1
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
2
|
Abstract
Phage integrases are enzymes that mediate unidirectional site-specific recombination between two DNA recognition sequences, the phage attachment site, attP, and the bacterial attachment site, attB. Integrases may be grouped into two major families, the tyrosine recombinases and the serine recombinases, based on their mode of catalysis. Tyrosine family integrases, such as lambda integrase, utilize a catalytic tyrosine to mediate strand cleavage, tend to recognize longer attP sequences, and require other proteins encoded by the phage or the host bacteria. Phage integrases from the serine family are larger, use a catalytic serine for strand cleavage, recognize shorter attP sequences, and do not require host cofactors. Phage integrases mediate efficient site-specific recombination between two different sequences that are relatively short, yet long enough to be specific on a genomic scale. These properties give phage integrases growing importance for the genetic manipulation of living eukaryotic cells, especially those with large genomes such as mammals and most plants, for which there are few tools for precise manipulation of the genome. Integrases of the serine family have been shown to work efficiently in mammalian cells, mediating efficient integration at introduced att sites or native sequences that have partial identity to att sites. This reaction has applications in areas such as gene therapy, construction of transgenic organisms, and manipulation of cell lines. Directed evolution can be used to increase further the affinity of an integrase for a particular native sequence, opening up additional applications for genomic modification.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
3
|
Rutkai E, Dorgai L, Sirot R, Yagil E, Weisberg RA. Analysis of insertion into secondary attachment sites by phage lambda and by int mutants with altered recombination specificity. J Mol Biol 2003; 329:983-96. [PMID: 12798688 DOI: 10.1016/s0022-2836(03)00442-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When phage lambda lysogenizes a cell that lacks the primary bacterial attachment site, integrase catalyzes insertion of the phage chromosome into one of many secondary sites. Here, we characterize the secondary sites that are preferred by wild-type lambda and by lambda int mutants with altered insertion specificity. The sequences of these secondary sites resembled that of the primary site: they contained two imperfect inverted repeats flanking a short spacer. The imperfect inverted repeats of the primary site bind integrase, while the 7 bp spacer, or overlap region, swaps strands with a complementary sequence in the phage attachment site during recombination. We found substantial sequence conservation in the imperfect inverted repeats of secondary sites, and nearly perfect conservation in the leftmost three bases of the overlap region. By contrast, the rightmost bases of the overlap region were much more variable. A phage with an altered overlap region preferred to insert into secondary sites with the corresponding bases. We suggest that this difference between the left and right segments is a result of the defined order of strand exchanges during integrase-promoted recombination. This suggestion accounts for the unexpected segregation pattern of the overlap region observed after insertion into several secondary sites. Some of the altered specificity int mutants differed from wild-type in secondary site preference, but we were unable to identify simple sequence motifs that account for these differences. We propose that insertion into secondary sites is a step in the evolutionary change of phage insertion specificity and present a model of how this might occur.
Collapse
Affiliation(s)
- Edit Rutkai
- Bay Zoltán Institute for Biotechnology, Derkovits Faser 2, H-6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
4
|
Gyohda A, Furuya N, Kogure N, Komano T. Sequence-specific and non-specific binding of the Rci protein to the asymmetric recombination sites of the R64 shufflon. J Mol Biol 2002; 318:975-83. [PMID: 12054795 DOI: 10.1016/s0022-2836(02)00195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, 192-0397, Japan
| | | | | | | |
Collapse
|
5
|
Semsey S, Papp I, Buzas Z, Patthy A, Orosz L, Papp PP. Identification of site-specific recombination genes int and xis of the Rhizobium temperate phage 16-3. J Bacteriol 1999; 181:4185-92. [PMID: 10400574 PMCID: PMC93918 DOI: 10.1128/jb.181.14.4185-4192.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1998] [Accepted: 05/04/1999] [Indexed: 11/20/2022] Open
Abstract
Phage 16-3 is a temperate phage of Rhizobium meliloti 41 which integrates its genome with high efficiency into the host chromosome by site-specific recombination through DNA sequences of attB and attP. Here we report the identification of two phage-encoded genes required for recombinations at these sites: int (phage integration) and xis (prophage excision). We concluded that Int protein of phage 16-3 belongs to the integrase family of tyrosine recombinases. Despite similarities to the cognate systems of the lambdoid phages, the 16-3 int xis att system is not active in Escherichia coli, probably due to requirements for host factors that differ in Rhizobium meliloti and E. coli. The application of the 16-3 site-specific recombination system in biotechnology is discussed.
