1
|
Nie AY, Xiao ZH, Deng JL, Li N, Hao LY, Li SH, Hu XY. Bidirectional regulation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:98556. [PMID: 39958554 PMCID: PMC11755995 DOI: 10.4251/wjgo.v17.i2.98556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths in China, and the treatment options are limited. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates the stimulator of interferon gene (STING) signaling pathway as a crucial immune response pathway in the cytoplasm, which detects cytoplasmic DNA to regulate innate and adaptive immune responses. As a potential therapeutic target, cGAS-STING pathway markedly inhibits tumor cell proliferation and metastasis, with its activation being particularly relevant in HCC. However, prolonged pathway activation may lead to an immunosuppressive tumor microenvironment, which fostering the invasion or metastasis of liver tumor cells. AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC. METHODS This review was conducted according to the PRISMA guidelines. The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases. Through rigorous screening and meticulous analysis of the retrieved literature, the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors. RESULTS All authors collaboratively selected studies for inclusion, extracted data, and the initial search of online databases yielded 1445 studies. After removing duplicates, the remaining 964 records were screened. Ultimately, 55 articles met the inclusion criteria and were included in this review. CONCLUSION Acute inflammation can have a few inhibitory effects on cancer, while chronic inflammation generally promotes its progression. Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Ai-Yu Nie
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zhong-Hui Xiao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Jia-Li Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Na Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Li-Yuan Hao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Sheng-Hao Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiao-Yu Hu
- Department of Infection, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
2
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
3
|
Abstract
The discovery of cGAMP in 2012 filled an important gap in our understanding of innate immune signaling. It has been known for over a century that DNA can induce immune responses, but the underlying mechanism was not clear. With the identification of STING as a key player in interferon induction, the DNA detector that activates STING was the last missing link in TBK1-IRF3 signaling. Somewhat unexpectedly, it turns out that nature relays the DNA danger signal through a small molecule. cGAMP is a cyclic dinucleotide produced from cyclodimerization of ATP and GTP upon detection of cytosolic DNA by cGAS, a previously uncharacterized protein, to promote the assembly of the STING signalosome. This article covers a personal account of the discovery of cGAMP, a short history of the relevant nucleotide chemistry, and a summary of the latest development in this field of research in chemistry. It is the author's hope that, with a historic perspective, the readers can better appreciate the synergy between chemistry and biology in drug development.
Collapse
Affiliation(s)
- Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
4
|
Sun X, Yu X, Zhao Y, Xing L, Na L, Chen Z, Xiao Z, Dai H, Yu J, Long S, Wang Q, Shi X, Guan Z, Lei M, Yang Z. Cyclic diguanylate analogues: Facile synthesis, STING binding mode and anti-tumor immunity delivered by cytidinyl/cationic lipid. Eur J Med Chem 2023; 247:115053. [PMID: 36587419 DOI: 10.1016/j.ejmech.2022.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Herein 2-cyanoethoxy-N,N,N',N'-tetraisopropyl-phosphorodiamidite(10, PIII, 3.5 eq.) could synergistically react with 3',5'-dihydroxyl groups in a dinucleotide(PV) at the cyclization step for the synthesis of cyclic dinucleotides (CDNs) (c-di-GMP, cGAMP etc.) and their phosphorothioated analogues. A dynamic PIII-PV coordination mechanism has been proposed for the cyclization procedure which is confirmed by the variant 31P NMR data and molecular simulation. Among the mono-phosphorothioated CDNs, two stereoisomers showed different capacity for STING activation and the reason was predicted by molecular modeling. While compound 12b1 showed most potent ability to elicit cytokines (IFNβ, IL-6, Cxcl9 and Cxcl10) induction compared to another stereoisomer. Also, 12b1 significantly inhibited the tumor growth in the EO771 model with both 0.1 μg (i.t.) and 2 μg (i.v.) administration through the aid of a Mix delivery system developed by our group, and achieved a 31% long-term survival rate of tumor-bearing mice. 12b1/Mix significantly improved the percentage of CD8+ or CD4+ effector memory T (Tem, CD44highCD62Llow) cells and CD8+ central memory T (Tcm, CD44highCD62Lhigh) cells in the blood of EO771 mice, inducing the immune memory against EO771 tumor cells. Relatively lower dose regimens of 12b1(0.1 μg)/Mix displayed better tumor suppression by more potent STING pathway activation and higher levels of cytokines induction in the tumor.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaotong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luxin Na
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhangping Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hong Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijie Long
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Quanxin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Gao N, Dai J, Liu Y, Li S, Wang J, Lu W, Qiu D. Cellulose-mediated floc formation by the activated sludge bacterium Shinella zoogloeoides ATCC 19623. BMC Microbiol 2022; 22:104. [PMID: 35421928 PMCID: PMC9012009 DOI: 10.1186/s12866-022-02516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background Bacterial floc formation plays a central role in the activated sludge (AS) process. The formation of AS flocs has long been known to require exopolysaccharide biosynthesis. We had demonstrated that both expolysaccharides and PEP-CTERM (a short C-terminal domain includes a near-invariant motif Pro-Glu-Pro (PEP)) proteins were required for floc-forming in Zoogloea resiniphila MMB, a dominant AS bacterium. However, the PEP-CTERM proteins are not encoded in the genome of AS bacterium Shinella zoogloeoides ATCC 19623 (formerly known as Zoogloea ramigera I-16-M) and other sequenced AS bacteria strains. The mechanism underlying floc formation of Shinella and related AS bacteria remained largely unclear. Results In this study, we have sequenced and annotated the complete genome of S. zoogloeoides ATCC 19623 (aka I-16-M), previously isolated in USA and treated as the neotype for the AS floc-forming bacterium Zoogloea ramigera I-16-M, and another AS strain XJ20 isolated in China. Mariner transposon mutagenesis had been conducted to isolate floc-forming-deficient mutants in the strain ATCC 19623 as previously performed by using Tn5 transposon three decades ago. The transposon insertional sites of multiple mutants were mapped to the gene cluster for bacterial cellulose synthesis (bcs) and secretion, and the role played by these genes in floc-formation had been further confirmed by genetic complementation. Interestingly, the restriction map of this bcs locus-flanking region was highly similar to that of the previously identified DNA fragment required for floc-formation in 1980s. Cellulase treatment abolished the floc-forming phenotype of S. zoogloeoides ATCC 19623 but not that of Z. resiniphila MMB strain. The FTIR spectral analyses revealed that the samples extracted from S. zoogloeoides ATCC 19623 were cellulose polymer. Conclusion Our results indicated that we have largely reproduced and completed the unfinished pioneering work on AS floc-formation mechanism, demonstrating that the floc-formation and flocculating capability of Shinella were mediated by extracellular cellulose polymers. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02516-y.
