chemistry of the active site, directed by their interactions with the copper center in the protein. The wide phylogenetic distribution and range of functions represented within the family hint of a fundamental role for these enzymes in the biology of oxygen. The roles for these enzymes are further expanding through a variety of biotechnological applications.
Collapse
Affiliation(s)
- James W Whittaker
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, OHSU, Beaverton, Oregon 97006, USA
| |
Collapse
|
9
|
Catalytic oxidations using ruthenium porphyrins. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/0-306-47816-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
10
|
Whittaker MM, Kersten PJ, Cullen D, Whittaker JW. Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 1999; 274:36226-32. [PMID: 10593910 DOI: 10.1074/jbc.274.51.36226] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glyoxal oxidase is a copper metalloenzyme produced by the wood-rot fungus Phanerochaete chrysosporium as an essential component of its extracellular lignin degradation pathways. Previous spectroscopic studies on glyoxal oxidase have demonstrated that it contains a free radical-coupled copper active site remarkably similar to that found in another fungal metalloenzyme, galactose oxidase. Alignment of primary structures has allowed four catalytic residues of glyoxal oxidase to be targeted for site-directed mutagenesis in the recombinant protein. Three glyoxal oxidase mutants have been heterologously expressed in both a filamentous fungus (Aspergillus nidulans) and in a methylotrophic yeast (Pichia pastoris), the latter expression system producing as much as 2 g of protein per liter of culture medium under conditions of high density methanol-induced fermentation. Biochemical and spectroscopic characterization of the mutant enzymes supports structural correlations between galactose oxidase and glyoxal oxidase, clearly identifying the catalytically important residues in glyoxal oxidase and demonstrating the functions of each of these residues.
Collapse
Affiliation(s)
- M M Whittaker
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Major advances have been made during 1997 and 1998 toward understanding the structure/function relationships of the active sites in copper-containing oxidases. Central to this progress has been the elucidation of crystal structures for many of these enzymes. For example, studies of the mechanisms of biogenesis and/or catalysis of amine oxidase and galactose oxidase have been both stimulated and directed by the availability of structures for these proteins. Similarly, it is anticipated that the recently published crystal structures of peptidylglycine alpha-hydroxylating monooxygenase and laccase will contribute greatly toward understanding the roles of copper in these two proteins.
Collapse
Affiliation(s)
- M A McGuirl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | | |
Collapse
|