Collapse
Affiliation(s)
- S Semsey
- Institute for Molecular Genetics, Agricultural Biotechnology Center, Gödöllo, H-2100 Hungary
| | | | | | | | | | | |
Collapse
|
6
|
Peña CE, Kahlenberg JM, Hatfull GF. Protein-DNA complexes in mycobacteriophage L5 integrative recombination. J Bacteriol 1999; 181:454-61. [PMID: 9882658 PMCID: PMC93398 DOI: 10.1128/jb.181.2.454-461.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate mycobacteriophage L5 integrates site specifically into the genomes of Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium bovis bacillus Calmette-Guérin. This integrative recombination event occurs between the phage L5 attP site and the mycobacterial attB site and requires the phage-encoded integrase and mycobacterial-encoded integration host factor mIHF. Here we show that attP, Int-L5, and mIHF assemble into a recombinationally active complex, the intasome, which is capable of attB capture and formation of products. The arm-type integrase binding sites within attP play specialized roles in the formation of specific protein-DNA architectures; the intasome is constructed by the formation of intramolecular integrase bridges between one pair of sites, P4-P5, and the attP core, while an additional pair of sites, P1-P2, is required for interaction with attB.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
7
|
Esposito D, Scocca JJ. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 1997; 25:3605-14. [PMID: 9278480 PMCID: PMC146934 DOI: 10.1093/nar/25.18.3605] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The integrases are a diverse family of tyrosine recombinases which rearrange DNA duplexes by means of conservative site-specific recombination reactions. Members of this family, of which the well-studied lambda Int protein is the prototype, were previously found to share four strongly conserved residues, including an active site tyrosine directly involved in transesterification. However, few additional sequence similarities were found in the original group of 27 proteins. We have now identified a total of 81 members of the integrase family deposited in the databases. Alignment and comparisons of these sequences combined with an evolutionary analysis aided in identifying broader sequence similarities and clarifying the possible functions of these conserved residues. This analysis showed that members of the family aggregate into subfamilies which are consistent with their biological roles; these subfamilies have significant levels of sequence similarity beyond the four residues previously identified. It was also possible to map the location of conserved residues onto the available crystal structures; most of the conserved residues cluster in the predicted active site cleft. In addition, these results offer clues into an apparent discrepancy between the mechanisms of different subfamilies of integrases.
Collapse
Affiliation(s)
- D Esposito
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, 5 Center Drive MSC0560, Bethesda, MD 20782, USA.
| | | |
Collapse
|
8
|
Wang H, Yang CH, Lee G, Chang F, Wilson H, del Campillo-Campbell A, Campbell A. Integration specificities of two lambdoid phages (21 and e14) that insert at the same attB site. J Bacteriol 1997; 179:5705-11. [PMID: 9294425 PMCID: PMC179457 DOI: 10.1128/jb.179.18.5705-5711.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It was shown previously that phage 21 and the defective element e14 integrate at the same site within the icd gene of Escherichia coli K-12 but that 21 integrase and excisionase excise e14 in vivo very infrequently compared to excision of 21. We show here that the reverse is also true: e14 excises itself much better than it excises an adjacent 21 prophage. In vitro integrase assays with various attP substrates delimit the minimal attP site as somewhere between 366 and 418 bp, where the outer limits would include the outermost repeated dodecamers suggested as arm recognition sites by S. J. Schneider (Ph.D. dissertation, Stanford University, Stanford, Calif., 1992). We speculate that the reason 21 attP is larger than lambda attP (240 bp) is because it must include a 209-bp sequence homologous to the 3' end of the icd transcript in order to allow icd expression in lysogens. Alteration of portions of 21 attP to their e14 counterparts shows that 21 requires both the arm site and core site sequences of 21 but that replacements by e14 sequences function in some positions. Consistent with Schneider's in vivo results, and like all other known integrases from lambdoid phages, 21 requires integration host factor for activity.
