1
|
Guillard M, Dimopoulou A, Fischer B, Morava E, Lefeber DJ, Kornak U, Wevers RA. Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta Mol Basis Dis 2009; 1792:903-14. [PMID: 19171192 DOI: 10.1016/j.bbadis.2008.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/08/2023]
Abstract
Glycosylation of proteins is one of the most important post-translational modifications. Defects in the glycan biosynthesis result in congenital malformation syndromes, also known as congenital disorders of glycosylation (CDG). Based on the iso-electric focusing patterns of plasma transferrin and apolipoprotein C-III a combined defect in N- and O-glycosylation was identified in patients with autosomal recessive cutis laxa type II (ARCL II). Disease-causing mutations were identified in the ATP6V0A2 gene, encoding the a2 subunit of the vacuolar H(+)-ATPase (V-ATPase). The V-ATPases are multi-subunit, ATP-dependent proton pumps located in membranes of cells and organels. In this article, we describe the structure, function and regulation of the V-ATPase and the phenotypes currently known to result from V-ATPase mutations. A clinical overview of cutis laxa syndromes is presented with a focus on ARCL II. Finally, the relationship between ATP6V0A2 mutations, the glycosylation defect and the ARCLII phenotype is discussed.
Collapse
Affiliation(s)
- Mailys Guillard
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
2
|
Yao G, Feng H, Cai Y, Qi W, Kong K. Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 2007; 357:821-7. [PMID: 17462591 DOI: 10.1016/j.bbrc.2007.04.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/07/2007] [Indexed: 02/05/2023]
Abstract
V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V(1) domain responsible for ATP hydrolysis and integral V(0) domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.
Collapse
Affiliation(s)
- GuanFeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041, China
| | | | | | | | | |
Collapse
|
3
|
Blake-Palmer KG, Su Y, Smith AN, Karet FE. Molecular cloning and characterization of a novel form of the human vacuolar H+-ATPase e-subunit: An essential proton pump component. Gene 2007; 393:94-100. [PMID: 17350184 DOI: 10.1016/j.gene.2007.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/17/2022]
Abstract
Several of the 13 subunits comprising mammalian H(+)-ATPases have multiple alternative forms, encoded by separate genes and with differing tissue expression patterns. These may play an important role in the intracellular localization and activity of H(+)-ATPases. Here we report the cloning of a previously uncharacterized human gene, ATP6V0E2, encoding a novel H(+)-ATPase e-subunit designated e2. We demonstrate that in contrast to the ubiquitously expressed gene encoding the e1 subunit (previously called e), this novel gene is expressed in a more restricted tissue distribution, particularly kidney and brain. We show by complementation studies in a yeast strain deficient for the ortholog of this subunit, that either form of the e-subunit is essential for proper proton pump function. The identification of this novel form of the e-subunit lends further support to the hypothesis that subunit differences may play a key role in the structure, site and function of H(+)-ATPases within the cell.
Collapse
Affiliation(s)
- Katherine G Blake-Palmer
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | | | | | | |
Collapse
|
4
|
Abstract
Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
5
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Hong J, Yokomakura A, Nakano Y, Ishihara K, Kaneda M, Onodera M, Nakahama KI, Morita I, Niikura K, Ahn JW, Zee O, Ohuchi K. Inhibition of vacuolar-type (H+)-ATPase by the cytostatic macrolide apicularen A and its role in apicularen A-induced apoptosis in RAW 264.7 cells. FEBS Lett 2006; 580:2723-30. [PMID: 16647709 DOI: 10.1016/j.febslet.2006.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/27/2022]
Abstract
Apicularen A and the known vacuolar-type (H(+))-ATPase (V-ATPase) inhibitor bafilomycin A(1) induced apoptosis of RAW 264.7 cells, while apicularen B, an N-acetyl-glucosamine glycoside of apicularen A, was far less effective. Apicularen A inhibited vital staining with acridine orange of the intracellular organelles of RAW 264.7 cells, inhibited the ATP-dependent proton transport into inside-out microsome vesicles, and inhibited the bafilomycin A(1)-sensitive ATP hydrolysis. The IC(50) values of the proton transport were 0.58 nM for apicularen A, 13 nM for apicularen B, and 0.95 nM for bafilomycin A(1). Furthermore, apicularen A inhibited the bafilomycin A(1)-sensitive ATP hydrolysis more potently than apicularen B. F-ATPase and P-ATPase were not inhibited by apicularen A. We concluded that apicularen A inhibits V-ATPase, and thus induces apoptosis in RAW 264.7 cells.
