1
|
Zhang H, Yan M, Liu T, Wei P, Chai N, Li L, Wang J, Yu X, Lin Y, Qiu B, Zhao Y. Dynamic Mitochondrial Proteome Under Polyamines Treatment in Cardiac Aging. Front Cell Dev Biol 2022; 10:840389. [PMID: 35372351 PMCID: PMC8965055 DOI: 10.3389/fcell.2022.840389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related alteration of mitochondria causes impaired cardiac function, along with cellular and molecular changes. Polyamines can extend the life span in mice. However, whether polyamines can affect the dynamic mitochondrial proteome, thereby preventing age-related changes in cardiac function and cardiac aging, remains unclear. In this study, we found that spermine (Spm) and spermidine (Spd) injection for 6 weeks could prevent 24-month-old rats heart dysfunction, improve mitochondrial function, and downregulate apoptosis. Using iTRAQ tools, we identify 75 mitochondrial proteins of statistically significant alteration in aging hearts, which mainly participate in important mitochondrial physiological activity, such as metabolism, translation, transport, apoptosis, and oxidative phosphorylation. Moreover, four proteins of differential expression, pyruvate dehydrogenase kinase (PDK4), trifunctional enzyme subunit alpha (HADHA), nicotinamide nucleotide transhydrogenase (NNT), and Annexin6, which were significantly associated with heart aging, were validated by Western blotting. In vitro, we further demonstrated polyamines could retard cardiomyocytes aging through downregulating the expression of PDK4 and thereby inhibiting cell apoptosis. In summary, the distinct mitochondrial proteins identified in this study suggested some candidates involved in the anti-aging of the heart after polyamines treatment, and PDK4 may provide molecular clues for polyamines to inhibit apoptosis and thus retard aging-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Meng Yan
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ting Liu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Peiling Wei
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Nannan Chai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- College of Nursing, Medical School of Chifeng University, Chifeng, China
| | - Lingxu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Nephrology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junying Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Medical Technology, Beijing Health Vocational College, Beijing, China
| | - Xue Yu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Yan Lin
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar, China
| | - Bintao Qiu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajun Zhao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- *Correspondence: Yajun Zhao,
| |
Collapse
|
2
|
Ajayi EI, Molehin OR, Iyoha AE, Tallapragada DS, Oloyede OI, Tikoo KB. Postmortem mitochondrial membrane permeability transition assessment of apoptotic cell death in brain and liver of insulin resistant, ovariectomised rats. IBRO Neurosci Rep 2021; 11:156-163. [PMID: 34939064 PMCID: PMC8664703 DOI: 10.1016/j.ibneur.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
The adverse alterations in mitochondrial functions can affect neuronal function negatively, as they play a crucial role in neuronal plasticity and death. Direct measurements of mitochondrial activity, including membrane potential and ATP production, are not easily achieved in post-mortem brain and liver samples because most organ functions cease to work after death; in fact, with increasing post-mortem intervals (PMI), the brain and liver tissues deteriorate rapidly. Standard procedures of mitochondria isolation, protein determination expressed as BSA equivalent, and spectrophotometric assessment of pore opening at 540 nm were employed. Our results showed that (a) intact mitochondria may be isolated from rat brain and liver of these rats after storage in animal body (in situ) at -20 °C for 7 days (168 h, post-mortem), (b) some population of these mitochondria can still take up exogenous Ca2+ and (c) they can still resist osmotically induced large amplitude swelling in a suitable buffer. The need for mitochondrial purity, structural integrity and abundance for functional studies are common hindrances that can encumber mitochondrial research. Therefore, this study is significant to have shown that PMI up to 7 days did not extensively, diminish MMPT pore status in normal and diabetic, ovariectomised rats. This can be relevant for forensic data mining.
Collapse
Affiliation(s)
- Ebenezer I.O. Ajayi
- Biochemistry Department,Faculty of Basic and Applied Sciences,College of Science, Engineering and Technology, Osun State University, P.M.B. 4494, Osogbo, Nigeria
- Pharmacology/Toxicology Department, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar (Mohali), Punjab 160 062, India
| | - Olorunfemi R. Molehin
- Department of Biochemistry, Faculty of Science, Ekiti State University Ado-Ekiti, P.M.B. 5363, Ado Ekiti 360001, Nigeria
| | - Alex E. Iyoha
- Biochemistry Department,Faculty of Basic and Applied Sciences,College of Science, Engineering and Technology, Osun State University, P.M.B. 4494, Osogbo, Nigeria
| | - Divya S.P. Tallapragada
- Pharmacology/Toxicology Department, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar (Mohali), Punjab 160 062, India
| | - Omotade I. Oloyede
- Department of Biochemistry, Faculty of Science, Ekiti State University Ado-Ekiti, P.M.B. 5363, Ado Ekiti 360001, Nigeria
| | - Kulbhushan B. Tikoo
- Pharmacology/Toxicology Department, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar (Mohali), Punjab 160 062, India
| |
Collapse
|
3
|
Oyebode OT, Olanlokun JO, Salami O, Obi I, Bodede O, Prinsloo G, Olorunsogo OO. Terpene-rich fractions of Ficus mucoso (Welw) modulate lipopolysaccharide-induced inflammatory mediators and aberrant permeability of the inner mitochondrial membrane in murine animal model. Inflammopharmacology 2021; 29:1733-1749. [PMID: 34613566 DOI: 10.1007/s10787-021-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Ficus mucoso is traditionally used to treat bronchial infections. This study compared the efficacy of terpene-rich fractions of F. mucoso root bark on lipopolysaccharide(LPS)-induced inflammation, liver mitochondrial permeability transition (mPT), an index of mitochondrial health, and associated pathological alterations. Terpene-Rich Fractions of Dichloromethane (TRDF) and Ethylacetate Fractions of F. mucoso (TREF) were obtained according to standard procedures. To induce systemic inflammation, a single intraperitoneal injection of 1mgLPS/kgbw was given to mice. Spectrophotometric techniques were used to evaluate the effects of the oral administration of TRDF and TREF (3 days) on levels of pro-inflammatory mediators (TNF-α, IL-1β, IL-6) using ELSA techniques as well as antioxidant indices in normal and LPS-treated mice. The mPT pore opening, mitochondrial ATPase activity and lipid peroxidation were monitored spectrophotometrically. Our results revealed that treatment with LPS caused significant elevation in serum cytokine levels while administration of 50 and 100 mg/kg TRDF and TREF significantly reduced elevated serum levels of cytokines (TNF-α, IL-1β, IL-6) in LPS-challenged mice. In addition, activitities of superoxide dismutase, catalase and liver marker enzymes (ALT and AST) as well as levels of mitochondrial lipid peroxides were significantly reduced in mice treated with TRDF and TREF relative to LPS-fed mice. Furthermore, LPS caused induction of opening of the liver mPT pore which was significantly inhibited by TRDF at 100 and 200 mg/kg bw by 71% and 88%, respectively, but only at 100 mg/kg TREF. Furthermore, mitochondrial ATPase activity was inhibited largely by TRDF. UPLC-ESI-MS analysis revealed the presence of terpenoid derivatives and a few aromatic metabolites in TRDF. The terpene dominance of TRDF metabolites was further justified on the 1H NMR fingerprint. Overall, TRDF is more effective as a cocktail of anti-inflammatory compounds than TREF against LPS-induced acute systemic inflammation.