Collapse
|
6
|
Poulin MB, Kuperman LL. Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate. Front Microbiol 2021; 12:730980. [PMID: 34566936 PMCID: PMC8461298 DOI: 10.3389/fmicb.2021.730980] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Many bacterial species in nature possess the ability to transition into a sessile lifestyle and aggregate into cohesive colonies, known as biofilms. Within a biofilm, bacterial cells are encapsulated within an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, nucleic acids, lipids, and other small molecules. The transition from planktonic growth to the biofilm lifecycle provides numerous benefits to bacteria, such as facilitating adherence to abiotic surfaces, evasion of a host immune system, and resistance to common antibiotics. As a result, biofilm-forming bacteria contribute to 65% of infections in humans, and substantially increase the energy and time required for treatment and recovery. Several biofilm specific exopolysaccharides, including cellulose, alginate, Pel polysaccharide, and poly-N-acetylglucosamine (PNAG), have been shown to play an important role in bacterial biofilm formation and their production is strongly correlated with pathogenicity and virulence. In many bacteria the biosynthetic machineries required for assembly of these exopolysaccharides are regulated by common signaling molecules, with the second messenger cyclic di-guanosine monophosphate (c-di-GMP) playing an especially important role in the post-translational activation of exopolysaccharide biosynthesis. Research on treatments of antibiotic-resistant and biofilm-forming bacteria through direct targeting of c-di-GMP signaling has shown promise, including peptide-based treatments that sequester intracellular c-di-GMP. In this review, we will examine the direct role c-di-GMP plays in the biosynthesis and export of biofilm exopolysaccharides with a focus on the mechanism of post-translational activation of these pathways, as well as describe novel approaches to inhibit biofilm formation through direct targeting of c-di-GMP.
Collapse
Affiliation(s)
- Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
7
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
8
|
Platt DJ, Lawrence D, Rodgers R, Schriefer L, Qian W, Miner CA, Menos AM, Kennedy EA, Peterson ST, Stinson WA, Baldridge MT, Miner JJ. Transferrable protection by gut microbes against STING-associated lung disease. Cell Rep 2021; 35:109113. [PMID: 33979608 PMCID: PMC8477380 DOI: 10.1016/j.celrep.2021.109113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
STING modulates immunity by responding to bacterial and endogenous cyclic dinucleotides (CDNs). Humans and mice with STING gain-of-function mutations develop a syndrome known as STING-associated vasculopathy with onset in infancy (SAVI), which is characterized by inflammatory or fibrosing lung disease. We hypothesized that hyperresponsiveness of gain-of-function STING to bacterial CDNs might explain autoinflammatory lung disease in SAVI mice. We report that depletion of gut microbes with oral antibiotics (vancomycin, neomycin, and ampicillin [VNA]) nearly eliminates lung disease in SAVI mice, implying that gut microbes might promote STING-associated autoinflammation. However, we show that germ-free SAVI mice still develop severe autoinflammatory disease and that transferring gut microbiota from antibiotics-treated mice to germ-free animals eliminates lung inflammation. Depletion of anaerobes with metronidazole abolishes the protective effect of the VNA antibiotics cocktail, and recolonization with the metronidazole-sensitive anaerobe Bacteroides thetaiotaomicron prevents disease, confirming a protective role of a metronidazole-sensitive microbe in a model of SAVI. Platt et al. report that oral antibiotics but not germ-free conditions prevent autoinflammatory lung disease in a mouse model of STING-associated vasculopathy with onset in infancy (SAVI). Recolonization of SAVI mice with either Bacteroidales-enriched stool or Bacteroides thetaiotaomicron is protective in this model of STING-associated autoinflammatory lung disease.
Collapse
Affiliation(s)
- Derek J Platt
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dylan Lawrence
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel Rodgers
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lawrence Schriefer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cathrine A Miner
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amber M Menos
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elizabeth A Kennedy
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
9
|
Ueda A, Ogasawara S, Horiuchi K. Identification of the genes controlling biofilm formation in the plant commensal Pseudomonas protegens Pf-5. Arch Microbiol 2020; 202:2453-2459. [PMID: 32607723 DOI: 10.1007/s00203-020-01966-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Determinant genes controlling biofilm formation in a plant commensal bacterium, Pseudomonas protegens Pf-5, were identified by transposon mutagenesis. Comprehensive screening of 7500 transposon-inserted mutants led to the isolation of four mutants exhibiting decreased and five mutants exhibiting increased biofilm formation. Mutations in the genes encoding MFS drug resistance transporter, LapA adhesive protein, RetS sensor histidine kinase/response regulator, and HecA adhesin/hemagglutinin led to decreased biofilm formation, indicating that these genes are necessary for biofilm formation in Pf-5. The mutants exhibiting increased biofilm formation had transposon insertions in the genes coding for an outer membrane protein, a GGDEF domain-containing protein, AraC transcriptional regulator, non-ribosomal peptide synthetase OfaB, and the intergenic region of a DNA-binding protein and the Aer aerotaxis receptor, suggesting that these genes are negative regulators of biofilm formation. Some of these mutants also showed altered swimming and swarming motilities, and a negative correlation between biofilm formation and swarming motility was observed. Thus, sessile-motile lifestyle is regulated by divergent regulatory genes in Pf-5.
Collapse
Affiliation(s)
- Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Shinta Ogasawara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Keishi Horiuchi
- School of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
10
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020; 48:2807-2829. [PMID: 32095817 DOI: 10.1093/nar/gkaa112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
11
|
Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 2020; 41:107549. [PMID: 32302653 DOI: 10.1016/j.biotechadv.2020.107549] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is cellulose produced by a few limited species of bacteria in given conditions. BC has many remarkable properties such as its attractive mechanical properties, water uptake ability and biocompatibility which makes it a very desirable material to be used for wound healing. Inherently due to these important properties, the material is very resistant to easy processing and thus difficult to produce into useful entities. Additionally, being rate limited by the dependency on bacterial production, high yield is difficult to obtain and thus secondary material processing is sought after. In this review, BC is explained in terms of synthesis, structure and properties. These beneficial properties are directly related to the material's great potential in wound healing where it has also been trialled commercially but ultimately failed due to processing issues. However, more recently there has been increased frequency in scientific work relating to BC processing into hybrid polymeric fibres using common laboratory fibre forming techniques such as electrospinning and pressurised gyration. This paper summarises current progress in BC fibre manufacturing, its downfalls and also gives a future perspective on how the landscape should change to allow BC to be utilised in wound care in the current environment.