Collapse
Affiliation(s)
- JangJa Hong
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Smith AN, Borthwick KJ, Karet FE. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H(+)-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 2002; 297:169-77. [PMID: 12384298 DOI: 10.1016/s0378-1119(02)00884-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several of the 13 subunits comprising mammalian H(+)-ATPases have multiple isoforms, encoded by separate genes and with differing tissue expression patterns, which may play an important role in the intracellular localization and activity of H(+)-ATPases. Here we report the cloning of three previously uncharacterized human genes, ATP6V1C2, ATP6V1G3 and ATP6V0D2, encoding novel H(+)-ATPase subunit isoforms C2, G3 and d2, respectively. We demonstrate that these novel genes are expressed in kidney and few other tissues, and confirm previous reports that the C1, G1 and d1 isoforms are ubiquitously expressed, while G2 is brain-specific. Previously we have shown that mutations in two kidney-specific genes, ATP6V1B1 and ATP6V0A4, encoding the H(+)-ATPase B1 and a4 subunit isoforms, cause recessive distal renal tubular acidosis (dRTA). As the genes reported here are expressed mainly in kidney, we assessed their candidacy as causative genes for recessive dRTA in eight kindreds unlinked to either known disease locus. Although no potential disease-causing mutations were seen in this cohort, this does not rule out a role for these genes in other families. The identification of these three novel tissue-specific isoforms supports the hypothesis that subunit differences may play a key role in the structure, site and function of H(+)-ATPases within the cell.
Collapse
Affiliation(s)
- Annabel N Smith
- Departments of Medical Genetics and Nephrology, University of Cambridge, Cambridge Institute for Medical Research Room 4.25B, Addenbrooke's Hospital Box 139, Hills Road, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
8
|
Merzendorfer H, Reineke S, Zhao XF, Jacobmeier B, Harvey WR, Wieczorek H. The multigene family of the tobacco hornworm V-ATPase: novel subunits a, C, D, H, and putative isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:369-79. [PMID: 11030595 DOI: 10.1016/s0005-2736(00)00233-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasma membrane V-ATPase from Manduca sexta (Lepidoptera, Sphingidae) larval midgut is composed of at least 12 subunits, eight of which have already been identified molecularly [Wieczorek et al., J. Bioenerg. Biomembr. 31 (1999) 67-74]. Here we report primary sequences of subunits C, D, H and a, which previously had not been identified in insects. Expression of recombinant proteins, immunostaining and protein sequencing demonstrated that the corresponding proteins are subunits of the Manduca V-ATPase. Genomic Southern blot analysis indicated the existence of multiple genes encoding subunits G, a, c, d and e. Moreover, multiple transcripts were detected in Northern blots from midgut poly(A) RNA for subunits B, G, c and d. Thus, these polypeptides appear to exist as multiple isoforms that could be expressed either in different tissues or at distinct locations within a cell. By contrast subunits A, C, D, E, F and H appear to be encoded by single transcripts and therefore should be present in any Manduca V-ATPase, independent of its subcellular or cell specific origin.
Collapse
|
9
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPases have similar structure and mechanism of action with F-ATPase and several of their subunits evolved from common ancestors. In eukaryotic cells, F-ATPases are confined to the semi-autonomous organelles, chloroplasts, and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The mechanistic and structural relations between the two enzymes prompted us to suggest similar functional units in V-ATPase as was proposed to F-ATPase and to assign some of the V-ATPase subunit to one of four parts of a mechanochemical machine: a catalytic unit, a shaft, a hook, and a proton turbine. It was the yeast genetics that allowed the identification of special properties of individual subunits and the discovery of factors that are involved in the enzyme biogenesis and assembly. The V-ATPases play a major role as energizers of animal plasma membranes, especially apical plasma membranes of epithelial cells. This role was first recognized in plasma membranes of lepidopteran midgut and vertebrate kidney. The list of animals with plasma membranes that are energized by V-ATPases now includes members of most, if not all, animal phyla. This includes the classical Na+ absorption by frog skin, male fertility through acidification of the sperm acrosome and the male reproductive tract, bone resorption by mammalian osteoclasts, and regulation of eye pressure. V-ATPase may function in Na+ uptake by trout gills and energizes water secretion by contractile vacuoles in Dictyostelium. V-ATPase was first detected in organelles connected with the vacuolar system. It is the main if not the only primary energy source for numerous transport systems in these organelles. The driving force for the accumulation of neurotransmitters into synaptic vesicles is pmf generated by V-ATPase. The acidification of lysosomes, which are required for the proper function of most of their enzymes, is provided by V-ATPase. The enzyme is also vital for the proper function of endosomes and the Golgi apparatus. In contrast to yeast vacuoles that maintain an internal pH of approximately 5.5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red alga maintain internal pH as low as 0.1 in their vacuoles. One of the outstanding questions in the field is how such a conserved enzyme as the V-ATPase can fulfill such diverse functions.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
10
|
Oka T, Yamamoto R, Futai M. Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. J Biol Chem 1998; 273:22570-6. [PMID: 9712884 DOI: 10.1074/jbc.273.35.22570] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the vacuolar-type H+-ATPase (V-ATPase), highly hydrophobic subunits known as the proteolipids are components of the integral membrane V0 sector. Previously, we described the identification of three different proteolipid genes in Caenorhabditis elegans (Oka, T., Yamamoto, R., and Futai, M. (1997) J. Biol. Chem. 272, 24387-24392): vha-1 and vha-2 encoded 16-kDa subunits, and vha-4, a 23-kDa isoform. We report here that a third 16-kDa gene, vha-3, has been identified on chromosome IV. This is the first example in which four proteolipid genes have been found in a single organism. vha-2 and vha-3 exhibited 85% nucleotide identity within the open reading frames which encoded the identical amino acid sequence. Northern blot analysis indicated that all four genes were expressed in a similar pattern during the worm life cycle; however, studies with transgenic worms indicated that the vha-3 gene was expressed differently from other proteolipid genes in a cell-specific manner. These results implied that the isoforms of the proteolipids may be related to functional differences of V-ATPases in various cell types. Another new gene, vha-11, contained seven exons and was found to be located immediately downstream of vha-3. The two genes constitute a single transcriptional unit. The VHA-11 protein had 384 amino acids and shared strong sequence similarities with the C subunit, a component of the peripheral V1 sector of the V-ATPase, from yeast, bovine, and human. Expression of the vha-11 cDNA complemented a null mutation of VMA5, the yeast C subunit gene, thus demonstrating that vha-11 was the functional C subunit of C. elegans.