Collapse
Affiliation(s)
- Olubukola Titilope Oyebode
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olamilekan Salami
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ifeanyi Obi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Olusola Bodede
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida, 1710, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Florida, 1710, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
4
|
Oyebode OT, Abolaji AO, Faleke HO, Olorunsogo OO. Methanol fraction of Ficus mucoso (welw) prevents iron-induced oxidative damage and alters mitochondrial dysfunction in Drosophila melanogaster. Drug Chem Toxicol 2021; 45:2644-2652. [PMID: 34592861 DOI: 10.1080/01480545.2021.1979997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study investigated the antioxidant and cyto-/mito-protective roles of Methanol Fraction of Ficus mucoso (MFFM) in iron-induced oxidative damage in Drosophila melanogaster. At first, 10-day survival rates were carried out separately on FeSO4 and MFFM, respectively, after which ameliorative effects of MFFM were investigated on FeSO4-induced toxicity for 5 days using biochemical and behavioral markers. Additionally, mitochondria were isolated from treated D. melanogaster to assess mitochondrial Permeability Transition (mPT) pore opening. The results showed that FeSO4 significantly reduced survival rate, total thiol level and activities of catalase and glutathione-S-transferase in D. melanogaster. In addition, treatment with FeSO4 caused increased generation of H2O2, NO (nitrite/nitrates) and acetylcholinesterase (AChE) activity compared with control (p < 0.05). Conversely, MFFM restored FeSO4-induced inhibition of glutathione-S-transferase and catalase activities, as well as glutathione and total thiol levels. FeSO4-induced elevation of AChE activity as well as H2O2 and NO (nitrites/nitrates) levels were ameliorated by MFFM with improved climbing activity. Interestingly, MFFM prevented FeSO4-induced mitochondrial Permeability Transition (mPT) pore opening, and elevated mitochondrial ATPase activity and mitochondrial lipid peroxides generation in D. melanogaster. Taken together, our results demonstrated that iron impaired anti-stress defence capacity, altered behavioral functions, increased generation of mitochondrial malondialdehyde and activated opening of the mPT pore in D. melanogaster. Conversely, methanol fraction of F. mucoso protected against iron-induced cyto-/mito-toxic effects. F. mucoso possibly contain bioactive agents which might be useful in the management of disorders associated with oxidative stress induced by iron and or related metals.
Collapse
Affiliation(s)
- Olubukola T Oyebode
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Molecular Drug Metabolism and Toxicology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Hammed O Faleke
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria.,Molecular Drug Metabolism and Toxicology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso O Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Jia K, Du H. Mitochondrial Permeability Transition: A Pore Intertwines Brain Aging and Alzheimer's Disease. Cells 2021; 10:649. [PMID: 33804048 PMCID: PMC8001058 DOI: 10.3390/cells10030649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Advanced age is the greatest risk factor for aging-related brain disorders including Alzheimer's disease (AD). However, the detailed mechanisms that mechanistically link aging and AD remain elusive. In recent years, a mitochondrial hypothesis of brain aging and AD has been accentuated. Mitochondrial permeability transition pore (mPTP) is a mitochondrial response to intramitochondrial and intracellular stresses. mPTP overactivation has been implicated in mitochondrial dysfunction in aging and AD brains. This review summarizes the up-to-date progress in the study of mPTP in aging and AD and attempts to establish a link between brain aging and AD from a perspective of mPTP-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kun Jia
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA;
| | - Heng Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA;
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Ajayi EIO, Molehin OR, Oloyede OI, Kumar V, Amara VR, Kaur J, Karpe P, Tikoo K. Liver mitochondrial membrane permeability modulation in insulin-resistant, uninephrectomised male rats by Clerodendrum volubile P. Beauv and Manihot esculenta Crantz. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0124-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundNon-alcoholic fatty liver disease, which occurs in people who are not alcohol drinkers, describes some of the pathogenic conditions that may be in the least characterized by simple steatosis or can be as serious as non-alcoholic steatohepatitis and cirrhosis. Its mechanistic pathogenesis has been said to arise from insulin resistance and oxidative stress, which may be compounded by obesity. An experimental model showing, systemic insulin resistance, obesity and accumulated hepatic fatty acids was created in adult male rats using high-fat diet manipulation and surgical removal of the left kidney (uninephrectomy). This study sought to identify the impact of these multiple burdens on the liver mitochondrial membrane permeability transition pore opening, and the possible in vitro effects of the extracts ofClerodendrum volubileandManihot esculentaleaves on the membrane permeabilization.ResultsThe results indicated that the methanolic extract ofClerodendrum volubileleaf inhibited mitochondrial membrane pore opening in the insulin resistance condition or when it is followed by uni-nephrectomy, while the ethanolic extract ofManihot esculentaleaf does the same in the insulin resistance condition both prior to and following uni-nephrectomy.ConclusionSince the vegetable extracts were able to abrogate mitochondrial pore opening at low concentrations, the structural integrity of the mitochondria can possibly be restored over time if treated by the vegetable extracts. Research efforts should, therefore, be made to harness the drugability of the bioactives of these vegetables for use in the treatment of non-alcoholic fatty liver disease arising from insulin resistance and renal failure.
Collapse
|
7
|
Shibata T, Yoneda M, Morikawa D, Ohta Y. Time-lapse imaging of Ca 2+-induced swelling and permeability transition: Single mitochondrion study. Arch Biochem Biophys 2019; 663:288-296. [PMID: 30659803 DOI: 10.1016/j.abb.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 11/26/2022]
Abstract
Mitochondrial functions are closely related to the membrane structure. Mitochondrial swelling, which is accompanied with dissipation of the crista structure and rupture of the outer membrane, have been observed as mitochondrial damage when mitochondria are under Ca2+-overload or oxidative stress. Although these phenomena have been well studied, the detailed behaviors of individual mitochondria upon swelling remain unknown. The aim of this study was to investigate the detailed behavior of mitochondrial volume upon addition of Ca2+. Here, we report for the first time, time-lapse measurements of single mitochondrion swelling and permeability transition induced by Ca2+ by optical microscopy. We added 220 μM Ca2+ to mitochondria, and found that 1) the swelling rate depended on the mitochondrion, 2) a small number of mitochondria showed step-like swelling, 3) cyclosporin A decreased the percentage of mitochondria that underwent swelling induced by Ca2+, but did not affect the amplitude of swelling, 4) permeability transition is necessary but not sufficient for Ca2+-induced swelling, 5) permeability transition is more sensitive to Ca2+ than swelling, 6) Ca2+ stimulated mitochondrial swelling after permeability transition. These results suggest that single mitochondrion measurement of swelling is a powerful tool for examining the regulation of mitochondrial structure.
