1
|
Kang S, Lee E, Lee H, Hwang GS, Lee J, Kim JW, Oh B, Kim JY, Kwon O. Yellow Yeast Rice Prepared Using Aspergillus terreus DSMK01 Lowers Cholesterol Levels by Stimulating Bile Salt Export Pump in Subjects with Mild-to-Moderate Hypercholesterolemia: A Randomized Controlled Trial. Mol Nutr Food Res 2021; 66:e2100704. [PMID: 34783447 DOI: 10.1002/mnfr.202100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Indexed: 01/17/2023]
Abstract
SCOPE Aspergillus terreus is an industrial microorganism used in the brewing and sauce industries. It produces monacolin K, a natural statin. The study conducted an 8-week randomized controlled trial with hypercholesterolemic subjects to examine the hypocholesterolemic effects and mechanisms of supplementation with yellow yeast rice (YYR) prepared by growing Aspergillus fungi on steamed rice. METHODS AND RESULTS YYR supplementation markedly reduced total cholesterol, LDL, and apolipoprotein B100 levels in plasma compared with the placebo. In addition, YYR induced a significantly increased ATP binding cassette subfamily B member 11 (ABCB11) gene expression compared with the placebo, indicating the role of YYR in lowering intrahepatic cholesterol availability by stimulating the bile salt export pump. Upregulation of LDL receptor (LDLR) and 3-methylglutaryl-CoA reductase (HMGCR) gene expressions provided additional evidence to support the role of YYR in reducing hepatic cholesterol availability. Plasma metabolomic profiling revealed the possibility of diminishing bile acid absorption. Finally, Spearman rank analysis showed correlations of plasma cholesterol profiles with HMGCR and LDLR gene expressions (negative) and plasma bile acids (positive). Plasma bile acids also correlated with ABCB11 (negative) and LDLR (positive) gene expressions. CONCLUSION These findings suggest that daily YYR supplementation exerted hypocholesterolemic effects in mild-to-moderate hypercholesterolemic subjects by reducing intrahepatic cholesterol availability through stimulating bile salt export pumps and inhibiting cholesterol biosynthesis.
Collapse
Affiliation(s)
- Seunghee Kang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eunok Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Heeyeon Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Jaekyung Lee
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Ji Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Bumjo Oh
- Department of Family Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
2
|
Mayén-Lobo YG, Martínez-Magaña JJ, Pérez-Aldana BE, Ortega-Vázquez A, Genis-Mendoza AD, Dávila-Ortiz de Montellano DJ, Soto-Reyes E, Nicolini H, López-López M, Monroy-Jaramillo N. Integrative Genomic-Epigenomic Analysis of Clozapine-Treated Patients with Refractory Psychosis. Pharmaceuticals (Basel) 2021; 14:118. [PMID: 33557049 PMCID: PMC7913835 DOI: 10.3390/ph14020118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Clozapine (CLZ) is the only antipsychotic drug that has been proven to be effective in patients with refractory psychosis, but it has also been proposed as an effective mood stabilizer; however, the complex mechanisms of action of CLZ are not yet fully known. To find predictors of CLZ-associated phenotypes (i.e., the metabolic ratio, dosage, and response), we explore the genomic and epigenomic characteristics of 44 patients with refractory psychosis who receive CLZ treatment based on the integration of polygenic risk score (PRS) analyses in simultaneous methylome profiles. Surprisingly, the PRS for bipolar disorder (BD-PRS) was associated with the CLZ metabolic ratio (pseudo-R2 = 0.2080, adjusted p-value = 0.0189). To better explain our findings in a biological context, we assess the protein-protein interactions between gene products with high impact variants in the top enriched pathways and those exhibiting differentially methylated sites. The GABAergic synapse pathway was found to be enriched in BD-PRS and was associated with the CLZ metabolic ratio. Such interplay supports the use of CLZ as a mood stabilizer and not just as an antipsychotic. Future studies with larger sample sizes should be pursued to confirm the findings of this study.
Collapse
Affiliation(s)
- Yerye Gibrán Mayén-Lobo
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
- Department of Genetics, National Institute of Neurology and Neurosurgery, “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - José Jaime Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (H.N.)
| | - Blanca Estela Pérez-Aldana
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
| | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (H.N.)
| | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico;
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (H.N.)
- Grupo de Estudios Médicos y Familiares Carracci, Mexico City 03740, Mexico
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico; (Y.G.M.-L.); (B.E.P.-A.); (A.O.-V.); (M.L.-L.)