Collapse
Affiliation(s)
- H Wang
- Department of Biological Sciences, Stanford University, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Comparison of the nucleotide sequences of the left arms of two Haemophilus influenzae phages, S2 and HP1 is presented. They exhibit a characteristic mosaic pattern of homologous and non-homologous regions. The homology extends over the attP site and int, orf 5 to 9, rep and the 3' part of cI genes. Two major non-homologous regions were detected. One is found between the int and cI genes; the other spans the region of promoters and the cox gene. Variations in the region of the promotors which is involved in the choice between a lysogenic and a lytic pathway and some divergences in the cI coding sequences are probably responsible for the observed immunity differences between the two phages. Distinctions in the distribution of consensus sequences for an integration host factor (IHF) and integrase-binding sites and promoters are described. These data offer an explanation of the relationship between three types of S2/HP1 phages. It allows in turn a final settlement of the nomenclature variation in the literature. The results presented, which are similar to those obtained for other phage groups, suggest that the mosaic structure of phage genomes is a normal outcome of phage divergence.
Collapse
Affiliation(s)
- K Skowronek
- Institute of Microbiology, Warsaw University, Poland.
| | | |
Collapse
|
10
|
Hickman AB, Waninger S, Scocca JJ, Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell 1997; 89:227-37. [PMID: 9108478 DOI: 10.1016/s0092-8674(00)80202-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HP1 integrase promotes site-specific recombination of the HP1 genome into that of Haemophilus influenzae. The isolated C-terminal domain (residues 165-337) of the protein interacts with the recombination site and contains the four catalytic residues conserved in the integrase family. This domain represents a novel fold consisting principally of well-packed alpha helices, a surface beta sheet, and an ordered 17-residue C-terminal tail. The conserved triad of basic residues and the active-site tyrosine are contributed by a single monomer and occupy fixed positions in a defined active-site cleft. Dimers are formed by mutual interactions of the tail of one monomer with an adjacent monomer; this orients active-site clefts antiparallel to each other.
Collapse
Affiliation(s)
- A B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
11
|
Esposito D, Scocca JJ. Purification and characterization of HP1 Cox and definition of its role in controlling the direction of site-specific recombination. J Biol Chem 1997; 272:8660-70. [PMID: 9079698 DOI: 10.1074/jbc.272.13.8660] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The protein that activates site-specific excision of the HP1 genome from the Hemophilus influenzae chromosome, HP1 Cox, was purified. Native Cox consists of four 8.9-kDa protomers. Tetrameric Cox self-associates to octamers; the apparent dissociation constant was 8 microM protomer, suggesting that under reaction conditions Cox is largely tetrameric. Cox binding sites consist of two direct repeats of the consensus motif 5'-GGTMAWWWWA; one Cox tetramer binds to each motif. Cox binding interfered with the interaction of HP1 integrase with one of its binding sites, IBS5. This competition is central to directional control, as shown by studies on mutated sites. Both Cox binding sites were necessary for Cox to fully inhibit integration and activate excision, although Cox continued to affect recombination when the single binding site proximal to IBS5 remained intact. Eliminating the IBS5 site completely prevented integration but greatly enhanced excision. Excisive recombination continued to require Cox even when IBS5 was inactivated. Cox must therefore play a positive role in assembling the nucleoprotein complexes producing excisive recombination, by inducing the formation of a critical conformation in those complexes.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|