Collapse
Affiliation(s)
- Takahiro Shibata
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Mayu Yoneda
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Daisuke Morikawa
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
8
|
Klimova N, Long A, Kristian T. Significance of Mitochondrial Protein Post-translational Modifications in Pathophysiology of Brain Injury. Transl Stroke Res 2017; 9:223-237. [DOI: 10.1007/s12975-017-0569-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
|
9
|
Zhang R, Ma XN, Liu K, Zhang L, Yao M. Exogenous spermine preserves mitochondrial bioenergetics via regulating Src kinase signaling in the spinal cord. Mol Med Rep 2017; 16:3619-3626. [PMID: 28765886 DOI: 10.3892/mmr.2017.7030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
Regulation of mitochondrial metabolism is becoming an important target in inhibiting necrosis and apoptosis following secondary spinal cord injury, and physiological compounds that reduce mitochondrial dysfunction are regarded as efficient protective reagents following injury. It has been demonstrated that spermine, a polyamine composed of four primary amines, may be taken up by a mitochondria‑specific uniporter and may preserve mitochondrial bioenergetics, suggesting that it may be important in the pathophysiology of mitochondria. However, the protective mechanism has not yet been definitively clarified. In the present study, isolated spinal cord mitochondria were incubated with spermine to evaluate its physiological functions and Src kinase activities. The results revealed that spermine increased oxidative phosphorylation, attenuated mitochondrial swelling and maintained the membrane potential. An inhibitor of Src kinases, amino‑5-(4‑chlorophenyl)‑7‑(t‑butyl)pyrazolo[3,4‑d]pyrimidine (PP2), markedly reduced the effects of spermine. However, inhibition of tyrosine phosphatases by vanadate led to marginal increases in the effects of spermine. Therefore, the present study hypothesized that tyrosine phosphorylation sites are present in the subunits of respiratory chains and mitochondrial permeability transition pore proteins, which may be modified via phosphorylation and dephosphorylation. Furthermore, spermine may upregulate the phosphorylation of Src kinases, and PP2 and vanadate conversely regulate Src phosphorylation. The results of the present study suggest that spermine is a strategic regulator within mitochondria that may activate Src kinases in the spinal cord, and tyrosine phosphorylation signaling is a primary regulatory pathway of mitochondrial metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin-Nan Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kai Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Meng Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
10
|
Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TV, Zavodnik IB. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca 2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents. J Membr Biol 2017; 250:225-236. [PMID: 28251264 DOI: 10.1007/s00232-017-9953-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
We evaluated the parameters of Ca2+-induced mitochondrial permeability transition (MPT) pore formations, Ca2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca2+ concentration, we determined the order of interaction of Ca2+ ions with the mitochondrial sites, n = 3, and the apparent Kd = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, Km, for Ca2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca2+ concentrations, we calculated the activation energy of the MPT process. ΔEa was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca2+-dependent mitochondrial depolarization and Mg2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca2+. The apparent Km of tBHP interaction with mitochondria in the swelling reaction was found to be Km = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca2+-induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca2+-induced MPT onset.
Collapse
Affiliation(s)
- Nina G Golovach
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Vitali T Cheshchevik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Tatsiana V Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus.
| |
Collapse
|
11
|
To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria. Toxicol In Vitro 2016; 32:320-32. [PMID: 26835787 DOI: 10.1016/j.tiv.2016.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/05/2016] [Accepted: 01/29/2016] [Indexed: 12/30/2022]
Abstract
The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds.
Collapse
|
12
|
Grancara S, Zonta F, Ohkubo S, Brunati AM, Agostinelli E, Toninello A. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation. Amino Acids 2015; 47:869-83. [PMID: 25792113 DOI: 10.1007/s00726-015-1964-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biomedical Sciences, University of Padova, Viale U. Bassi 58B, 35131, Padua, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Exercise training preserves ischemic preconditioning in aged rat hearts by restoring the myocardial polyamine pool. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:457429. [PMID: 25404991 PMCID: PMC4227379 DOI: 10.1155/2014/457429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/06/2014] [Accepted: 09/21/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool. METHODS Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol. RESULTS IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor, α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunction in vitro. CONCLUSION Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus.
Collapse
|
14
|
Srisakuldee W, Makazan Z, Nickel BE, Zhang F, Thliveris JA, Pasumarthi KB, Kardami E. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc Res 2014; 103:72-80. [DOI: 10.1093/cvr/cvu066] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Zhang H, Xue G, Zhang W, Wang L, Li H, Zhang L, Lu F, Bai S, Lin Y, Lou Y, Xu C, Zhao Y. Akt and Erk1/2 activate the ornithine decarboxylase/polyamine system in cardioprotective ischemic preconditioning in rats: the role of mitochondrial permeability transition pores. Mol Cell Biochem 2014; 390:133-42. [PMID: 24464033 DOI: 10.1007/s11010-014-1964-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/14/2014] [Indexed: 01/20/2023]
Abstract
Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine biosynthesis, which is essential for cell survival. We hypothesized that the ODC/polyamine system is involved in ischemic preconditioning (IPC)-mediated cardioprotection through the activation of Erk1/2 and Akt and through the inhibition of the mitochondrial permeability transition (mPT). Isolated rat hearts were subjected to 40 min of ischemia either with or without IPC (3 cycles of 5-min global ischemia), and ODC protein expression, polyamine content, and Akt and Erk1/2 phosphorylation were evaluated after 30 min of reperfusion. IPC significantly upregulated the ODC/polyamine pathway, promoted Erk1/2 and Akt phosphorylation, and reduced the infarct size and heart dysfunction after reperfusion. An inhibitor of ODC, α-difluoromethylornithine (DFMO), abolished the IPC-induced cardioprotection. Moreover, the inhibition of the IPC-induced activation of Erk1/2 and Akt using PD98059 or wortmannin downregulated the ODC/polyamine system. In separate studies, the Ca(2+) load required to open the mPT pore was significantly lower in DFMO-treated cardiac mitochondria than in mitochondria from IPC hearts. Furthermore, spermine or spermidine significantly inhibited the mPT induced by CaCl2. These results suggest that IPC upregulates the ODC/polyamine system and mediates preconditioning cardioprotection, which may depend on the phosphorylation/activation of Erk1/2 and Akt and on the inhibition of the mPT during reperfusion.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pathophysiology, Harbin Medical University, 150086, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zavodnik IB, Dremza IK, Cheshchevik VT, Lapshina EA, Zamaraewa M. Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca²⁺ ions in oxidative processes. Life Sci 2013; 92:1110-7. [PMID: 23643634 DOI: 10.1016/j.lfs.2013.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 04/18/2013] [Indexed: 11/29/2022]
Abstract
AIMS The present study was designed for further evaluation of the biochemical mechanism of hepatic mitochondrial dysfunction under oxidative damages induced by organic hydroperoxide, tert-butyl hydroperoxide (tBHP), for estimation of the molecular targets impaired during oxidative stress, and for investigation of the role of Ca(2+) ions in mitochondrial oxidative reactions and of the protective effect of melatonin during mitochondrial peroxidative damage. MAIN METHODS Mitochondria were isolated by differential centrifugation from the rat liver. The effects of tBHP exposure, EDTA, Ca(2+) ions and melatonin on mitochondrial respiratory activity, mitochondrial enzyme activities and redox status were measured. KEY FINDINGS The present study provides evidence that tBHP (at low concentrations of 0.02-0.065mM, in EDTA-free medium) induced uncoupling of the oxidation and phosphorylation processes and decreased the efficiency of the phosphorylation reaction. This effect depended on the respiratory substrate used. The presence of EDTA prevented oxidative impairment of mitochondrial respiration, but Ca(2+) ions in the medium enhanced oxidant-induced mitochondrial damage considerably. In the presence of 0.5mM EDTA, tBHP (at high concentrations, 0.5-2mM) considerably oxidized mitochondrial reduced glutathione, enhanced accumulation of membrane lipid peroxidation products and mixed protein-glutathione disulfides and led to an inhibition of oxoglutarate dehydrogenase and succinate dehydrogenase. SIGNIFICANCE Direct oxidative modification of enzymatic complexes of the respiratory chain and mitochondrial matrix, mitochondrial reduced glutathione depletion, protein glutathionylation, membrane lipid peroxidation and Ca(2+) overload are the main events of mitochondrial peroxidative damages. Experiments in vitro demonstrated that melatonin inhibited the mitochondrial peroxidative damage, preventing redox-balance changes and succinate dehydrogenase inactivation.