Collapse
|
12
|
Raghavendran V, Asare E, Roy I. Bacterial cellulose: Biosynthesis, production, and applications. Adv Microb Physiol 2020; 77:89-138. [PMID: 34756212 DOI: 10.1016/bs.ampbs.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a natural polymer produced by the acetic acid producing bacterium and has gathered much interest over the last decade for its biomedical and biotechnological applications. Unlike the plant derived cellulose nanofibres, which require pretreatment to deconstruct the recalcitrant lignocellulosic network, BC are 100% pure, and are extruded by cells as nanofibrils. Moreover, these nanofibrils can be converted to macrofibers that possess excellent material properties, surpassing even the strength of steel, and can be used as substitutes for fossil fuel derived synthetic fibers. The focus of the review is to present the fundamental long-term research on the influence of environmental factors on the organism's BC production capabilities, the production methods that are available for scaling up/scaled-up processes, and its use as a bulk commodity or for biomedical applications.
Collapse
Affiliation(s)
- Vijayendran Raghavendran
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Asare
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
13
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Jacek P, Dourado F, Gama M, Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 2019; 12:633-649. [PMID: 30883026 PMCID: PMC6559022 DOI: 10.1111/1751-7915.13386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022] Open
Abstract
Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties - e.g. porosity, density of fibres crosslinking, mechanical properties, etc. - will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| | - Fernando Dourado
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Miguel Gama
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Stanisław Bielecki
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| |
Collapse
|
15
|
Grajkowski A, Takahashi M, Kaczyński T, Srivastava SC, Beaucage SL. An Improved Strategy for the Chemical Synthesis of 3',5'-Cyclic Diguanylic Acid. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2019; 77:e84. [PMID: 30970180 PMCID: PMC6581608 DOI: 10.1002/cpnc.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The physiological functions of c-di-GMP and its involvement in many key processes led to its recognition as a major and ubiquitous bacterial second messenger. Aside from being a bacterial signaling molecule, c-di-GMP is also an immunostimulatory molecule capable of inducing innate and adaptive immune responses through maturation of immune mammalian cells. Given the broad biological functions of c-di-GMP and its potential applications as a nucleic-acid-based drug, the chemical synthesis of c-di-GMP has drawn considerable interest. An improved phosphoramidite approach to the synthesis of c-di-GMP is reported herein. The synthetic approach is based on the use of a 5'-O-formyl protecting group, which can be rapidly and chemoselectively cleaved from a key dinucleotide phosphoramidite intermediate to enable a cyclocondensation reaction leading to a fully protected c-di-GMP product in a yield ∼80%. The native c-di-GMP is isolated, after complete deprotection, in an overall yield of 36% based on the commercial ribonucleoside used as starting material. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrzej Grajkowski
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Mayumi Takahashi
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Tomasz Kaczyński
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | | | - Serge L Beaucage
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
16
|
Emerging paradigms for PilZ domain-mediated C-di-GMP signaling. Biochem Soc Trans 2019; 47:381-388. [PMID: 30710060 DOI: 10.1042/bst20180543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022]
Abstract
PilZ domain-containing proteins constitute a large family of bacterial signaling proteins. As a widely distributed protein domain for the binding of the second messenger c-di-GMP, the canonical PilZ domain contains a set of motifs that define the binding site for c-di-GMP and an allosteric switch for propagating local conformational changes. Here, we summarize some new insights gathered from recent studies on the commonly occurring single-domain PilZ proteins, YcgR-like proteins and PilZ domain-containing cellulose synthases. The studies collectively illuminate how PilZ domains function as cis- or trans-regulatory domains that enable c-di-GMP to control the activity of its cellular targets. Overall, the review highlights the diverse protein structure, biological function and regulatory mechanism of PilZ domain-containing proteins, as well as the challenge of deciphering the function and mechanism of orphan PilZ proteins.
Collapse
|
17
|
An improved phosphoramidite approach for the chemical synthesis of 3′,5′-cyclic diguanylic acid. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Zheng Y, Li Y, Long H, Zhao X, Jia K, Li J, Wang L, Wang R, Lu X, Zhang D. bifA Regulates Biofilm Development of Pseudomonas putida MnB1 as a Primary Response to H 2O 2 and Mn 2. Front Microbiol 2018; 9:1490. [PMID: 30042743 PMCID: PMC6048274 DOI: 10.3389/fmicb.2018.01490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida (P. putida) MnB1 is a widely used model strain in environment science and technology for determining microbial manganese oxidation. Numerous studies have demonstrated that the growth and metabolism of P. putida MnB1 are influenced by various environmental factors. In this study, we investigated the effects of hydrogen peroxide (H2O2) and manganese (Mn2+) on proliferation, Mn2+ acquisition, anti-oxidative system, and biofilm formation of P. putida MnB1. The related orthologs of 4 genes, mco, mntABC, sod, and bifA, were amplified from P. putida GB1 and their involvement were assayed, respectively. We found that P. putida MnB1 degraded H2O2, and quickly recovered for proliferation, but its intracellular oxidative stress state was maintained, with rapid biofilm formation after H2O2 depletion. The data from mco, mntABC, sod and bifA expression levels by qRT-PCR, elucidated a sensitivity toward bifA-mediated biofilm formation, in contrary to intracellular anti-oxidative system under H2O2 exposure. Meanwhile, Mn2+ ion supply inhibited biofilm formation of P. putida MnB1. The expression pattern of these genes showed that Mn2+ ion supply likely functioned to modulate biofilm formation rather than only acting as nutrient substrate for P. putida MnB1. Furthermore, blockade of BifA activity by GTP increased the formation and development of biofilms during H2O2 exposure, while converse response to Mn2+ ion supply was evident. These distinct cellular responses to H2O2 and Mn2+ provide insights on the common mechanism by which environmental microorganisms may be protected from exogenous factors. We postulate that BifA-mediated biofilm formation but not intracellular anti-oxidative system may be a primary protective strategy adopted by P. putida MnB1. These findings will highlight the understanding of microbial adaptation mechanisms to distinct environmental stresses.
