1
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to focus on the outcome of recent antioxidant interventions using synthetic and naturally occurring molecules established as adjuvant strategies to lipid-lowering or anti-inflammatory therapies designed to reduce the risk of cardiovascular disease. RECENT FINDINGS To date, accumulated evidence regarding oxidation as a pro-atherogenic factor indicates that redox biochemical events involved in atherogenesis are indeed a very attractive target for the management of cardiovascular disease in the clinic. Nevertheless, although evidence indicates that redox reactions are important in the initiation and progression of atherosclerosis, oxidation with a pro-atherogenic context does not eliminate the fact that oxidation participates in many cases as an essential messenger of important cellular signaling pathways. Therefore, disease management and therapeutic goals require not only high-precision and high-sensitivity methods to detect in plasma very low amounts of reducing and oxidizing molecules but also a much better understanding of the normal processes and metabolic pathways influenced and/or controlled by oxidative stress. As several methodologies have been specifically described for the quantification of the total antioxidant capacity and the oxidation state of diverse biological systems, a successful way to carefully study how redox reactions influence atherosclerosis can be achieved. Since there is still a lack of standardization with many of these methods, clinical trials studying antioxidant capacity have been difficult to compare and therefore difficult to use in order to reach a conclusion. We believe a comprehensive analysis of new knowledge and its relationship with the presence of plasma antioxidants and their reducing capacity will undoubtedly open new ways to understand and develop new therapeutic pathways in the fight not only against atherosclerosis but also against other degenerative diseases.
Collapse
Affiliation(s)
- Paola Toledo-Ibelles
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Yan JF, Huang WJ, Zhao JF, Fu HY, Zhang GY, Huang XJ, Lv BD. The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats. PLoS One 2017; 12:e0172191. [PMID: 28245285 PMCID: PMC5330473 DOI: 10.1371/journal.pone.0172191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/01/2017] [Indexed: 01/09/2023] Open
Abstract
Erectile dysfunction (ED) is a common clinical disease that is difficult to treat. We previously found that hypoxia modulates the phenotype of primary corpus cavernosum smooth muscle cells (CCSMCs) in rats, but the underlying molecular mechanism is still unknown. Platelet-derived growth factor receptor (PDGFR)-related signaling pathways are correlated with cell phenotypic transition, but research has been focused more on vascular smooth muscle and tracheal smooth muscle and less on CCSMCs. Here, we investigated the role of PDGFR-related signaling pathways in penile CCSMCs, which were successfully isolated from rats and cultured in vitro. PDGF-BB at 5, 10, or 20 ng/ml altered CCSMC morphology from the original elongated, spindle shape to a broader shape and promoted the synthetic phenotype and expression of the related proteins vimentin and collagen-I, while inhibiting the contractile phenotype and expression of the related proteins smooth muscle (SM) α-actin (α-SMA) and desmin. Inhibition of PDGFR activity via siRNA or the PDGFR inhibitor crenolanib inhibited vimentin and collagen-I expression, increased α-SMA and desmin expression, and considerably inhibited serine-threonine protein kinase (AKT) and signal transducer and activator of transcription 3 (STAT3) phosphorylation. STAT3 knockdown promoted the contractile phenotype, inhibited vimentin and collagen-I expression, and increased α-SMA and desmin expression, whereas AKT knockdown did not affect phenotype-associated proteins. STAT3 overexpression in CCSMC cells weakened the suppressive effect of PDGFR inhibition on the morphology and phenotypic transformation induced by PDGF-BB. Through activation of the PDGFR/STAT3 signaling pathway, PDGF promoted the synthetic phenotype transition; thus, regulation of this pathway might contribute to ED therapy.
Collapse
Affiliation(s)
- Jun-Feng Yan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Jie Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Feng Zhao
- Department of Urology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Ying Fu
- Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
- Central Laboratory, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gao-Yue Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Jun Huang
- Department of Urology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Dong Lv
- Department of Urology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
3
|
Cao Y, Zhou X, Liu H, Zhang Y, Yu X, Liu C. The NF-κB pathway: regulation of the instability of atherosclerotic plaques activated by Fg, Fb, and FDPs. Mol Cell Biochem 2013; 383:29-37. [PMID: 23839109 PMCID: PMC3788187 DOI: 10.1007/s11010-013-1751-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
Recently, the molecular mechanism responsible for the instability of atherosclerotic plaques has gradually become a hot topic among researchers and clinicians. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play an important role in the processes of formation and development of atherosclerosis. In this study, we established and employed the transwell co-culture system of rabbit aortic endothelial cells and smooth muscle cells to explore the relationship between fibrin (Fb), fibrinogen (Fg), and/or their degradation products (FDPs) in relation to the instability of atherosclerotic plaques; meanwhile, we observed the effects of Fg, Fb, and FDPs on the mRNA levels of MMPs and VEGF as well as on the activation of nuclear factor-kappa B (NF-κB). We concluded that Fb, Fg, and FDPs are involved in the progression of the instability of atherosclerotic plaques via increasing the expression of MMPs and VEGF. This effect might be mediated by the NF-кB pathway.