Collapse
Affiliation(s)
- Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala Grodno State University, Blvd. Len. Kom., 50, 230017 Grodno, Belarus.
| | | | | | | | | |
Collapse
|
17
|
Pless-Petig G, Metzenmacher M, Türk TR, Rauen U. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium - identification of the responsible medium components. BMC Biotechnol 2012; 12:73. [PMID: 23046946 PMCID: PMC3534012 DOI: 10.1186/1472-6750-12-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/04/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. RESULTS Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. CONCLUSION These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr, 55, 45122, Essen, Germany
| | | | | | | |
Collapse
|
18
|
Mitochondrial oxidative stress induced by Ca2+ and monoamines: different behaviour of liver and brain mitochondria in undergoing permeability transition. Amino Acids 2011; 42:751-9. [PMID: 21805134 DOI: 10.1007/s00726-011-0991-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/08/2011] [Indexed: 10/17/2022]
Abstract
Mitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria. The effects of monoamines on MPT have to date, been less well-studied, even if they are involved in a variety of neurological and neuroendocrine processes. This study shows that in rat liver mitochondria (RLM), monoamines such as tyramine, serotonin and dopamine amplify the swelling induced by calcium, and increase the oxidation of thiol groups and the production of hydrogen peroxide, effects that are counteracted by the above-mentioned inhibitors. In rat brain mitochondria (RBM), the monoamines do not amplify calcium-induced swelling, even if they demonstrate increases in the extent of oxidation of thiol groups and hydrogen peroxide production. In these mitochondria, the antioxidants are not at all or scarcely effective in suppressing mitochondrial swelling. In conclusion, we hypothesize that different mechanisms induce the MPT in the two different types of mitochondria evaluated. Calcium and monoamines induce oxidative stress in RLM, which in turn appears to induce and amplify MPT. This process is not apparent in RBM, where MPT seems resistant to oxidative stress.
Collapse
|
19
|
Dalla Via L, Salvi M, Di Noto V, Stefanelli C, Toninello A. Membrane binding and transport of N-aminoethyl-1,2-diamino ethane (dien) and N-aminopropyl-1,3-diamino propane (propen) by rat liver mitochondria and their effects on membrane permeability transition. Mol Membr Biol 2009; 21:109-18. [PMID: 15204440 DOI: 10.1080/09687680310001654916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This investigation is aimed at defining the structural requirements for aliphatic polyamines to interact with mitochondrial binding sites, which are relevant for the regulation of the permeability transition and for mitochondrial polyamine uptake. The triamines N-aminoethyl-1,2-diaminoethane (dien) and N-aminopropyl-1,3-diaminopropane (propen), both symmetric polyamines, are accumulated to differing extents by an energy-dependent mechanism in liver mitochondria. Propen is also able completely to inhibit the permeability transition of mitochondria, induced by Ca2+ plus phosphate, with the same efficacy as the asymmetric ubiquitary triamine spermidine, whereas dien fails to exhibit this effect. The competitive inhibition of both triamines on spermidine transport demonstrates that they bind to the same site(s) of this polyamine and exploit its transport system. The binding of dien and propen to mitochondrial membrane was studied by applying a thermodynamic model of ligand-receptor interactions developed both for equilibrium and far-from-equilibrium binding processes. Results show the presence of two mono-coordinated binding sites, S1 and S2, for propen, and one monocoordinated binding site for dien, all exhibiting high capacity and low affinity. Comparisons of the binding parameters of these polyamines with those of other natural polyamines reveal that, besides flexibility and hydrophilicity, as previously suggested, protonation of the imino group and the symmetry of the molecules for S1, and the presence of an aminobutyl group for S2, also contribute to the polyamine interactions observed in the two sites.
Collapse
Affiliation(s)
- Lisa Dalla Via
- Dipartimento di Scienze Farmaceutiche, Università di Padova, Via Marzolo 5, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
20
|
Involvement of the ornithine decarboxylase/polyamine system in precondition-induced cardioprotection through an interaction with PKC in rat hearts. Mol Cell Biochem 2009; 332:135-44. [DOI: 10.1007/s11010-009-0183-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/09/2009] [Indexed: 12/13/2022]
|
21
|
The effect of N-ethylmaleimide on permeability transition as induced by carboxyatractyloside, agaric acid, and oleate. Cell Biochem Biophys 2008; 51:81-7. [PMID: 18649145 DOI: 10.1007/s12013-008-9016-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
In this work, we studied the effect of N-ethylmaleimide on permeability transition. The findings indicate that the amine inhibited the effects of carboxyatractyloside and agaric acid. It is known that these reagents interact with the adenine nucleotide carrier through the cytosolic side. When oleate, which interacts through the matrix side, was used it was found that the amine amplified the effects of oleate on permeability transition. The results also show that N-ethylmaleimide strengthened the inhibition induced by carboxyatractyloside, agaric acid, and oleate on ADP exchange. Furthermore, it was also found that oleate improved the binding of eosin-5-maleimide on the adenine nucleotide translocase.
Collapse
|
22
|
Ca2+ -independent effects of spermine on pyruvate dehydrogenase complex activity in energized rat liver mitochondria incubated in the absence of exogenous Ca2+ and Mg2+. Amino Acids 2008; 36:449-56. [PMID: 18500430 DOI: 10.1007/s00726-008-0099-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
In the absence of exogenous Ca(2+) and Mg(2+) and in the presence of EGTA, which favours the release of endogenous Ca(2+), the polyamine spermine is able to stimulate the activity of pyruvate dehydrogenase complex (PDC) of energized rat liver mitochondria (RLM). This stimulation exhibits a gradual concentration-dependent trend, which is maximum, about 140%, at 0.5 mM concentration, after 30 min of incubation. At concentrations higher than 0.5 mM, spermine still stimulates PDC, when compared with the control, but shows a slight dose-dependent decrease. Changes in PDC stimulation are very close to the phosphorylation level of the E(1alpha) subunit of PDC, which regulates the activity of the complex, but it is also the target of spermine. In other words, progressive dephosphorylation gradually enhances the stimulation of RLM and progressive phosphorylation slightly decreases it. These results provide the first evidence that, when transported in RLM, spermine can interact in various ways with PDC, showing dose-dependent behaviour. The interaction most probably takes place directly on a specific site for spermine on one of the regulatory enzymes of PDC, i.e. pyruvate dehydrogenase phosphatase (PDP). The interaction of spermine with PDC may also involve activation of another regulatory enzyme, pyruvate dehydrogenase kinase (PDK), resulting in an increase in E(1alpha) phosphorylation and consequently reduced stimulation of PDC at high polyamine concentrations. The different effects of spermine in RLM are discussed, considering the different activities of PDP and PDK isoenzymes. It is suggested that the polyamine at low concentrations stimulates the isoenzyme PDP(2) and at high concentrations it stimulates PDK(2).