Collapse
Affiliation(s)
- T Oka
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, CREST of the Japan Science and Technology Corporation, Osaka 567-0047, Japan
| | | | | |
Collapse
|
11
|
Gubbay J, Doyle JP, Skinner M, Heintz N. Changing patterns of gene expression identify multiple steps during regression of rat prostate in vivo. Endocrinology 1998; 139:2935-43. [PMID: 9607804 DOI: 10.1210/endo.139.6.6075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rat ventral prostate is an androgen-dependent organ that undergoes dramatic cell death upon removal of testosterone by surgical castration. Several well characterized criteria, such as nuclear condensation, organelle blebbing, and DNA fragmentation, have been used to demonstrate that most of this cell loss is due to programmed cell death, or apoptosis, of the secretory epithelial cells. In addition to changes in morphology, it is well known that cells undergoing apoptosis show alterations in gene expression, and it is widely assumed that many of these genes are directly involved in the mechanism of programmed cell death. Using poly A+ RNA derived from normal rat prostate as well as from the regressing prostates of castrated rats, we have used a PCR-based subtractive hybridization approach to generate complementary DNA (cDNA) libraries greatly enriched in cDNAs strongly regulated during rat prostate regression. Several hundred of the genes represented in these libraries appear to be strongly regulated during prostate regression and most of these are prostate specific. Sequence analysis indicates that up to 30% of these clones are similar or identical to genes of known function, approximately 20% are similar to expressed sequence tags (ESTs), and as many as 50% of these clones have not been characterized previously. Analysis of selected clones using in situ hybridization indicates that they are expressed specifically in prostate epithelial cells, and that certain of these clones are regulated temporally in a pattern consistent with apoptosis. The patterns of gene expression include: 1) genes whose expression decreases uniformly after removal of androgen, indicative of androgen sensitive genes; 2) genes whose expression increases in apoptotic prostate cells and in other tissues, suggesting a class of genes generally involved in apoptosis; 3) and genes whose expression increases in individual regressing prostate epithelial cells, suggesting a class of prostate specific genes associated with apoptosis.
Collapse
Affiliation(s)
- J Gubbay
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
12
|
Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schägger H. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 1998; 273:10939-47. [PMID: 9556572 DOI: 10.1074/jbc.273.18.10939] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vacuolar proton-translocating ATPase (holoATPase and free membrane sector) was isolated from bovine chromaffin granules by blue native polyacrylamide gel electrophoresis. A 5-fold excess of membrane sector over holoenzyme was determined in isolated chromaffin granule membranes. M9.2, a novel extremely hydrophobic 9.2-kDa protein comprising 80 amino acids, was detected in the membrane sector. It shows sequence and structural similarity to Vma21p, a yeast protein required for assembly of vacuolar ATPase. A second membrane sector-associated protein (M8-9) was identified and characterized by amino-terminal protein sequencing.
Collapse
Affiliation(s)
- J Ludwig
- Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Carrión-Vázquez M, Fernández AM, Chowen J, Nieto-Sampedro M. Brain Ac39/physophilin: cloning, coexpression and colocalization with synaptophysin. Eur J Neurosci 1998; 10:1153-66. [PMID: 9753184 DOI: 10.1046/j.1460-9568.1998.00130.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physophilin is an oligomeric protein that binds the synaptic vesicle protein synaptophysin constituting a complex that has been hypothesized to form the exocytotic fusion pore. Microsequencing of several physophilin peptides putatively identified this protein as the Ac39 subunit of the V-ATPase. Ac39 has recently been shown to be present in a synaptosomal complex which, in addition to synaptophysin, includes the bulk of synaptobrevin II, and subunits c and Ac115 of the V0 sector of the V-ATPase. We have cloned physophilin from mouse brain and found a differential region of 12 amino acids when compared with the previously reported sequence of Ac39 from bovine adrenal medulla. RT-PCR cloning from the bovine adrenal medulla demonstrates that sequencing errors occurred in the previous cloning study, and shows that the amino acid sequences of physophilin and Ac39 are completely identical. In situ hybridization in rat brain reveals a largely neuronal distribution of Ac39/physophilin mRNA which spatio-temporally correlates with those of subunit c and synaptophysin. Immunohistochemical analysis shows that Ac39/physophilin is mostly concentrated in the neuropil with a pattern identical to subunit A and very similar to synaptophysin. Double-labelling immunofluorescence shows a complete colocalization of Ac39/physophilin with subunit A and a partial colocalization with synaptophysin in the neuropil. Our findings bring anatomical support for the in vivo occurrence of the synaptophysin-Ac39/physophilin interaction and further suggest a coordinated transcription of V-ATPase and synaptophysin genes. A putative role of Ac39/physophilin in the inactivation of the V-ATPase by disassembly of its V1 sector is also discussed.