Collapse
Affiliation(s)
- Yanjing Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongyan Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Keke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Tsukamoto M, Oyama KI. Recent application of acidic 1,3-azolium salts as promoters in the solution-phase synthesis of nucleosides and nucleotides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Adinci KJ, Akpo Y, Adoligbe C, Adehan SB, Yessinou RE, Sodé AI, Mensah GA, Youssao AKI, Sinsin B, Farougou S. Preliminary study on the tick population of Benin wildlife at the moment of its invasion by the Rhipicephalus microplus tick (Canestrini, 1888). Vet World 2018; 11:845-851. [PMID: 30034180 PMCID: PMC6048076 DOI: 10.14202/vetworld.2018.845-851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Rhipicephalus microplus (Rm) is one of the most problematic livestock tick species in the world. Its rapid propagation and resistance to acaricides make it control difficult in the sub-region and Benin particularly. The aim of this work was to check its presence in wildlife and to confirm the possible role of reservoir wildlife may play in the propagation of the parasite. This will help to design more efficient control strategy. MATERIALS AND METHODS This study was conducted from February to March 2017 in the National Parks of Benin (Pendjari and W Park) and wildfowl's assembly and selling point in Benin. Ticks were manually picked with forceps from each animal after slaughtering by hunters then stored in 70° ethanol. Collected ticks were counted and identified in the laboratory using the identification key as described by Walker. RESULTS Overall, seven species of ticks (Amblyomma variegatum, Boophilus decoloratus, Rm, Boophilus spp., Hyalomma spp., Rhipicephalus sanguineus, Rhipicephalus spp.) were identified on nine wild animal species sampled (Cane rat, wildcat, Hare, Doe, Cricetoma, Buffalo, Buffon Cobe, and Bushbuck and Warthog). The average number of ticks varies from 3 to 6 between animal species, 3 to 7 between localities visited, and 2 to 5 between tick species. However, these differences are statistically significant only for localities. Considering tick species and animal species, the parasite load of Rm and Rhipicephalus spp. is higher; the buffalo being more infested. The analysis of deviance reveals that the abundance of ticks observed depends only on the observed localities (p>0.05). However, the interactions between animal species and localities on the one hand and between animal and tick species on the other hand, although not significant, have influenced the abundance of ticks as they reduce the residual deviance after their inclusion in the model. CONCLUSIONS This study reported the presence of Rm in wildlife of Benin and confirmed its role in the maintenance and spread of the parasites. It is, therefore, an important risk factor that we must not neglect in the epidemiological surveillance and ticks control strategies in the West African sub-region and particularly in Benin.
Collapse
Affiliation(s)
- Kossi Justin Adinci
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Yao Akpo
- Laboratory of Ecology, Health and Animal Production, Faculty of Agronomy, University of Parakou, P.O. Box 123 Parakou, Benin
| | - Camus Adoligbe
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Safiou Bienvenu Adehan
- National Institute for Scientific Research, Research Center of Agonkanmey (CRA/INRAB), Benin
| | - Roland Eric Yessinou
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Akoeugnigan Idelphonse Sodé
- Laboratory of Biomathematics and Forest Estimations Faculty of Agronomic Sciences (FSA) University of Abomey-Calavi, 04 BP 1525, Cotonou (Bénin)
| | - Guy Appolinaire Mensah
- National Institute for Scientific Research, Research Center of Agonkanmey (CRA/INRAB), Benin
| | - Abdou Karim Issaka Youssao
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Brice Sinsin
- Department of Animal Production, Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (Benin), 01 BP 526 Cotonou, Benin
| | - Souaïbou Farougou
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| |
Collapse
|
21
|
Venkataramani P, Liang ZX. Enzymatic Production of c-di-GMP Using a Thermophilic Diguanylate Cyclase. Methods Mol Biol 2018; 1657:11-22. [PMID: 28889282 DOI: 10.1007/978-1-4939-7240-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
C-di-GMP has emerged as a prevalent bacterial messenger that controls a multitude of bacterial behaviors. Having access to milligram or gram quantities of c-di-GMP is essential for the biochemical and structural characterization of enzymes and effectors involved in c-di-GMP signaling. Although c-di-GMP can be synthesized using chemical methods, diguanylate cyclases (DGC)-based enzymatic synthesis is the most efficient method of preparing c-di-GMP today. Many DGCs are not suitable for c-di-GMP production because of poor protein stability and the presence of a c-di-GMP-binding inhibitory site (I-site) in most DGCs. We have identified and engineered a thermophilic DGC for efficient production of c-di-GMP for characterizing c-di-GMP signaling proteins and riboswitches. Importantly, residue replacement in the inhibitory I-site of the thermophilic DGC drastically relieved product inhibition to enable the production of hundreds of milligrams of c-di-GMP using 5-10 mg of this robust biocatalyst.
Collapse
Affiliation(s)
- Prabhadevi Venkataramani
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Zhao-Xun Liang
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
22
|
Schwede F, Genieser HG, Rentsch A. The Chemistry of the Noncanonical Cyclic Dinucleotide 2'3'-cGAMP and Its Analogs. Handb Exp Pharmacol 2017; 238:359-384. [PMID: 27392950 DOI: 10.1007/164_2015_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cyclic dinucleotides (CDNs) cyclic diguanosine monophosphate (c-diGMP) and cyclic diadenosine monophosphate (c-diAMP) with two canonical 3'→5' internucleotide linkages are ubiquitous second messenger molecules in bacteria, regulating a multitude of physiological processes. Recently the noncanonical CDN cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) featuring a mixed linkage, which consists of a 2'→5' and a 3'→5' internucleotide bond, has been identified as a signaling molecule in metazoan species in late 2012. 2'3'-cGAMP formation is biocatalyzed by cGAMP synthase (cGAS) upon sensing of cytosolic double-stranded DNA (dsDNA) and functions as an endogenous inducer of innate immunity by directly binding to and activating the adaptor protein stimulator of interferon genes (STING). Thereby 2'3'-cGAMP can stimulate interferon-β (INF-β) secretion, a major signaling pathway of host defense, which is independent of toll-like receptor (TLR) activation. Medicinal chemistry of 2'3'-cGAMP and development of corresponding analogs are still in their infancy, and only a handful of structurally related compounds are available to the scientific community. The aim of this chapter is to summarize synthetic approaches to prepare canonical and noncanonical endogenous CDNs including 2'3'-cGAMP. Furthermore, we will describe syntheses of 2'3'-cGAMP analogs bearing modifications, which will facilitate further studies of the emerging biological functions of 2'3'-cGAMP and to identify additional receptor proteins. Finally, we will review latest developments concerning 2'3'-cGAMP analogs with improved hydrolytic stability in cell cultures and in tissues, putatively qualifying for new therapeutic options on the basis of 2'3'-cGAMP signaling.
Collapse
Affiliation(s)
- Frank Schwede
- BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany.
| | - Hans-Gottfried Genieser
- BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany
| | - Andreas Rentsch
- BIOLOG Life Science Institute, Forschungslabor und Biochemica-Vertrieb GmbH, Flughafendamm 9a, 28199, Bremen, Germany
| |
Collapse
|
23
|
Zhang H, Xu X, Chen X, Yuan F, Sun B, Xu Y, Yang J, Sun D. Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01. Sci Rep 2017; 7:4431. [PMID: 28667320 PMCID: PMC5493696 DOI: 10.1038/s41598-017-04589-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Komagataeibacter nataicola is an acetic acid bacterium (AAB) that can produce abundant bacterial cellulose and tolerate high concentrations of acetic acid. To globally understand its fermentation characteristics, we present a high-quality complete genome sequence of K. nataicola RZS01. The genome consists of a 3,485,191-bp chromosome and 6 plasmids, which encode 3,514 proteins and bear three cellulose synthase operons. Phylogenetic analysis at the genome level provides convincing evidence of the evolutionary position of K. nataicola with respect to related taxa. Genomic comparisons with other AAB revealed that RZS01 shares 36.1%~75.1% of sequence similarity with other AAB. The sequence data was also used for metabolic analysis of biotechnological substrates. Analysis of the resistance to acetic acid at the genomic level indicated a synergistic mechanism responsible for acetic acid tolerance. The genomic data provide a viable platform that can be used to understand and manipulate the phenotype of K. nataicola RZS01 to further improve bacterial cellulose production.