Collapse
|
23
|
Marques MPM, Gil FPSC, Calheiros R, Battaglia V, Brunati AM, Agostinelli E, Toninello A. Biological activity of antitumoural MGBG: the structural variable. Amino Acids 2007; 34:555-64. [DOI: 10.1007/s00726-007-0009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/21/2007] [Indexed: 11/30/2022]
|
24
|
Smith KJ, Skelton H. alpha-Difluoromethylornithine, a polyamine inhibitor: its potential role in controlling hair growth and in cancer treatment and chemo-prevention. Int J Dermatol 2006; 45:337-44. [PMID: 16650154 DOI: 10.1111/j.1365-4632.2006.01231.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A. Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med 2006; 41:1272-81. [PMID: 17015174 DOI: 10.1016/j.freeradbiomed.2006.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/30/2006] [Accepted: 07/08/2006] [Indexed: 11/24/2022]
Abstract
The isoflavonoid genistein, the cyclic triterpene glycyrrhetinic acid, and salicylate induce mitochondrial swelling and loss of membrane potential (Delta Psi) in rat liver mitochondria (RLM). These effects are Ca(2+)-dependent and are prevented by cyclosporin A and bongkrekik acid, classic inhibitors of mitochondrial permeability transition (MPT). This membrane permeabilization is also inhibited by N-ethylmaleimide, butylhydroxytoluene, and mannitol. The above-mentioned pro-oxidants also induce an increase in O(2) consumption and H(2)O(2) generation and the oxidation of sulfhydryl groups, glutathione, and pyridine nucleotides. All these observations are indicative of the induction of MPT mediated by oxidative stress. At concentrations similar to those present in the cell, spermine can prevent swelling and Delta Psi collapse, that is, MPT induction. Spermine, by acting as a free radical scavenger, in the absence of Ca(2+) inhibits H(2)O(2) production and maintains glutathione and sulfhydryl groups at normal reduced level, so that the critical thiols responsible for pore opening are also consequently prevented from being oxidized. Spermine also protects RLM under conditions of accentuated thiol and glutathione oxidation, lipid peroxidation, and protein oxidation, suggesting that its action takes place by scavenging the hydroxyl radical.
Collapse
Affiliation(s)
- Irina G Sava
- Unità per lo Studio delle Biomembrane, Istituto di Neuroscienze del CNR, Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
26
|
Yehezkel G, Hadad N, Zaid H, Sivan S, Shoshan-Barmatz V. Nucleotide-binding sites in the voltage-dependent anion channel: characterization and localization. J Biol Chem 2005; 281:5938-46. [PMID: 16354668 DOI: 10.1074/jbc.m510104200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we addressed the presence and location of nucleotide-binding sites in the voltage-dependent anion channel (VDAC). VDAC bound to reactive red 120-agarose, from which it was eluted by ATP, less effectively by ADP and AMP, but not by NADH. The photoreactive ATP analog, benzoyl-benzoyl-ATP (BzATP), was used to identify and characterize the ATP-binding sites in VDAC. [alpha-(32)P]BzATP bound to purified VDAC at two or more binding sites with apparent high and low binding affinities. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of BzATP-labeled VDAC confirmed the binding of at least two BzATP molecules to VDAC. The VDAC BzATP-binding sites showed higher specificity for purine than for pyrimidine nucleotides and higher affinity for negatively charged nucleotide species. VDAC treatment with the lysyl residue modifying reagent, fluorescein 5'-isothiocyanate, markedly inhibited VDAC labeling with BzATP. The VDAC nucleotide-binding sites were localized using chemical and enzymatic cleavage. Digestion of [alpha-(32)P]BzATP-labeled VDAC with CNBr or V8 protease resulted in the appearance of approximately 17- and approximately 14-kDa labeled fragments. Further digestion, high performance liquid chromatography separation, and sequencing of the selected V8 peptides suggested that the labeled fragments originated from two different regions of the VDAC molecule. MALDI-TOF analysis of BzATP-labeled, tryptic VDAC fragments indicated and localized three nucleotide binding sites, two of which were at the N and C termini of VDAC. Thus, the presence of two or more nucleotide-binding sites in VDAC is suggested, and their possible function in the control of VDAC activity, and, thereby, of outer mitochondrial membrane permeability is discussed.
Collapse
Affiliation(s)
- Galit Yehezkel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
27
|
Gandre S, Bercovich Z, Kahana C. Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2005; 2:245-56. [PMID: 16120325 DOI: 10.1016/s1567-7249(02)00105-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 11/04/2002] [Accepted: 11/06/2002] [Indexed: 01/11/2023]
Abstract
Ornithine decarboxylase-antizyme (Az), a polyamine-induced protein that targets ornithine decarboxylase (ODC) to rapid degradation, is synthesized as two isoforms. Studies performed in vitro indicated that the 29 and 24.5 kDa isoforms originate from translation initiation at two alternative initiation codons. Using transient transfections we demonstrate here that also in cells the two isoforms are synthesized from two AUG codons with the second being utilized more efficiently. The more efficient utilization of the second AUG is due to its location within a better sequence context for translation initiation. By using immunostaining we demonstrate that only the less expressed long form of Az is localized in the mitochondria. Moreover, this long isoform of Az and not the more efficiently expressed short isoform is imported into mitochondria in an in vitro uptake assay. Our data therefore demonstrate that a single Az transcript gives rise to two Az proteins with different N-terminal sequence and that the longer Az form containing a potential N-terminal mitochondrial localization signal is transported to mitochondria.
Collapse
Affiliation(s)
- Shilpa Gandre
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
28
|
García N, Zazueta C, Pavón N, Chávez E. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. Mitochondrion 2005; 5:272-81. [PMID: 16050990 DOI: 10.1016/j.mito.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/17/2005] [Accepted: 05/31/2005] [Indexed: 11/26/2022]
Abstract
The effect of agaric acid as inducer of mitochondrial permeability transition was studied. It was found that: (i) agaric acid (AA) promoted efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling; (ii) these effects depend on membrane fluidity; (iii) ADP inhibited the effect of AA on Ca2+ efflux, and (iv) AA blocked binding of the sulfhydryl reagent, eosin-5-maleimide, to the adenine nucleotide translocase. It is proposed that AA induces pore opening through binding of the citrate moiety to the ADP/ATP carrier; this interaction must be stabilized by insertion of the alkyl chain in the lipid milieu of the membrane.
Collapse
Affiliation(s)
- Noemí García
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, DF 014080, Mexico
| | | | | | | |
Collapse
|
29
|
Kushnareva YE, Wiley SE, Ward MW, Andreyev AY, Murphy AN. Excitotoxic injury to mitochondria isolated from cultured neurons. J Biol Chem 2005; 280:28894-902. [PMID: 15932874 DOI: 10.1074/jbc.m503090200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate-induced load of Ca2+ was a smaller percentage of the maximal Ca2+ uptake capacity. Thus, this study indicated that Ca(2+)-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.
Collapse
|
30
|
Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004; 427:461-5. [PMID: 14749836 PMCID: PMC3049806 DOI: 10.1038/nature02229] [Citation(s) in RCA: 812] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 11/10/2003] [Indexed: 01/13/2023]
Abstract
A sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP). It is thought that the mtPTP is a protein complex formed by the voltage-dependent anion channel, members of the pro- and anti-apoptotic BAX-BCL2 protein family, cyclophilin D, and the adenine nucleotide (ADP/ATP) translocators (ANTs). The latter exchange mitochondrial ATP for cytosolic ADP and have been implicated in cell death. To investigate the role of the ANTs in the mtPTP, we genetically inactivated the two isoforms of ANT in mouse liver and analysed mtPTP activation in isolated mitochondria and the induction of cell death in hepatocytes. Mitochondria lacking ANT could still be induced to undergo permeability transition, resulting in release of cytochrome c. However, more Ca2+ than usual was required to activate the mtPTP, and the pore could no longer be regulated by ANT ligands. Moreover, hepatocytes without ANT remained competent to respond to various initiators of cell death. Therefore, ANTs are non-essential structural components of the mtPTP, although they do contribute to its regulation.