Collapse
Affiliation(s)
- M Carrión-Vázquez
- Neural Plasticity Department, Instituto Cajal (CSIC), Madrid, Spain.
| | | | | | | |
Collapse
|
14
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function in the acidification of intracellular compartments in eukaryotic cells. The V-ATPases are multisubunit complexes composed of two functional domains. The peripheral V1 domain, a 500-kDa complex responsible for ATP hydrolysis, contains at least eight different subunits of molecular weight 70-13 (subunits A-H). The integral V0 domain, a 250-kDa complex, functions in proton translocation and contains at least five different subunits of molecular weight 100-17 (subunits a-d). Biochemical and genetic analysis has been used to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and coupling of these activities. Several mechanisms have been implicated in the regulation of vacuolar acidification in vivo, including control of pump density, regulation of assembly of V1 and V0 domains, disulfide bond formation, activator or inhibitor proteins, and regulation of counterion conductance. Recent information concerning targeting and regulation of V-ATPases has also been obtained.
Collapse
Affiliation(s)
- T H Stevens
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | |
Collapse
|
15
|
Zhang Z, Jones S, Hagood JS, Fuentes NL, Fuller GM. STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem 1997; 272:30607-10. [PMID: 9388192 DOI: 10.1074/jbc.272.49.30607] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-6 (IL-6) and glucocorticoids are important mediators of inflammatory and immunological responses. Glucocorticoids are known to synergistically enhance IL-6-mediated cellular responses. We now show that IL-6 also has a synergistic effect upon glucocorticoid signaling. In particular, IL-6-activated STAT3 associates with ligand-bound glucocorticoid receptor to form a transactivating/signaling complex, which can function through either an IL-6-responsive element or a glucocorticoid-responsive element. These findings reveal a new level of interaction between these two crucial signaling cascades and indicate that activated STAT3 can also act as a transcriptional co-activator without direct association with its DNA binding motif.
Collapse
Affiliation(s)
- Z Zhang
- Department of Cell Biology, Pulmonary Division, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
16
|
Skulachev V. Energy Transduction Mechanisms (Animals and Plants). Compr Physiol 1997. [DOI: 10.1002/cphy.cp140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Steinert K, Wagner V, Kroth-Pancic PG, Bickel-Sandkötter S. Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes. J Biol Chem 1997; 272:6261-9. [PMID: 9045643 DOI: 10.1074/jbc.272.10.6261] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The archaeal ATPase of the halophile Haloferax volcanii synthesizes ATP at the expense of a proton gradient, as shown by sensitivity to the uncoupler carboxyl cyanide p-trifluoromethoxyphenylhydrazone, to the ionophore nigericin, and to the proton channel-modifying reagent N,N'-dicyclohexylcarbodiimide. The conditions for an optimally active ATP synthase have been determined. We were able to purify the enzyme complex and to identify the larger subunits with antisera raised against synthetic peptides. To identify additional subunits of this enzyme complex, we cloned and sequenced a gene cluster encoding five hydrophilic subunits of the A1 part of the proton-translocating archaeal ATP synthase. Initiation, termination, and ribosome-binding sequences as well as the result of a single transcript suggest that the ATPase genes are organized in an operon. The calculated molecular masses of the deduced gene products are 22. 0 kDa (subunit D), 38.7 kDa (subunit C), 11.6 kDa (subunit E), 52.0 kDa (subunit B), and 64.5 kDa (subunit A). The described operon contains genes in the order D, C, E, B, and A; it contains no gene for the hydrophobic, so-called proteolipid (subunit c, the proton-conducting subunit of the A0 part). This subunit has been isolated and purified; its molecular mass as deduced by SDS-polyacrylamide gel electrophoresis is 9.7 kDa.