Collapse
Affiliation(s)
- Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
4
|
Kawamoto R, Yamashita A, Nishihira K, Furukoji E, Hatakeyama K, Ishikawa T, Imamura T, Itabe H, Eto T, Asada Y. Different inflammatory response and oxidative stress in neointimal hyperplasia after balloon angioplasty and stent implantation in cholesterol-fed rabbits. Pathol Res Pract 2006; 202:447-56. [PMID: 16635553 DOI: 10.1016/j.prp.2005.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/23/2005] [Indexed: 11/19/2022]
Abstract
Inflammatory responses appear to play an important role in the occurrence of restenosis following coronary intervention. However, the contribution of C-reactive protein (CRP) and oxidative stress to restenosis after balloon angioplasty and stent implantation remains unclear. The aim of this study was to examine this issue using hyperlipidemic rabbits. Rabbits were divided into two groups; they were fed with a 0.5% cholesterol diet and with a mixed 0.5% cholesterol and 0.5% probucol diet. Each group of rabbits underwent balloon injury and stent implantation in right and left iliac arteries, respectively. Eight weeks after the intervention, we examined luminal stenosis, neointimal hyperplasia, immunoreactivity for macrophage, CRP and oxidized phosphatidylcholine (oxPC), and also the expression of CRP mRNA. The degrees of neointimal hyperplasia and immunopositive areas (%) for macrophage, CRP, and oxPC in the neointima were significantly higher after stent implantation than after balloon injury, but CRP mRNA was undetectable in either artery. Anti-oxidant probucol reduced angiographic stenosis, neointimal hyperplasia, and macrophage- and oxPC-positive areas much more significantly after stenting. The results demonstrate that the inflammatory response to the development of neointimal hyperplasia differs after balloon injury and stent implantation and that CRP deposition and oxidative stress might be involved more significantly in neointimal development after stent implantation.
Collapse
Affiliation(s)
- Riichirou Kawamoto
- First Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
According to the oxidative modification hypothesis, antioxidants that inhibit the oxidation of low-density lipoprotein (LDL) are expected to attenuate atherosclerosis, yet not all antioxidants that inhibit LDL oxidation in vitro inhibit disease in animal models of atherosclerosis. As with animal studies, a benefit with dietary supplements of antioxidants in general and vitamin E in particular was anticipated in humans, yet the overall outcome of large, randomized controlled studies has been disappointing. However, in recent years it has become clear that the role of vitamin E in LDL oxidation and the relationship between in vitro and in vivo inhibition of LDL oxidation are more complex than previously appreciated, and that oxidative events in addition to LDL oxidation in the extracellular space need to be considered in the context of an antioxidant as a therapeutic drug against atherosclerosis. This review focuses on some of these complexities, proposes a novel method to assess in vitro 'oxidizability' of lipoprotein lipids, and summarizes the present situation of development of antioxidant compounds as drugs against atherosclerosis and related cardiovascular disorders.
Collapse
Affiliation(s)
- O Cynshi
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co Ltd, Shizuoka, Japan
| | | |
Collapse
|
6
|
Preclinical restenosis models and drug-eluting stents: still important, still much to learn. J Am Coll Cardiol 2004; 44:1373-85. [PMID: 15464316 DOI: 10.1016/j.jacc.2004.04.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/28/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
Percutaneous coronary intervention continues to revolutionize the treatment of coronary atherosclerosis. Restenosis remains a significant problem but may at last be yielding to technologic advances. The examination of neointimal hyperplasia in injured animal artery models has helped in our understanding of angioplasty and stenting mechanisms, and as drug-eluting stent (DES) technologies have arrived, they too have been advanced through the study of animal models. These models are useful for predicting adverse clinical outcomes in patients with DESs because suboptimal animal model studies typically lead to problematic human trials. Similarly, stent thrombosis in animal models suggests stent thrombogenicity in human patients. Equivocal animal model results at six or nine months occasionally have been mirrored by excellent clinical outcomes in patients. The causes of such disparities are unclear but may result from differing methods, including less injury severity than originally described in the models. Ongoing research into animal models will reconcile apparent differences with clinical trials and advance our understanding of how to apply animal models to clinical stenting in the era of DESs.
Collapse
|
7
|
Braun A, Zhang S, Miettinen HE, Ebrahim S, Holm TM, Vasile E, Post MJ, Yoerger DM, Picard MH, Krieger JL, Andrews NC, Simons M, Krieger M. Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Proc Natl Acad Sci U S A 2003; 100:7283-8. [PMID: 12771386 PMCID: PMC165867 DOI: 10.1073/pnas.1237725100] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 04/17/2003] [Indexed: 12/20/2022] Open
Abstract
Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean age 6 weeks). They also exhibit a block in RBC maturation and abnormally high plasma unesterified-to-total cholesterol ratio (0.8) with associated abnormal lipoprotein morphology (lamellar/vesicular and stacked discoidal particles reminiscent of those in lecithin/cholesterol acyltransferase deficiency and cholestasis). Treatment with the lipid-lowering, antiatherosclerosis, and antioxidation drug probucol extended life to as long as 60 weeks (mean 36 weeks), and at 5-6 weeks of age, virtually completely reversed the cardiac and most RBC pathologies and corrected the unesterified to total cholesterol ratio (0.3) and associated distinctive abnormal lipoprotein morphologies. Manipulation of the timing of administration and withdrawal of probucol could control the onset of death and suggested that critical pathological changes usually occurred in untreated double knockout mice between approximately 3 (weaning) and 5 weeks of age and that probucol delayed heart failure even after development of substantial CHD. The ability of probucol treatment to modulate pathophysiology in the double knockout mice enhances the potential of this murine system for analysis of the pathophysiology of CHD and preclinical testing of new approaches for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anne Braun
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|