Collapse
Affiliation(s)
- Jason E Kokoszka
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mattiasson G, Friberg H, Hansson M, Elmér E, Wieloch T. Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J Neurochem 2003; 87:532-44. [PMID: 14511130 DOI: 10.1046/j.1471-4159.2003.02026.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Hernández-Muñoz R, Sánchez-Sevilla L, Martínez-Gómez A, Dent MAR. Changes in mitochondrial adenine nucleotides and in permeability transition in two models of rat liver regeneration. Hepatology 2003; 37:842-51. [PMID: 12668977 DOI: 10.1053/jhep.2003.50145] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Although enhanced phosphorylative activity can be a requisite for later DNA synthesis during liver regeneration (LR), mitochondrial generation of reactive oxygen species could lead to altered mitochondrial membrane permeability during the prereplicative phase of LR. Therefore, the role of mitochondrial permeability transition (MPT) was evaluated during rat LR, induced by either partial hepatectomy (PH) or after CCl(4) administration. Parameters indicative of mitochondrial function and membrane potentials, those of oxidative stress, and in vivo changes of the intramitochondrial pool of adenine nucleotides were determined. Twelve hours after PH, mitochondrial oxidative and phosphorylative activities and adenosine diphosphate (ADP) content were increased, reaching a maximal peak at 24 hours after surgery (maximal DNA synthesis). Parameters suggestive of oxidant stress were enhanced, but mitochondrial volume and membrane electrical potential remained unaltered. Interestingly, moderate mitochondrial swelling and depolarization were found at later post-PH times (72 hours). In CCl(4)-treated animals, it was found that an active liver cell necrosis delayed mitotic activity and mitochondrial uncoupled respiration. Starting 12 hours after CCl(4) intoxication, a drastic increase of inorganic phosphate occurred within swollen and strongly depolarized mitochondria, suggesting changes in the MPT. Despite expression of messenger RNA (mRNA) for mitochondrial transcription, factor A showed a similar time course in both experimental models. The so-called augmenter liver regeneration was found significantly elevated only in PH rats. In conclusion, onset of MPT could be associated with cell necrosis and inflammation after CCl(4) treatment, whereas this mitochondrial event could constitute a putative effector mechanism, through which growth or inflammatory factors inhibiting cell proliferation could initiate LR termination.
Collapse
Affiliation(s)
- Rolando Hernández-Muñoz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | |
Collapse
|
33
|
Nitta T, Igarashi K, Yamamoto N. Polyamine depletion induces apoptosis through mitochondria-mediated pathway. Exp Cell Res 2002; 276:120-8. [PMID: 11978014 DOI: 10.1006/excr.2002.5517] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines, namely putrescine, spermidine, and spermine, are essential for cell survival and proliferation. A decrease in intracellular polyamine levels is associated with apoptosis. In this study, we used inhibitors of polyamine biosynthesis to examine the effect of polyamine depletion. A combination of inhibitors of ornithine decarboxylase, S-adenosylmethionine decarboxylase, or spermidine synthase decreased intracellular polyamine levels and induced cell death in a WEHI231 murine B cell line. These cells exhibited apoptotic features including chromatin condensation and oligonucleosomal DNA fragmentation. Addition of exogenous polyamines reversed the observed features of apoptotic cell death. Similar effects were also observed in other cell lines: a human B cell line Ramos and a human T cell line Jurkat. Depletion of polyamines induced activation of caspase-3 and disruption of the mitochondrial membrane potential (Delta psi m). Inhibition of caspase activities by an inhibitor prevented the apoptotic nuclear changes but not Delta psi m disruption induced by polyamine depletion. Overexpression of Bcl-xl, an anti-apoptotic Bcl-2 family protein, completely inhibited Delta psi m disruption, caspase activation, and cell death. These results indicate that the depletion of intracellular polyamines triggers the mitochondria-mediated pathway for apoptosis, resulting in caspase activation and apoptotic cell death.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
34
|
Chávez E, Zazueta C, Correa F, García N, Avilés C, Robles SG, Rodríguez CD. Modulation by substrates of the protective effect of cyclosporin A on mitochondrial damage. Life Sci 2002; 70:2413-20. [PMID: 12150205 DOI: 10.1016/s0024-3205(02)01486-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of substrates on the role of cyclosporin A, to promote the closure of the permeability transition pore, was studied. It was found that in succinate-oxidizing mitochondria, cyclosporin inhibited pore opening as induced by carboxyatractyloside. The opposite occurred when mitochondrial respiration was supported by malate-glutamate, i.e., cyclosporin A was unable to block pore opening promoted by carboxyatractyloside. We propose that the failure of cyclosporin A to induce pore closure could be due to a low NADH matrix content.
Collapse
Affiliation(s)
- Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiologia, Ignacio Chávez, México, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
35
|
Curtis MJ, Wolpert TJ. The oat mitochondrial permeability transition and its implication in victorin binding and induced cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:295-312. [PMID: 11844107 DOI: 10.1046/j.0960-7412.2001.01213.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The mitochondrion has emerged as a key regulator of apoptosis, a form of animal programmed cell death (PCD). The mitochondrial permeability transition (MPT), facilitated by a pore-mediated, rapid permeability increase in the inner membrane, has been implicated as an early and critical step of apoptosis. Victorin, the host-selective toxin produced by Cochliobolus victoriae, the causal agent of victoria blight of oats, has been demonstrated to bind to the mitochondrial P-protein and also induces a form of PCD. Previous results suggest that a MPT may facilitate victorin's access to the mitochondrial matrix and binding to the P-protein: (i) victorin-induced cell death displays features similar to apoptosis; (ii) in vivo, victorin binds to the mitochondrial P-protein only in toxin-sensitive genotypes whereas victorin binds equally well to P-protein isolated from toxin-sensitive and insensitive oats; (iii) isolated, untreated mitochondria are impermeable to victorin. The data implicate an in vivo change in mitochondrial permeability in response to victorin. This study focused on whether oat mitochondria can undergo a MPT. Isolated oat mitochondria demonstrated high-amplitude swelling when treated with spermine or Ca2+ in the presence of the Ca2+-ionophore A23187, and when treated with mastoparan, an inducer of the MPT in rat liver mitochondria. In all cases, swelling demonstrated size exclusion in the range 0.9-1.7 kDa, similar to that found in animal mitochondria. Further, MPT-inducing conditions permitted victorin access to the mitochondrial matrix and binding to the P-protein. In vivo, victorin treatment induced the collapse of mitochondrial transmembrane potential within 2 h, indicating a MPT. Also, the victorin-induced collapse of membrane potential was clearly distinct from that induced by uncoupling respiration, as the latter event prevented the victorin-induced PCD response and binding to P-protein. These results demonstrate that a MPT can occur in oat mitochondria in vitro, and are consistent with the hypothesis that an MPT, which allows victorin access to the mitochondrial matrix and binding to the P-protein, occurs in vivo during victorin-induced PCD.