Collapse
Affiliation(s)
- K Steinert
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | | | | | |
Collapse
|
18
|
Abstract
The native V1 complex of the tobacco hornworm vacuolar type ATPase (V-ATPase) was purified from cytosolic extracts of molting larval midgut. It consisted of the established V-ATPase subunits A, B, and E along with the 14-kDa subunit F and the novel 13-kDa subunit G. The final amount of purified V1 complex made up an unexpectedly high 2% of the total cytosolic protein, with a yield of approximately 0.4 mg/g of tissue. An equally high amount of cytosolic V1 complex was obtained from starving intermolt larvae. By contrast, the cytosolic V1 pool was reduced drastically in feeding intermolt larvae or in larvae that had been refed after starvation. The activity of the membrane-bound V-ATPase holoenzyme was inversely related to the size of the cytosolic V1 pool, suggesting that the insect plasma membrane V-ATPase is regulated by reversible disassembly of the V1 complex as a function of the feeding condition of the larvae. Like F1-ATPases, the purified V1 complex exhibited Ca2+-dependent ATPase activity and, in the presence of 25% methanol, exhibited Mg2+-dependent ATPase activity. Therefore, we designate the native V1 complex, V1-ATPase. Both enzyme activities were completely inhibited by micromolar N-ethylmaleimide. In contrast to the Ca2+-dependent V1-ATPase activity, the Mg2+/methanol-dependent V1-ATPase activity did not decrease with the incubation time and thus was not inhibited by ADP. Methanol appears to induce a conformational change of the V1 complex, leading to enzymatic properties of the V1-ATPase that are similar to those of the membrane-bound V-ATPase holoenzyme. This is the first time that a native and enzymatically active V1 complex has been purified from the cytosol.
Collapse
Affiliation(s)
- R Gräf
- Zoologisches Institut der Universität München, Luisenstrasse 14, D-80333 München, Germany
| | | | | |
Collapse
|
19
|
Abstract
Lysosomes, endosomes, and a variety of other intracellular organelles are acidified by a family of unique proton pumps, termed the vacuolar H(+)-ATPases, that are evolutionarily related to bacterial membrane proton pumps and the F1-F0 H(+)-ATPases that catalyze ATP synthesis in mitochondria and chloroplasts. The electrogenic vacuolar H(+)-ATPase is responsible for generating electrical and chemical gradients across organelle membranes with the magnitude of these gradients ultimately determined by both proton pump regulatory mechanisms and, more importantly, associated ion and organic solute transporters located in vesicle membranes. Analogous to Na+, K(+)-ATPase on the cell membrane, the vacuolar proton pump not only acidifies the vesicle interior but provides a potential energy source for driving a variety of coupled transporters, many of them unique to specific organelles. Although the basic mechanism for organelle acidification is now well understood, it is already apparent that there are many differences in both the function of the proton pump and the associated transporters in different organelles and different cell types. These differences and their physiologic and pathophysiologic implications are exciting areas for future investigation.
Collapse
Affiliation(s)
- R W Van Dyke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| |
Collapse
|
20
|
Lee BS, Underhill DM, Crane MK, Gluck SL. Transcriptional regulation of the vacuolar H(+)-ATPase B2 subunit gene in differentiating THP-1 cells. J Biol Chem 1995; 270:7320-9. [PMID: 7706273 DOI: 10.1074/jbc.270.13.7320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Monocyte-macrophage differentiation was used as a model system for studying gene regulation of the human vacuolar H(+)-ATPase (V-ATPase). We examined mRNA levels of various V-ATPase subunits during differentiation of both native monocytes and the cell line THP-1, and found that transcriptional and post-transcriptional mechanisms could account for increases in cell V-ATPase content. From nuclear runoff experiments, we found that one subunit in particular, the B2 isoform (Mr = 56,000), was amplified primarily by transcriptional means. We have begun to examine the structure of the B2 subunit promoter region. Isolation and sequencing of the first exon and 5'-flanking region of this gene reveal a TATA-less promoter with a high G + C content. Primer extension and ribonuclease protection analyses indicate a single major transcriptional start site. We transfected promoter-luciferase reporter plasmids into THP-1 cells to define sequences that mediate transcriptional control during monocyte differentiation. We found that sequences downstream from the transcriptional start site were sufficient to confer increased expression during THP-1 differentiation. DNase I footprinting and sequence analysis revealed the existence of multiple AP2 and Sp1 binding sites in the 5'-untranslated and proximal coding regions.
Collapse
Affiliation(s)
- B S Lee
- Department of Medicine/Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
21
|
Dschida WJ, Bowman BJ. The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 1995; 270:1557-63. [PMID: 7829484 DOI: 10.1074/jbc.270.4.1557] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using vacuolar membranes from Neurospora crassa, we observed that sulfite prevented the loss of vacuolar ATPase activity that otherwise occurred during 36 h at room temperature. Sulfite neither activated nor changed the kinetic behavior of the enzyme. Further, in the presence of sulfite, the vacuolar ATPase was not inhibited by nitrate. We tested the hypothesis that sulfite acts as a reducing agent to stabilize the enzyme, while nitrate acts as an oxidizing agent, inhibiting the enzyme by promoting the formation of disulfide bonds. All reducing agents tested, dithionite, selenite, thiophosphate, dithiothreitol and glutathione, prevented the loss of ATPase activity. On the other hand, all oxidizing agents tested, bromate, iodate, arsenite, perchlorate, and hydrogen peroxide, were potent inhibitors of ATPase activity. The inhibitory effect of the oxidizing agents was specific for the vacuolar ATPase. The mitochondrial ATPase, assayed under identical conditions, was not inhibited by any of the oxidizing agents. Analysis of proteins with two-dimensional gel electrophoresis indicated that nitrate can promote the formation of disufide bonds between proteins in the vacuolar membrane. These data suggest a mechanism to explain why nitrate specifically inhibits vacuolar ATPases, and they support the proposal by Feng and Forgac (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13244-13230) that oxidation and reduction of critical cysteine residues may regulate the activity of vacuolar ATPases in vivo.