Collapse
Affiliation(s)
- Heng Zhang
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuran Xu
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiao Chen
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanshu Yuan
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bianjing Sun
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yunhua Xu
- Department of Life Sciences, Lianyungang Normal College, Lianyungang, 222000, China
| | - Jiazhi Yang
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China. .,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing, 210094, China. .,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
24
|
Abstract
Cyclic diguanylate (c-di-GMP) is a near universal signaling molecule produced by diguanylate cyclases that can direct a variety of bacterial behaviors. A major area of research over the last several years has been aimed at understanding how a cell with dozens of diguanylate cyclases can deploy a given subset of them to produce a desired phenotypic outcome without undesired cross talk between c-di-GMP-dependent systems. Several models have been put forward to address this question, including specificity of cyclase activation, tuned binding constants of effector proteins, and physical interaction between cyclases and effectors. Additionally, recent evidence has suggested that there may be a link between the catalytic state of a cyclase and its physical contact with an effector. This review highlights several key studies, examines the proposed global and local models of c-di-GMP signaling specificity in bacteria, and attempts to identify the most fruitful steps that can be taken to better understand how dynamic networks of sibling cyclases and effector proteins result in sensible outputs that govern cellular behavior.
Collapse
Affiliation(s)
- Kurt M Dahlstrom
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| |
Collapse
|
25
|
Petrova OE, Sauer K. High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of Cellular c-di-GMP. Methods Mol Biol 2017; 1657:33-43. [PMID: 28889284 PMCID: PMC5702474 DOI: 10.1007/978-1-4939-7240-1_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modulation of c-di-GMP levels plays a vital role in the regulation of various processes in a wide array of bacterial species. Thus, investigation of c-di-GMP regulation requires reliable methods for the assessment of c-di-GMP levels and turnover. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis has become a commonly used approach to accomplish these goals. The following describes the extraction and HPLC-based detection and quantification of c-di-GMP from Pseudomonas aeruginosa samples, a procedure that is amenable to modifications for the analysis of c-di-GMP in other bacterial species.
Collapse
Affiliation(s)
- Olga E Petrova
- Department of Biological Sciences, Binghamton Biofilm Research Center (BBRC), Binghamton University, 2401 ITC Building, 85 Murray Hill Road, Binghamton, NY, 13902, USA.
| | - Karin Sauer
- Department of Biological Sciences, Binghamton Biofilm Research Center (BBRC), Binghamton University, 2401 ITC Building, 85 Murray Hill Road, Binghamton, NY, 13902, USA
| |
Collapse
|
26
|
Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci 2016; 7:6238-6244. [PMID: 30034764 PMCID: PMC6024209 DOI: 10.1039/c6sc02103d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 01/18/2023] Open
Abstract
Various important cellular processes in bacteria are controlled by c-di-GMP, such as motility, biofilm formation and virulence factors production. C-di-GMP is synthesized from two molecules of GTP by diguanylate cyclases (DGCs) and its actions are terminated by EAL or HD-GYP domain phosphodiesterases (PDEs), which hydrolyze c-di-GMP to linear pGpG or GMP. Thus far the majority of efforts have been dedicated to the development of inhibitors of DGCs but not PDEs. This is probably because the old view was that inhibiting any c-di-GMP PDE would lead to biofilm formation, an undesirable phenotype. Recent data however suggest that some PDEs only change the localized (not global) concentration of c-di-GMP to increase bacterial virulence and do not affect biofilm formation. A challenge therefore is to be able to develop selective PDE inhibitors that inhibit virulence-associated PDEs but not inhibit PDEs that regulate bacterial biofilm formation. Using high throughput docking experiments to screen a library of 250 000 commercially available compounds against E. coli YahA (also called PdeL), a benzoisothiazolinone derivative was found to bind to the c-di-GMP binding site of YahA with favorable energetics. Paradoxically the in silico identified inhibitor (a benzoisothiazolinone derivative) did not inhibit the hydrolysis of c-di-GMP by YahA, the model PDE that was used in the docking, but instead inhibited RocR, which is a PDE from the opportunistic pathogen P. aeruginosa (PA). RocR promotes bacterial virulence but not biofilm dispersal, making it an ideal PDE to target for anti-virulence purposes. This newly identified RocR ligand displayed some selectivity and did not inhibit other P. aeruginosa PDEs, such as DipA, PvrR and PA4108. DipA, PvrR and PA4108 are key enzymes that reduce global c-di-GMP concentration and promote biofilm dispersal; therefore the identification of an inhibitor of a PA PDE, such as RocR, that does not inhibit major PDEs that modulate global c-di-GMP is an important step towards the development of selective c-di-GMP PDEs that could have interesting biomedical applications. The identified RocR ligand could also inhibit P. aeruginosa (PAO1) swarming but not swimming or biofilm formation. Rhamnolipid production was decreased, explaining the inhibition of swarming.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Graduate Program in Biochemistry , University of Maryland , College Park , MD 20742 , USA
| | - Genichiro Tsuji
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
| | - Clement Opoku-Temeng
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Graduate Program in Biochemistry , University of Maryland , College Park , MD 20742 , USA
| | - Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Center for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
| |
Collapse
|
27
|
López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Cameselle JC, Costas MJ. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase. PLoS One 2016; 11:e0157308. [PMID: 27294396 PMCID: PMC4905662 DOI: 10.1371/journal.pone.0157308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.
Collapse
Affiliation(s)
- Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail:
| |
Collapse
|
28
|
Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution. PLoS One 2016; 11:e0155886. [PMID: 27214134 PMCID: PMC4877109 DOI: 10.1371/journal.pone.0155886] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023] Open
Abstract
Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.
Collapse
|
29
|
Opoku-Temeng C, Sintim HO. Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols. Sci Rep 2016; 6:25445. [PMID: 27150552 PMCID: PMC4858736 DOI: 10.1038/srep25445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/15/2016] [Indexed: 12/27/2022] Open
Abstract
Cyclic di-AMP has emerged as an important signaling molecule that controls a myriad of functions, including cell wall homeostasis in different bacteria. Polyphenols display various biological activities and tea polyphenols in particular have been shown to possess among other properties antioxidant and antibacterial activities. Certain tea polyphenols, such as catechin and epigallocatechin gallate, have been used to augment the action of traditional antibiotics that target the cell wall. Considering the expanding role played by cyclic dinucleotides in bacteria, we investigated whether the action of polyphenols on bacteria could be due in part to modulation of c-di-AMP signaling. Out of 14 tested polyphenols, tannic acid (TA), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3) exhibited inhibitory effects on B. subtilis c-di-AMP synthase, DisA. TF2B and TF3 specifically inhibited DisA but not YybT (a PDE) whilst TA was more promiscuous and inhibited both DisA and YybT.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.,Graduate program in Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci Rep 2016; 6:23635. [PMID: 27010592 PMCID: PMC4806288 DOI: 10.1038/srep23635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.