Collapse
Affiliation(s)
- Marc J Curtis
- Molecular Cellular Biology Program, and Center for Gene Research and Biotechnology, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | | |
Collapse
|
36
|
Gabryel B, Adamek M, Trzeciak HI. Does trimetazidine exert cytoprotective activity on astrocytes subjected to hypoxia in vitro? Neurotoxicology 2001; 22:455-65. [PMID: 11577804 DOI: 10.1016/s0161-813x(01)00041-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to establish whether trimetazidine (TMZ) is capable of protecting astrocytes against hypoxic injury. Using the model of astrocyte cell culture we tried to observe the cells treated with TMZ before, during and after hypoxia simulated in vitro. Cell viability was determined by Live/Dead (viability/cytotoxicity) Assay Kit and MTT conversion test. Apoptotic cell death was distinguished by a method using fluorescence microscopy with Hoechst 33342. The effect of the drug on the DNA synthesis was evaluated by measuring the incorporation of [3H]thymidine into DNA of astrocytes. TMZ stimulates the proliferation of astrocytes most significant one when the astrocytes are exposed to the drug in normoxia, hypoxia and/or re-oxygenation. Adding TMZ into cultures during re-oxygenation and hypoxial re-oxygenation significantly decreases the number of dead and apoptotic cells. Our experiment has proved that TMZ exerts the most significantly cytoprotective effect on astrocytes in vitro when added during hypoxia and/or re-oxygenation. We may conclude that the protective effect of TMZ depends on the sequence of drug adding and hypoxia/ re-oxygenation onset.
Collapse
Affiliation(s)
- B Gabryel
- Department of Pharmacology, Silesian Medical University, Katowice, Poland.
| | | | | |
Collapse
|
37
|
Sakurai K, Katoh M, Fujimoto Y. Alloxan-induced mitochondrial permeability transition triggered by calcium, thiol oxidation, and matrix ATP. J Biol Chem 2001; 276:26942-6. [PMID: 11342546 DOI: 10.1074/jbc.m102029200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).
Collapse
Affiliation(s)
- K Sakurai
- Department of Biochemistry, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | | | | |
Collapse
|
38
|
Abstract
The cessation of blood flow followed by a reperfusion period results in severe damages to cell structures. This induces a complex cascade of events involving, more particularly, a loss of energy, an alteration of ionic homeostasis promoting H(+) and Ca(2+) build up and the generation of free radicals. In this context, mitochondria are highly vulnerable and play a predominant role in the cell signaling leading from life to death. This is why, recently, efforts to find an effective therapy for ischemia-reperfusion injury have focused on mitochondria. This review summarizes the pharmacological strategies which are currently developed and the potential mitochondrial targets which could be involved in the protection of cells.
Collapse
Affiliation(s)
- D Morin
- Laboratoire de Pharmacologie and Centre National de La Recherche Scientifique, Faculté de Médecine de Paris XII, 8 rue du General Sarrail, F-94010 Créteil, France.
| | | | | | | |
Collapse
|
39
|
Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A 2001; 98:2278-83. [PMID: 11226230 PMCID: PMC30129 DOI: 10.1073/pnas.051627098] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respiration inhibition and marked sensitization of the mitochondrial permeability transition pore. Mitochondria from heterozygous mice, with a partial deficiency in MnSOD, showed evidence of increased proton leak, inhibition of respiration, and early and rapid accumulation of mitochondrial oxidative damage. Furthermore, chronic oxidative stress in the heterozygous mice resulted in an increased sensitization of the mitochondrial permeability transition pore and the premature induction of apoptosis, which presumably eliminates the cells with damaged mitochondria. Mice with normal MnSOD levels show the same age-related mitochondrial decline as the heterozygotes but occurring later in life. The premature decline in mitochondrial function in the heterozygote was associated with the compensatory up-regulation of oxidative phosphorylation enzyme activity. Thus mitochondrial reactive oxygen species production, oxidative stress, functional decline, and the initiation of apoptosis appear to be central components of the aging process.
Collapse
Affiliation(s)
- J E Kokoszka
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
40
|
Mather M, Rottenberg H. Polycations induce the release of soluble intermembrane mitochondrial proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:357-68. [PMID: 11115647 DOI: 10.1016/s0005-2728(00)00231-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The release of proapoptotic proteins from the intermembrane space of mitochondria is an early critical step in many pathways to apoptosis. Induction of the mitochondrial permeability transition pore (PTP) was suggested to be the mechanism of the release of soluble mitochondrial intermembrane proteins (SIMP) in apoptosis. However, several studies suggested that proapoptotic proteins (e.g. Bax and Bid) can induce the release of SIMP (e.g. cytochrome c (cyt c) and adenylate kinase 2 (AK2)) in vivo and in vitro independent of PTP. We have found that a number of structurally diverse polycations, such as aliphatic polyamines (e.g. spermine and to a lesser extent spermidine), aminoglycosides (e.g. streptomycin, gentamicin and neomycin), and cytotoxic peptides (e.g. melittin), induce the release of SIMP from liver mitochondria, in vitro. All the polycations released AK2 together with cyt c, suggesting that rupture of the outer membrane is a common mechanism of cyt c release by these polycations. Several polycations (e.g. spermine, spermidine and neomycin) induced SIMP release without inducing significant swelling, and this release was not inhibited significantly by the PTP inhibitor cyclosporin. In contrast, under the same conditions, streptomycin and melittin induced swelling and SIMP release that was inhibited strongly by cyclosporin. Gentamicin-induced swelling and release of SIMP were partially inhibited by cyclosporin. The affinity of polyamines to the anionic phospholipids of the mitochondrial membranes (spermine=neomycin>gentamicin>streptomycin=spermidine) correlated roughly with their ability to induce PTP-independent release of SIMP, which suggests that the binding of polycations to the anionic phospholipids of the outer mitochondrial membrane facilitates the rupture of this membrane. However, some polycations facilitated the induction of PTP, possibly by binding to cardiolipin on the inner membrane. This dual mechanism may be relevant to the induction of SIMP release in apoptosis.
Collapse
Affiliation(s)
- M Mather
- MCP Hahnemann University, M.S. 435, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | | |
Collapse
|
41
|
Brunner M, Moeslinger T, Spieckermann PG. Regulation of cyclosporin A sensitive mitochondrial permeability transition by the redox state of pyridine nucleotides. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:31-41. [PMID: 11163302 DOI: 10.1016/s1096-4959(00)00315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mechanisms involved in the induction of cyclosporine A sensitive mitochondrial swelling by oxidative stress were investigated in isolated guinea pig liver mitochondria. The aim of our study was to investigate, if swelling is inevitably associated with the oxidation of pyridine nucleotides, and if the oxidized pyridine nucleotides have to be hydrolysed for the induction of mitochondrial swelling. Quantitative measurement of oxidized pyridine nucleotides was performed with HPLC. Mitochondrial swelling was recorded by monitoring the decrease in light scattering of the mitochondrial suspension. Reduction and oxidation of pyridine nucleotides were followed by monitoring the changes of the autofluorescence signal of reduced pyridine nucleotides. Qualitative measurement of mitochondrial membrane potential was performed with the fluorescence indicator rhodamine 123. Neither t-butyl hydroperoxide nor the dissipation of the mitochondrial inner membrane potential with FCCP (carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone) induced the opening of the membrane permeability transition pore, unless an extensive oxidation of mitochondrial pyridine nucleotides took place. Mitochondrial swelling induced by our experimental conditions was always sensitive to cyclosporine A and accompanied by a cyclosporine A sensitive release of inner mitochondrial pyridine nucleotides without pyridine nucleotide hydrolysis. Not the cycling of calcium across the mitochondrial inner membrane but the accumulation of calcium inside the mitochondria was a prerequisite for mitochondrial swelling. The mitochondrial membrane permeability transition is neither caused nor accompanied by the hydrolysis of mitochondrial pyridine nucleotides.