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| |
Collapse
|
3
|
Ahamad J, Toufeeq I, Khan MA, Ameen MSM, Anwer ET, Uthirapathy S, Mir SR, Ahmad J. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome. Phytother Res 2019; 33:3112-3128. [DOI: 10.1002/ptr.6511] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Javed Ahamad
- Faculty of PharmacyTishk International University Erbil Iraq
| | - Ibrahim Toufeeq
- Faculty of PharmacyTishk International University Erbil Iraq
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and ResearchJamia Hamdard New Delhi India
| | | | - Esra T. Anwer
- Faculty of PharmacyTishk International University Erbil Iraq
| | | | - Showkat R. Mir
- Department of Pharmacognosy, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy)Jamia Hamdard New Delhi India
| | - Javed Ahmad
- Department of Pharmaceutics, College of PharmacyNajran University Najran Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Vujic N, Porter Abate J, Schlager S, David T, Kratky D, Koliwad SK. Acyl-CoA:Diacylglycerol Acyltransferase 1 Expression Level in the Hematopoietic Compartment Impacts Inflammation in the Vascular Plaques of Atherosclerotic Mice. PLoS One 2016; 11:e0156364. [PMID: 27223895 PMCID: PMC4880185 DOI: 10.1371/journal.pone.0156364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
Abstract
The final step of triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs). We have previously shown that ApoE-/-Dgat1-/- mice are protected from developing atherosclerosis in association with reduced foam cell formation. However, the role of DGAT1, specifically in myeloid and other hematopoietic cell types, in determining this protective phenotype is unknown. To address this question, we reconstituted the bone marrow of irradiated Ldlr-/-mice with that from wild-type (WT→ Ldlr-/-) and Dgat1-/-(Dgat1-/-→ Ldlr-/-) donor mice. We noted that DGAT1 in the hematopoietic compartment exerts a sex-specific effect on systemic cholesterol homeostasis. However, both male and female Dgat1-/-→ Ldlr-/-mice had higher circulating neutrophil and lower lymphocyte counts than control mice, suggestive of a classical inflammatory phenotype. Moreover, specifically examining the aortae of these mice revealed that Dgat1-/-→ Ldlr-/-mice have atherosclerotic plaques with increased macrophage content. This increase was coupled to a reduced plaque collagen content, leading to a reduced collagen-to-macrophage ratio. Together, these findings point to a difference in the inflammatory contribution to plaque composition between Dgat1-/-→ Ldlr-/-and control mice. By contrast, DGAT1 deficiency did not affect the transcriptional responses of cultured macrophages to lipoprotein treatment in vitro, suggesting that the alterations seen in the plaques of Dgat1-/-→ Ldlr-/-mice in vivo do not reflect a cell intrinsic effect of DGAT1 in macrophages. We conclude that although DGAT1 in the hematopoietic compartment does not impact the overall lipid content of atherosclerotic plaques, it exerts reciprocal effects on inflammation and fibrosis, two processes that control plaque vulnerability.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Jess Porter Abate
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tovo David
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Suneil K. Koliwad
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Foit L, Giles FJ, Gordon LI, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther 2014; 15:27-34. [PMID: 25487833 DOI: 10.1586/14737140.2015.990889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-density lipoproteins (HDLs) are a diverse group of natural nanoparticles that are most well known for their role in cholesterol transport. However, HDLs have diverse functions that provide significant opportunities for cancer therapy. Presented is a focused review of the ways that synthetic versions of HDL have been used as targeted therapies for cancer, and as vehicles for the delivery of diverse therapeutic cargo to cancer cells. As such, synthetic HDLs are likely to play a central role in the development of next-generation cancer therapies.
Collapse
Affiliation(s)
- Linda Foit
- Department of Urology, Feinberg School of Medicine, Northwestern University, Tarry 16-703, 303 E. Chicago Ave. Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
6
|
Wang B, Zhao H, Zhou L, Dai X, Wang D, Cao J, Niu W. Association of genetic variation in apolipoprotein E and low density lipoprotein receptor with ischemic stroke in Northern Han Chinese. J Neurol Sci 2009; 276:118-22. [DOI: 10.1016/j.jns.2008.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/02/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
7
|
Jiang Y, Zhang J, Xiong J, Cao J, Li G, Wang S. Ligands of peroxisome proliferator-activated receptor inhibit homocysteine-induced DNA methylation of inducible nitric oxide synthase gene. Acta Biochim Biophys Sin (Shanghai) 2007; 39:366-76. [PMID: 17492134 DOI: 10.1111/j.1745-7270.2007.00291.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Homocysteine (Hcy) is a risk factor for atherosclerosis. It is generally accepted that inducible nitric oxide synthase (iNOS) is a key enzyme in the regulation of vascular disease. The aim of the present study is to investigate the effects of peroxisome proliferator-activated receptor ligands on iNOS in the presence of Hcy in human monocytes. Foam cells, induced by oxidize low density lipoprotein (ox-LDL) and phorbol myristate acetate (PMA) in the presence of different concentrations of Hcy, clofibrate and pioglitazone in human monocytes for 4 d, were examined by oil red O staining. The activity of iNOS was detected by real-time quantitative reverse transcription-polymerase chain reaction and Western blot analysis. The capability of DNA methylation was measured by assaying endogenous C5 DNA methyltransferase (C5MTase) activity, and the iNOS promoter methylation level was determined by quantitative MethyLight assays. The results indicated that Hcy increased the activity of C5MTase and the level of iNOS gene DNA methylation, resulting in a decrease of iNOS expression. Clofibrate and pioglitazone could antagonize the hcy effect on iNOS expression through DNA methylation, resulting in attenuation of iNOS transcription. These findings suggested that Hcy decreased the expression of iNOS by elevating iNOS DNA methylation levels, which can repress the transcription of some genes. Peroxisome proliferator-activated receptor alpha/gamma ligands can down-regulate iNOS DNA methylation, and could be useful for preventing Hcy-induced atherosclerosis by repressing iNOS expression.