Collapse
|
31
|
Chouhan OP, Bandekar D, Hazra M, Baghudana A, Hazra S, Biswas S. Effect of site-directed mutagenesis at the GGEEF domain of the biofilm forming GGEEF protein from Vibrio cholerae. AMB Express 2016; 6:2. [PMID: 26728467 PMCID: PMC4700032 DOI: 10.1186/s13568-015-0168-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
Vibrio cholerae, the cause of seven noted pandemics, leads a dual lifecycle—one in the human host in its virulent form, and the other as a sessile, non-virulent bacterium in aquatic bodies in surface biofilms. Surface biofilms have been attributed to be associated with a ubiquitous protein domain present in all branches of bacteria, known as the GGD(/E)EF domain. While the diguanlyate cyclase activities of these proteins are universally established, the role of these proteins as diguanlyate-specific phosphodiesterases in conjunction with a EAL domain has also been reported. The VC0395_0300 protein from V. cholerae which shows biofilm forming abilities also acts as a phosphodiesterase. Interestingly, this GGD(/E)EF protein contains a EAL site in the reverse orientation. We attempted to mutate the GGEEF signature along the sequence by site-directed mutagenesis. The resultant mutants (Sebox5–7) did not show much difference in phosphodiesterase activity in comparison with the wild type protein (Sebox3), indicating the independence of the phosphodiesterase activity of the protein from the GGD(/E)EF domain. However, the ability of the mutants to form surface biofilm was significantly lesser in the case of mutations in the three central positions of the signature domain.
Collapse
|
32
|
Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2016; 7:493-512. [PMID: 25875875 DOI: 10.4155/fmc.15.6] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biofilms are communities of microorganisms that are attached to a surface and play a significant role in the persistence of bacterial infections. Bacteria within a biofilm are several orders of magnitude more resistant to antibiotics, compared with planktonic bacteria. Thus far, no drugs are in clinical use that specifically target bacterial biofilms. This is probably because until recently the molecular details of biofilm formation were poorly understood. Bacteria integrate information from the environment, such as quorum-sensing autoinducers and nutrients, into appropriate biofilm-related gene expression, and the identity of the key players, such as cyclic dinucleotide second messengers and regulatory RNAs are beginning to be uncovered. Herein, we highlight the current understanding of the processes that lead to biofilm formation in many bacteria.
Collapse
|
33
|
Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J Control Release 2015; 216:149-57. [PMID: 26282097 DOI: 10.1016/j.jconrel.2015.08.026] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 01/31/2023]
Abstract
Malignant melanomas escape immunosurveillance via the loss/down-regulation of MHC-I expression. Natural killer (NK) cells have the potential to function as essential effector cells for eliminating melanomas. Cyclic di-GMP (c-di-GMP), a ligand of the stimulator of interferon genes (STING) signal pathway, can be thought of as a new class of adjuvant against cancer. However, it is yet to be tested, because technologies for delivering c-di-GMP to the cytosol are required. Herein, we report that c-di-GMP efficiently activates NK cells and induces antitumor effects against malignant melanomas when loaded in YSK05 lipid containing liposomes, by assisting in the efficient delivery of c-di-GMP to the cytosol. The intravenous administration of c-di-GMP encapsulated within YSK05-liposomes (c-di-GMP/YSK05-Lip) into mice efficiently induced the production of type I interferon (IFN) as well as the activation of NK cells, resulting in a significant antitumor effect in a lung metastasis mouse model using B16-F10. This antitumor effect was dominated by NK cells. The infiltration of NK cells was observed in the lungs with B16-F10 melanomas. These findings indicate that the c-di-GMP/YSK05-Lip induces MHC-I non-restricted antitumor immunity mediated by NK cells. Consequently, c-di-GMP/YSK05-Lip represents a potentially new adjuvant system for use in immunotherapy against malignant melanomas.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mamoru Hyodo
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Japan
| | | |
Collapse
|
34
|
Liang ZX. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 2015; 32:663-83. [PMID: 25666534 DOI: 10.1039/c4np00086b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.
Collapse
Affiliation(s)
- Zhao-Xun Liang
- Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
35
|
Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate. ACTA ACUST UNITED AC 2015. [PMID: 28626712 PMCID: PMC5466042 DOI: 10.1016/j.btre.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology modeling and primary structure alignment, we identify several amino acids predicted to participate in the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads and can catalyze the conversion of [α-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many important biological processes mediated by cyclic-diGMP.
Collapse
|
36
|
LC/MS/MS-based quantitative assay for the secondary messenger molecule, c-di-GMP. Methods Mol Biol 2015; 1149:271-9. [PMID: 24818912 DOI: 10.1007/978-1-4939-0473-0_22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The secondary messenger molecule, 3',5'-cyclic diguanosine monophosphate (c-di-GMP), controls various cellular processes in bacteria. Direct measurement of intracellular concentration of c-di-GMP is fast becoming an important tool for studying prokaryotic biology. Here, we describe a comprehensive extraction protocol from live bacteria and quantitative analysis using LC/MS/MS.
Collapse
|
37
|
Ueda A, Saneoka H. Characterization of the ability to form biofilms by plant-associated Pseudomonas species. Curr Microbiol 2014; 70:506-13. [PMID: 25487118 DOI: 10.1007/s00284-014-0749-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/29/2014] [Indexed: 11/26/2022]
Abstract
Successful colonization is the initial step for plant-bacteria interactions; therefore, the development of strategies to improve adherence to plant surfaces is critically important for environmental bacteria. Biofilm formation is thought to be one such strategy for bacteria to establish stable colonization on inert and living surfaces. Although biofilms play potential roles in enabling persistent bacterial colonization, little attention has been paid to biofilms formed by plant-associated bacteria. In this study, we characterized the biofilm-forming ability of 6 species of bacteria from the family Pseudomonadaceae: Pseudomonas protegens, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas mendocina, and Pseudomonas syringae. These strains exhibit different degrees of biofilm formation depending on incubation time and nutrient availability. Distinct preferences for growth media were observed, as biofilms were formed by P. protegens with rich nutrients and by P. fluorescens and P. putida with poor nutrients. Likewise, P. stutzeri did not form biofilms with rich nutrients but did form biofilms under nutrient-poor conditions. These observations indicate that particular components in media may influence biofilm formation. P. putida, one of the strains with high biofilm-forming ability, showed the highest ability for initial attachment, which may be mediated by the hydrophobicity of its cell surface. P. mendocina also has high ability for initial attachment, and this strain produces cell surface-attached extracellular polysaccharides that promote cell aggregation. Thus, each strain possesses different properties that facilitate biofilm formation. Shedding light on bacterial strategies for colonization via biofilm formation would enable a better understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Akihiro Ueda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan,
| | | |
Collapse
|
38
|
Deepthi A, Liew CW, Liang ZX, Swaminathan K, Lescar J. Structure of a diguanylate cyclase from Thermotoga maritima: insights into activation, feedback inhibition and thermostability. PLoS One 2014; 9:e110912. [PMID: 25360685 PMCID: PMC4215984 DOI: 10.1371/journal.pone.0110912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/24/2014] [Indexed: 01/02/2023] Open
Abstract
Large-scale production of bis-3′-5′-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A) sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I) site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability.