Collapse
Affiliation(s)
- W J Dschida
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
22
|
|
23
|
Xie XS, Crider BP, Ma YM, Stone DK. Role of a 50-57-kDa polypeptide heterodimer in the function of the clathrin-coated vesicle proton pump. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47319-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Supek F, Supekova L, Mandiyan S, Pan Y, Nelson H, Nelson N. A novel accessory subunit for vacuolar H(+)-ATPase from chromaffin granules. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51053-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Nelson H, Mandiyan S, Nelson N. The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H(+)-ATPase catalytic sector. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51061-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Feng Y, Forgac M. Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36822-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Genomic structure and subcellular localization of MAL, a human T-cell-specific proteolipid protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37174-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
James CM, Gent ME, Indge KJ, Oliver SG. Sequence analysis of a 10 kb fragment of yeast chromosome XI identifies the SMY1 locus and reveals sequences related to a pre-mRNA splicing factor and vacuolar ATPase subunit C plus a number of unidentified open reading frames. Yeast 1994; 10:247-55. [PMID: 8203165 DOI: 10.1002/yea.320100211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report the DNA sequence analysis of a region on the left arm of chromosome XI of Saccharomyces cerevisiae extending over 10 kb. The region contains five open reading frames (ORFs) of greater than 100 amino acids which do not show significant overlap with other ORFs. YKL408 contains a sequence with strong similarity to the RNA helicase pre-mRNA splicing factors PRP2, PRP16 and PRP22 (Burgess et al., 1990; Company et al., 1991; Ruby et al., 1991). YKL409 corresponds to the gene SMY1, the sequence of which was previously reported by Lillie and Brown (1992). YKL410 is identical to ATPase subunit C (Beltran et al., 1992) except for an N-terminal extension. YKL406 and YKL407 show no significant identity with any sequences in the databases searched.
Collapse
Affiliation(s)
- C M James
- Manchester Biotechnology Centre, University of Manchester Institute of Science and Technology (UMIST), U.K
| | | | | | | |
Collapse
|
29
|
Peng S, Stone D, Xie X. Reconstitution of recombinant 40-kDa subunit of the clathrin-coated vesicle H(+)-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49493-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Ho M, Hill K, Lindorfer M, Stevens T. Isolation of vacuolar membrane H(+)-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H(+)-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54138-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Center MS. Non-P-glycoprotein multidrug resistance in cell lines which are defective in the cellular accumulation of drug. Cytotechnology 1993; 12:109-25. [PMID: 7765322 DOI: 10.1007/bf00744660] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Non-Pgp mdr related to a defect in drug accumulation has now been documented in a number of different cell lines exposed to certain cytotoxic agents. In studies conducted thus far most isolates have been obtained after selection in either adriamycin or mitoxantrone. The work in this area is in its early stages and very little is known about the molecular events which contribute to this mode of drug resistance. At the present time no protein with drug binding properties comparable to Pgp has been identified in non-Pgp mdr isolates. Evidence based on the finding that all isolates do not respond in the same way to reversal agents such as verapamil suggests the possibility that more than one mechanism may exist for non-Pgp mdr. Future studies may thus reveal that cells contain a multiplicity of genes which upon transcriptional activation can function to alter drug transport processes and thus contribute to the development of mdr. Identifying and characterizing these genes will be important since they may function in transport systems of normal cells. The exact identify of proteins which contribute to non-Pgp mdr remains to be determined. One protein designated P190 has been found to be overexpressed in cell lines of human promyelocytic leukemia, lung and adenocarcinoma treated with adriamycin. The protein also is increased in some clinical samples from patients undergoing chemotherapy. P190 which has a minor sequence homology with Pgp can bind ATP and may thus contribute to the energy dependent drug efflux systems found in cells containing this protein. Transfection studies with a P190 cDNA should determine whether this protein actually contributes to drug resistance. Many other protein changes have been detected in non-Pgp mdr cells but the importance of these in resistance also remains to be determined. In some systems a particular protein change can be identified in multiple independent isolates suggesting a correlation between the development of resistance and the presence of this cellular alteration. Experiments conducted thus far on the mechanism of non-Pgp mdr are intriguing. Studies utilizing fluorescence microscopy to follow the fate of daunomycin suggests that the drug passes to the interior of the cell and eventually localizes in the Golgi apparatus. Drug located at this site may move directly into an efflux pathway for rapid extrusion from the cell. Evidence also indicates that as drug leaves the Golgi some may be sequestered into other organelles such as lysosomes or mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M S Center
- Division of Biology, Kansas State University, Manhattan 66506