Collapse
Affiliation(s)
- Yideng Jiang
- Department of Pathology, Ningxia Medical College, Yinchuan 750004, China.
| | | | | | | | | | | |
Collapse
|
8
|
Reverse cholesterol transport. COR ET VASA 2006. [DOI: 10.33678/cor.2006.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Tan CE, Tai ES. What do we know about apolipoprotein E and the prevention of cardiovascular disease? Drug Dev Res 2004. [DOI: 10.1002/ddr.10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
van Berkel T, von der Thüsen J, Kuiper J, Biessen E, van Eck M. Genetic manipulation of macrophage—and vascular genes in mouse models of atherosclerosis. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2003.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Abstract
Plasma levels of high-density lipoprotein (HDL) cholesterol and its major protein, apolipoprotein A-I, are inversely correlated with the incidence of atherosclerotic cardiovascular disease. Low HDL cholesterol and apolipoprotein A-I levels often are found in association with other cardiovascular risk factors, including the metabolic syndrome, insulin resistance, and type 2 diabetes mellitus. However, overexpression of apolipoprotein A-I in animals has been shown to reduce progression and even induce regression of atherosclerosis, indicating that apolipoprotein A-I is directly protective against atherosclerosis. A major mechanism by which apolipoprotein A-I inhibits atherosclerosis may be by promoting cholesterol efflux from macrophages and returning it to the liver for excretion, a process termed reverse cholesterol transport. This article focuses on new developments in the regulation of reverse cholesterol transport and the clinical implications of those developments.
Collapse
Affiliation(s)
- Daniel J Rader
- Preventive Cardiology/Lipid Research Center, University of Pennsylvania Health System, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
12
|
Dergunov AD, Hoy A, Smirnova EA, Visvikis S, Siest G. Charge-based heterogeneity of human plasma lipoproteins at hypertriglyceridemia: capillary isotachophoresis study. Int J Biochem Cell Biol 2003; 35:530-43. [PMID: 12565713 DOI: 10.1016/s1357-2725(02)00359-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To reveal the metabolic links between and within pools of pro-atherogenic triglyceride(TG)-rich lipoproteins and anti-atherogenic high density lipoproteins (HDL), the changes in lipoprotein profile at hypertriglyceridemia were analyzed by capillary isotachophoresis. Plasma samples from patients with apoE3/3 phenotype were stained with a fluorescent probe NBD-C6-ceramide and lipoproteins resolved into six H-, one (V+I) and four L-components which belong to HDL, very low and intermediate density (VLDL+IDL) and low density lipoproteins (LDL), respectively. The expected correlation between the relative size of the combined fractions and lipid and apolipoprotein values was obtained confirming the validity of the approach. The new findings were obtained as follows. (1) The fast L-component correlated inversely with HDL-cholesterol (Chol), while intermediate and slow H-components correlated inversely with plasma and LDL-Chol and apoB. (2) The content of intermediate and slow H-components increased within H-pool and decreased relative TG-rich lipoproteins as hypertriglyceridemia rose due to the impairment of triglyceride hydrolysis by lipoprotein lipase within TG-rich particles. (3) A predictive value of the ratios of fast to slow H-components as an indicator of lecithin:cholesterol acyltransferase activity was demonstrated which tended to decrease at hypertriglyceridemia. (4) The L1/L2 ratio may be considered as an indicator of the accumulation of small dense LDL, which is a feature of clinically manifested atherogenic B-pattern. The competition between H(DL) and L(DL) particles for hepatic lipase and significant contribution of apoE to functional deficiency of H(DL) particles at hypertriglyceridemia are suggested.
Collapse
Affiliation(s)
- Alexander D Dergunov
- National Research Centre for Preventive Medicine, 10, Petroverigsky street, 101953, Moscow, Russia.
| | | | | | | | | |
Collapse
|