Collapse
Affiliation(s)
- Angeline Deepthi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Centre d' Immunologie et des Maladies Infectieuses, Centre Hospitalier Universitaire Pitié-Salpêtrière Faculté de Médecine Pierre et Marie Curie, Paris, France
| |
Collapse
|
39
|
Elahi S, Van Kessel J, Kiros TG, Strom S, Hayakawa Y, Hyodo M, Babiuk LA, Gerdts V. c-di-GMP enhances protective innate immunity in a murine model of pertussis. PLoS One 2014; 9:e109778. [PMID: 25333720 PMCID: PMC4198122 DOI: 10.1371/journal.pone.0109778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/12/2014] [Indexed: 01/04/2023] Open
Abstract
Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.
Collapse
Affiliation(s)
- Shokrollah Elahi
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (SE); (VG)
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization, International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tedele G. Kiros
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stacy Strom
- Vaccine and Infectious Disease Organization, International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yoshihiro Hayakawa
- Faculty of Engineering, Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Mamoru Hyodo
- Faculty of Engineering, Department of Applied Chemistry, Aichi Institute of Technology, Toyota, Japan
| | - Lorne A. Babiuk
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization, International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (SE); (VG)
| |
Collapse
|
40
|
Dubensky TW, Kanne DB, Leong ML. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:131-43. [PMID: 24757520 DOI: 10.1177/2051013613501988] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A principal barrier to the development of effective vaccines is the availability of adjuvants and formulations that can elicit both effector and long-lived memory CD4 and CD8 T cells. Cellular immunity is the presumptive immune correlate of protection against intracellular pathogens: a group composed of bacteria, viruses and protozoans that is responsible for a staggering level of morbidity and mortality on a global scale. T-cell immunity is also correlated with clinical benefit in cancer, and the development of therapeutic strategies to harness the immune system to treat diverse malignancies is currently undergoing a renaissance. Cyclic dinucleotides (CDNs) are ubiquitous small molecule second messengers synthesized by bacteria that regulate diverse processes and are a relatively new class of adjuvants that have been shown to increase vaccine potency. CDNs activate innate immunity by directly binding the endoplasmic reticulum-resident receptor STING (stimulator of interferon genes), activating a signaling pathway that induces the expression of interferon-β (IFN-β) and also nuclear factor-κB (NF-κB) dependent inflammatory cytokines. The STING signaling pathway has emerged as a central Toll-like receptor (TLR) independent mediator of host innate defense in response to sensing cytosolic nucleic acids, either through direct binding of CDNs secreted by bacteria, or, as shown recently, through binding of a structurally distinct CDN produced by a host cell receptor in response to binding cytosolic double-stranded (ds)DNA. Although this relatively new class of adjuvants has to date only been evaluated in mice, newly available CDN-STING cocrystal structures will likely intensify efforts in this field towards further development and evaluation in human trials both in preventive vaccine and immunotherapy settings.
Collapse
|
41
|
Fischer A, Kambara K, Meyer H, Stenz L, Bonetti EJ, Girard M, Lalk M, Francois P, Schrenzel J. GdpS contributes to Staphylococcus aureus biofilm formation by regulation of eDNA release. Int J Med Microbiol 2014; 304:284-99. [DOI: 10.1016/j.ijmm.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 11/30/2022] Open
|
42
|
Neuhaus V, Chichester JA, Ebensen T, Schwarz K, Hartman CE, Shoji Y, Guzmán CA, Yusibov V, Sewald K, Braun A. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine 2014; 32:3216-22. [DOI: 10.1016/j.vaccine.2014.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/31/2014] [Accepted: 04/01/2014] [Indexed: 11/28/2022]
|
43
|
A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy. J Control Release 2014; 184:20-7. [PMID: 24727060 DOI: 10.1016/j.jconrel.2014.04.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
Cyclic dinucleotides are of importance in the field of microbiology and immunology. They function as second messengers and are thought to participate in the signal transduction of cytosolic DNA immune responses. One such dinucleotide, cyclic di-GMP (c-di-GMP), stimulates the immune system. It is thought that c-di-GMP is recognized by ATP dependent RNA helicase (DDX41) in the cytosol, forms a complex with the Stimulator of interferon genes protein (STING), triggers a signal via the tank binding kinase 1-interferon regulatory factor 3 (TBK1-IRF3) pathway and induces the production of type I interferons. Therefore c-di-GMP can be thought of as a new class of adjuvant. However, because c-di-GMP contains two phosphate groups, this prevents its use as an adjuvant because it cannot pass through the cell membrane, even though the target molecule of c-di-GMP is located in the cytoplasm. Our group has been developing a series of liposomal drug delivery systems and recently investigated YSK05 which is a synthetic, pH sensitive lipid that has a high fusogenicity. We utilized this lipid as a carrier to transport c-di-GMP into the cytosol to then use c-di-GMP as an adjuvant. Based on screening experiments, YSK05/POPE/cholesterol=40/25/35 was found to induce IFN-β in Raw264.7 cells. The induction of IFN-β from c-di-GMP liposomes was inhibited by adding BX795, a TBK1 inhibitor, indicating that the production of IFN-β caused the activation of the STING-TBK1 pathway. C-di-GMP liposomes also showed significantly higher levels of expression of CD80, CD86 and MHC class I. The c-di-GMP/YSK05 liposome facilitated antigen specific cytotoxic T cell activity and the inhibition of tumor growth in a mouse model. These findings indicate that c-di-GMP/YSK05 liposomes could be used, not only to transfer c-di-GMP to the cytosol and induce an innate immune system but also as a platform for investigating the mechanism of immune sensing with cyclic dinucleotides in vitro and in vivo.