| |
Collapse
|
32
|
Dow JA, Goodwin SF, Kaiser K. Analysis of the gene encoding a 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase from Manduca sexta midgut and tubules. Gene 1992; 122:355-60. [PMID: 1283142 DOI: 10.1016/0378-1119(92)90226-f] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vacuolar ATPases (V-ATPases), originally characterised as components of endomembranes, have also been implicated in epithelial ion transport, both in vertebrates and in insects. The ATPase is particularly noteworthy in lepidopteran larvae, where it generates large transepithelial potential differences and short-circuit currents across the midgut epithelium. A cDNA library from Manduca sexta larval midguts and Malpighian tubules was screened with a Drosophila melanogaster cDNA encoding the 16-kDa proteolipid subunit of the V-ATPase, and a 1.4-kb cDNA sequenced in its entirety. The sequence contains a long open reading frame, encoding a putative peptide of 156 amino acids (aa) and with an M(r) of 15,967, in close agreement with values previously suggested by sodium dodecyl sulfate-polyacrylamide gels of M. sexta midgut proteins. Correspondence of the deduced aa sequence with those of other species, particularly D. melanogaster, was extremely close. Northern blots of M. sexta midgut mRNA at high stringency revealed two transcripts of 1.4 and 1.9 kb, whereas genomic Southern blots suggest that there is only a single copy of the gene in M. sexta. The possibility that members of the 16-kDa gene family might serve multiple roles in transport and membrane communication is discussed.
Collapse
Affiliation(s)
- J A Dow
- Department of Cell Biology, University of Glasgow, UK
| | | | | |
Collapse
|
33
|
Supek F, Supekova L, Beltrán C, Nelson H, Nelson N. Structure, function, and mutational analysis of V-ATPases. Ann N Y Acad Sci 1992; 671:284-92. [PMID: 1288325 DOI: 10.1111/j.1749-6632.1992.tb43803.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- F Supek
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | | | | | |
Collapse
|
34
|
Anraku Y, Umemoto N, Hirata R, Ohya Y. Genetic and cell biological aspects of the yeast vacuolar H(+)-ATPase. J Bioenerg Biomembr 1992; 24:395-405. [PMID: 1400284 DOI: 10.1007/bf00762532] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The yeast vacuolar proton-translocating ATPase is a member of the third class of H(+)-pumping ATPase. A family of this type of H(+)-ATPase is now known to be ubiquitously distributed in eukaryotic vacuo-lysosomal organelles and archaebacteria. Nine VMA genes that are indispensable for expression of the enzyme activity have been cloned and characterized in the yeast Saccharomyces cerevisiae. This review summarizes currently available information on the VMA genes and cell biological functions of the VMA gene products.
Collapse
Affiliation(s)
- Y Anraku
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
Proton pumps that belong to the families of F-ATPases and V-ATPases operate without the formation of a phosphorylated intermediate and contain several subunits grouped into distinct catalytic and membrane sectors. Recent studies on the structure and molecular biology of V-ATPases shed light not only on the structure-function relations between the two families, but also on their evolution in all organisms.
Collapse
Affiliation(s)
- N Nelson
- Roche Institute of Molecular Biology, Nutley, New Jersey
| |
Collapse
|
36
|
Kane PM, Stevens TH. Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr 1992; 24:383-93. [PMID: 1400283 DOI: 10.1007/bf00762531] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The yeast vacuole is acidified by a vacuolar proton-translocating ATPase (H(+)-ATPase) that closely resembles the vacuolar H(+)-ATPases of other fungi, animals, and plants. The yeast enzyme is purified as a complex of eight subunits, which include both integral and peripheral membrane proteins. The genes for seven of these subunits have been cloned, and mutant strains lacking each of the subunits (vma mutants) have been constructed. Disruption of any of the subunit genes appears to abolish the function of the vacuolar H(+)-ATPase, supporting the subunit composition derived from biochemical studies. Genetic studies of vacuolar acidification have also revealed an additional set of gene products that are required for vacuolar H(+)-ATPase activity, but may not be part of the final enzyme complex. The biosynthesis, assembly, and targeting of the enzyme is being elucidated by biochemical and cell biological studies of the vma mutants. Initial results suggest that the peripheral and integral membrane subunits may be independently assembled.
Collapse
Affiliation(s)
- P M Kane
- Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23187
| | | |
Collapse
|
37
|
Abstract
The vacuolar system of eukaryotic cells contains a large number of organelles that are primary energized by an H(+)-ATPase that was named V-ATPase. The structure and function of V-ATPases from various sources was extensively studied in the last few years. Several genes encoding subunits of the enzyme were cloned and sequenced. The sequence information revealed the relations between V-ATPases and F-ATPases that evolved from common ancestral genes. The two families of proton pumps share structural and functional similarity. They contain distinct peripheral catalytic sectors and hydrophobic membrane sectors. Genes encoding subunits of V-ATPase in yeast cells were interrupted to yield mutants that are devoid of the enzyme and are sensitive to pH and calcium concentrations in the medium. The mutants were used to study structure, function, molecular biology, and biogenesis of the V-ATPase. They also shed light on the functional assembly of the enzyme in the vacuolar system.
Collapse
Affiliation(s)
- N Nelson
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| |
Collapse
|
38
|
Abstract
Proton ATPases function in biological energy conversion in every known living cell. Their ubiquity and antiquity make them a prime source for evolutionary studies. There are two related families of H(+)-ATPases; while the family of F-ATPases function in eubacteria chloroplasts and mitochondria, the family of V-ATPases are present in archaebacteria and the vacuolar system of eukaryotic cells. Sequence analysis of several subunits of V- and F-ATPases revealed several of the important steps in their evolution. Moreover, these studies shed light on the evolution of the various organelles of eukaryotes and suggested some events in the evolution of the three kingdoms of eubacteria, archaebacteria and eukaryotes.
Collapse
Affiliation(s)
- N Nelson
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| |
Collapse
|
39
|
The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42746-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Beltrán C, Kopecky J, Pan YC, Nelson H, Nelson N. Cloning and mutational analysis of the gene encoding subunit C of yeast vacuolar H(+)-ATPase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48351-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Ma L, Center MS. The gene encoding vacuolar H+-ATPase subunit C is overexpressed in multidrug resistant HL60 cells. Biochem Biophys Res Commun 1992; 182:675-81. [PMID: 1370888 DOI: 10.1016/0006-291x(92)91785-o] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have suggested that vacuolar H(+)-ATPase activity may play a role in modulating drug transport mechanism in multidrug resistant HL60 cells. In the present study we have used a cDNA of human vacuolar H(+)-ATPase subunit C (SC-H(+)-ATPase) to analyze expression of this gene in HL60 cells isolated for resistance to adriamycin or vincristine. The results demonstrate that development of resistance to either agent results in a major increase in the levels of SC-H(+)-ATPase mRNA. Furthermore in resistant cells which have partially reverted to drug sensitivity there is a parallel reduction in SC-H(+)-ATPase mRNA levels. Southern blot analysis shows that the SC-H(+)-ATPase gene is not amplified in the resistant cells. These results therefore demonstrate a correlation between the development of multidrug resistance and enhanced expression of the SC-H(+)-ATPase gene.
Collapse
Affiliation(s)
- L Ma
- Division of Biology, Kansas State University, Manhattan 66506-4901
| | | |
Collapse
|
42
|
Skulachev VP. Chemiosmotic systems in bioenergetics: H(+)-cycles and Na(+)-cycles. Biosci Rep 1991; 11:387-441; discussion 441-4. [PMID: 1668527 DOI: 10.1007/bf01130214] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development of membrane bioenergetic studies during the last 25 years has clearly demonstrated the validity of the Mitchellian chemiosmotic H+ cycle concept. The circulation of H+ ions was shown to couple respiration-dependent or light-dependent energy-releasing reactions to ATP formation and performance of other types of membrane-linked work in mitochondria, chloroplasts, some bacteria, tonoplasts, secretory granules and plant and fungal outer cell membranes. A concrete version of the direct chemiosmotic mechanism, in which H+ potential formation is a simple consequence of the chemistry of the energy-releasing reaction, is already proved for the photosynthetic reaction centre complexes. Recent progress in the studies on chemiosmotic systems has made it possible to extend the coupling-ion principle to an ion other than H+. It was found that, in certain bacteria, as well as in the outer membrane of the animal cell, Na+ effectively substitutes for H+ as the coupling ion (the chemiosmotic Na+ cycle). A precedent is set when the Na+ cycle appears to be the only mechanism of energy production in the bacterial cell. In the more typical case, however, the H+ and Na+ cycles coexist in one and the same membrane (bacteria) or in two different membranes of one and the same cell (animals). The sets of delta mu H+ and delta mu Na+ generators as well as delta mu H+ and delta mu Na+ consumers found in different types of biomembranes, are listed and discussed.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A. N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, USSR
| |
Collapse
|
43
|
Abstract
Isolated H(+)-ATPase from chromaffin granules was reconstituted into liposomes and the resultant proteoliposomes were further purified by Ficoll density gradient centrifugation. Studies by electron microscopy showed that proteoliposomes had particle structures (average diameter, about 10 nm) on their outer surface. These particles could be removed from the proteoliposomes by cold treatment. Immuno-electron microscopy showed that these particles were recognized by antibodies against the hydrophilic sector of the enzyme. These results indicate that the H(+)-ATPase has a peripheral membrane structure similar to that of F1-ATPase.
Collapse
Affiliation(s)
- Y Moriyama
- Department of Organic Chemistry and Biochemistry, Osaka University, Japan
| | | | | | | |
Collapse
|