Collapse
|
44
|
Luo Y, Chen B, Zhou J, Sintim HO, Dayie TK. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs. MOLECULAR BIOSYSTEMS 2014; 10:384-90. [PMID: 24430255 DOI: 10.1039/c3mb70467j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-di-GMP has emerged as a ubiquitous second messenger, which regulates the transition between sessile and motile lifestyles and virulence factor expression in many pathogenic bacteria using both RNA riboswitches and protein effectors. We recently showed that two additional class I c-di-GMP riboswitch aptamers (Ct-E88 and Cb-17B) bind c-di-GMP with nanomolar affinity, and that Ct-E88 RNA binds 2'-F-c-di-GMP 422 times less tightly than class I Vc2 RNA. Based on sequence comparison, it was concluded that the global folds of Ct-E88 and Vc2 RNAs were similar and that differences in ligand binding were probably due to differences in binding site architectures. Herein, we utilized EMSA, aptamer sensing spinach modules, SAXS and 1D NMR titration to study the conformational transitions of Ct-E88. We conclude that whereas the global folds of the bound states of Vc2 and Ct-E88 RNAs are similar, the unbound states are different and this could explain differences in ligand affinities between these class I c-di-GMP riboswitches.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
45
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1260] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
46
|
Lee KY, Buldum G, Mantalaris A, Bismarck A. More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromol Biosci 2013; 14:10-32. [DOI: 10.1002/mabi.201300298] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Koon-Yang Lee
- Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, Institute of Materials Chemistry and Research; University of Vienna; Währinger Straβe 42 A-1090 Vienna Austria
- Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering; Imperial College London, South Kensington Campus; SW7 2AZ London UK
| | - Gizem Buldum
- Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering; Imperial College London, South Kensington Campus; SW7 2AZ London UK
- Biological System Engineering Laboratory, Department of Chemical Engineering; Imperial College London, South Kensington Campus; SW7 2AZ London UK
| | - Athanasios Mantalaris
- Biological System Engineering Laboratory, Department of Chemical Engineering; Imperial College London, South Kensington Campus; SW7 2AZ London UK
| | - Alexander Bismarck
- Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, Institute of Materials Chemistry and Research; University of Vienna; Währinger Straβe 42 A-1090 Vienna Austria
- Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering; Imperial College London, South Kensington Campus; SW7 2AZ London UK
| |
Collapse
|
47
|
Clivio P, Coantic-Castex S, Guillaume D. (3'-5')-Cyclic dinucleotides: synthetic strategies and biological potential. Chem Rev 2013; 113:7354-401. [PMID: 23767818 DOI: 10.1021/cr300011s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pascale Clivio
- UMR 6229, Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne Ardenne , UFR Médecine-Pharmacie, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | | | | |
Collapse
|
48
|
Koveal D, Jayasundera TB, Wood TK, Peti W, Page R. Backbone and sidechain (1)H, (15)N and (13)C assignments of Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:57-59. [PMID: 22392344 PMCID: PMC4083355 DOI: 10.1007/s12104-012-9376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/25/2012] [Indexed: 05/31/2023]
Abstract
The backbone and side chain resonance assignments of the Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa have been determined based on triple-resonance experiments using uniformly [(13)C,(15)N]-labeled protein. This assignment is the first step towards the determination of the 3-dimensional structure of TpbA.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Thusitha B. Jayasundera
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02903, USA
| | - Thomas K. Wood
- Departments of Chemical Engineering and Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02903, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
49
|
Grajkowski A, Cieślak J, Schindler C, Beaucage SL. Biotinylation of a propargylated cyclic (3'-5') diguanylic acid and of its mono-6-thioated analog under "click" conditions. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 14:14.9.1-14.9.20. [PMID: 23512694 DOI: 10.1002/0471142700.nc1409s52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-(propargyl)guanosine is converted to its 3'-O-levulinyl ester in a yield of 91%. The reaction of commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl]guanosine with N(2)-isobutyryl-2'-O-propargyl-3'-O-(levulinyl)guanosine provides, after P(III) oxidation, 3'-/5'-deprotection, and purification, the 2'-O-propargylated guanylyl(3'-5')guanosine 2-cyanoethyl phosphate triester in a yield of 88%. Phosphitylation of this dinucleoside phosphate triester with 2-cyanoethyl tetraisopropylphosphordiamidite and 1H-tetrazole, followed by an in situ intramolecular cyclization, gives the propargylated cyclic dinucleoside phosphate triester, which is isolated in a yield of 40% after P(III) oxidation and purification. Complete removal of the nucleobases, phosphates, and 2'-O-tert-butyldimethylsilyl protecting groups leads to the desired propargylated c-di-GMP diester. Cycloaddition of a biotinylated azide with the propargylated c-di-GMP diester under click conditions provides the biotinylated c-di-GMP conjugate in an isolated yield of 62%. Replacement of the 6-oxo function of N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-3'-O-levulinyl-2'-O-(propargyl)guanosine with a 2-cyanoethylthio group is effected by treatment with 2,4,6-triisopropybenzenesulfonyl chloride and triethylamine to give a 6-(2,4,6-triisopropylbenzenesulfonic acid) ester intermediate. Reaction of this key intermediate with 3-mercaptoproprionitrile and triethylamine, followed by 5'-dedimethoxytritylation, affords the 6-(2-cyanoethylthio)guanosine derivative in a yield of 70%. The 5'-hydroxy function of this derivative is reacted with commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl]guanosine. The reaction product is then converted to the mono-6-thioated c-di- GMP biotinylated conjugate under conditions highly similar to those described above for the preparation of the biotinylated c-di-GMP conjugate, and isolated in similar yields.
Collapse
Affiliation(s)
| | | | - Christian Schindler
- Department of Microbiology & Immunology and Department of Medicine, Columbia University, New York, New York
| | | |
Collapse
|
50
|
Shanahan CA, Gaffney BL, Jones RA, Strobel SA. Identification of c-di-GMP derivatives resistant to an EAL domain phosphodiesterase. Biochemistry 2013; 52:365-77. [PMID: 23256840 DOI: 10.1021/bi301510v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bacterial second messenger signaling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) controls important biological processes such as biofilm formation, virulence response, and motility. This second messenger is sensed by macromolecular targets inside the cell, both protein and RNA, which induce specific phenotypic responses critical for bacterial survival. One class of enzymes responsible for regulating the intracellular concentration of c-di-GMP, and therefore the physiological behavior of the cell, consists of the EAL domain phosphodiesterases, which degrade the second messenger to its linear form, pGpG. Here, we investigate how base and backbone modifications of c-di-GMP affect the rate of cyclic dinucleotide degradation by an EAL domain protein (CC3396 from Caulobacter crescentus). The doubly substituted thiophosphate analogue is highly resistant to hydrolysis by this metabolizing enzyme but can still bind c-di-GMP riboswitch targets. We used these findings to develop a novel ribosyl phosphate-modified derivative of c-di-GMP containing 2'-deoxy and methylphosphonate substitutions that is charge neutral and demonstrate that this analogue is also resistant to EAL domain-catalyzed degradation. This suggests a general strategy for designing c-di-GMP derivatives with increased enzymatic stability that also possess desirable properties for development as chemical probes of c-di-GMP signaling.
Collapse
Affiliation(s)
- Carly A Shanahan
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|