Collapse
Affiliation(s)
- M Brunner
- Institute for Medical Physiology, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | | | | |
Collapse
|
42
|
Abstract
1. In addition to Ca2+-dependent mediation of excitation-contraction coupling during cardiac work and ATP hydrolysis, Ca2+ also stimulates the Krebs' cycle and mitochondrial matrix dehydrogenases to maintain the nicotinamide adenine dinucleotide redox potential and ATP synthesis. Thus, the balance between energy demand and supply is maintained during increases in cardiac work by elevated cytosolic Ca2+ that is transmitted to the mitochondrial matrix via regulation of uniporter and antiporter pathways across the inner mitochondrial membrane. 2. Brief ischaemia perturbs Ca2+ homeostasis but mitochondrial buffering of Ca2+ permits maintained mitochondrial function. However, prolonged ischaemia and reperfusion causes Ca2+ 'overload' at supramicromolar levels. The onset of vicious cycles that abrogate contractile function and, ultimately, may cause irreversible cell injury involves: (i) loss of ionic homeostasis, energy production and anti-oxidant enzyme activity; (ii) activation of phospholipases; and (iii) accumulation of free radicals, membrane lipid peroxidation products and protein adducts. 3. Increased permeability of the inner mitochondrial membrane to solutes occurs causing mitochondrial swelling, 'proton leak', reduced efficiency of the respiratory chain and uncoupling of oxidative phosphorylation. The opening of the mitochondrial permeability transition pore is potentiated by high mitochondrial Ca2+ and inducers, such as Pi, long-chain acyl coenzyme (Co)A and oxygen free radicals. Opening of this channel depolarizes the mitochondrion and dissipates the H+ electrochemical gradient (delta muH), preventing oxidative phosphorylation. Together with the release of cytochrome c and subsequent activation of caspase pathways, these events precede cell death. 4. Compared with younger counterparts, the senescent myocardium has a reduced capacity to recover from ischaemia and reperfusion. The consequent events described above are augmented in ageing. Elevated mitochondrial Ca2+ and increased dehydrogenase activation are linked to inefficient mitochondrial function and limited postischaemic recovery of contractile function. 5. Notably, a distinct decrease in the ratio of mitochondrial membrane omega-3 to omega-6 polyunsaturated fatty acids (PUFA) and a decrease in the mitochondrial phospholipid cardiolipin occurs in aged rat hearts. A diet rich in omega-3 PUFA directly increases membrane omega-3:omega-6 PUFA and cardiolipin content and also facilitates improved tolerance of ischaemia and reperfusion. A major consequence of dietary omega-3 PUFA may be the effect of altered mitochondrial Ca2+ flux and Ca2+-dependent processes.
Collapse
Affiliation(s)
- S Pepe
- Cardiac Surgical Research Unit, Alfred Hospital and Baker Medical Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Toninello A, Dalla Via L, Stevanato R, Yagisawa S. Kinetics and free energy profiles of spermine transport in liver mitochondria. Biochemistry 2000; 39:324-31. [PMID: 10630992 DOI: 10.1021/bi991217c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, the voltage-dependent mechanism of spermine transport in liver mitochondria [Toninello, A., Dalla Via, L., Siliprandi, D., and Garlid, K. D. (1992) J. Biol. Chem. 267, 18393-18397] was further characterized by determining the rate constants J(max) and K(m) as functions of membrane potential. An increase in mitochondrial membrane potential from 150 to 210 mV promoted spermine transport, as reflected by an approximate 4-fold increase in J(max) and 25% decrease in K(m). The mechanism for the voltage dependence of transport was examined using the beta value, i. e., the slope of ln(flux) vs FDeltaPsi/RT plots. Flux-voltage analyses performed at very high and very low spermine concentrations yielded beta values of 0.125 and 0.25, for J(max) and J(max)/K(m), respectively. The physical significance of these beta values was analyzed by means of a theory relating the enzyme reaction rate to the free energy profiles [Yagisawa, S. (1985) Biochem. J. 303, 305-311]. Depending on the nature of K(m), two possible models could be proposed to describe the location and shape of the barriers in the membrane. Analysis of previous data concerning spermine binding [Dalla Via, L., Di Noto, V., Siliprandi, D., and Toninello, A. (1996) Biochim. Biophys. Acta 1284, 247-252] by a new rationale provided evidence for an asymmetrical energy profile composed of two peaks with the binding site near the membrane surface followed by a rate-determining energy barrier for the movement of the bound spermine toward the internal region of the membrane.
Collapse
Affiliation(s)
- A Toninello
- Dipartimento di Chimica Biologica, Università di Padova, and Centro di Studio delle Biomembrane del C.N.R. di Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
44
|
Toninello A, Via LD, Di Noto V, Mancon M. The effects of methylglyoxal-bis(guanylhydrazone) on spermine binding and transport in liver mitochondria. Biochem Pharmacol 1999; 58:1899-906. [PMID: 10591144 DOI: 10.1016/s0006-2952(99)00278-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study evaluated the effect of the anticancer drug methylglyoxal-bis(guanylhydrazone) (MGBG) on the binding of the polyamine spermine to the mitochondrial membrane and its transport into the inner compartment of this organelle. Spermine binding was studied by applying a new thermodynamic treatment of ligand-receptor interactions (Di Noto et al., Macromol Theory Simul 5: 165-181, 1996). Results showed that MGBG inhibited the binding of spermine to the site competent for the first step in polyamine transport; the interaction of spermine with this site, termed S1, also mediates the inhibitory effect of the polyamine on the mitochondrial permeability transition (Dalla Via et al., Biochim Biophys Acta 1284: 247-252, 1996). In the presence of 1 mM MGBG, the binding capacity and affinity of this site were reduced by about 2.6-fold; on the contrary, the binding capacity of the S2 site, which is most likely responsible for the internalization of cytoplasmic proteins (see Dalla Via et al., reference cited above), increased by about 1.3-fold, and its binding affinity remained unaffected. MGBG also inhibited the initial rate of spermine transport in a dose-dependent manner by establishing apparently sigmoidal kinetics. Consequently, the total extent of spermine accumulation inside mitochondria was inhibited. This inhibition in transport seems to reflect a conformational change at the level of the channel protein constituting the polyamine transport system, rather than competitive inhibition at the inner active site of the channel, thereby excluding the possibility that the polyamine and drug use the same transport pathway. Furthermore, it is suggested that, in the presence of MGBG, the S2 site is able to participate in residual spermine transport. MGBG also strongly inhibits deltapH-dependent spermine efflux, resulting in a complete block in the bidirectional flux of the polyamine and its sequestration inside the matrix space. The effects of MGBG on spermine accumulation are consistent with in vivo disruption of the regulator of energy metabolism and replication of the mitochondrial genome.
Collapse
Affiliation(s)
- A Toninello
- Dipartimento di Chimica Biologica, Universita' di Padova, Centro di Studio Delle Biomembrane Del CNR, Padua, Italy.
| | | | | | | |
Collapse
|
45
|
Abstract
This review provides a selective history of how studies of mitochondrial cation transport (K+, Na+, Ca2+) developed in relation to the major themes of research in bioenergetics. It then covers in some detail specific transport pathways for these cations, and it introduces and discusses open problems about their nature and physiological function, particularly in relation to volume regulation and Ca2+ homeostasis. The review should provide the basic elements needed to understand both earlier mitochondrial literature and current problems associated with mitochondrial transport of cations and hopefully will foster new interest in the molecular definition of mitochondrial cation channels and exchangers as well as their roles in cell physiology.
Collapse
Affiliation(s)
- P Bernardi
- Department of Biomedical Sciences, University of Padova, and Consiglio Nazionale delle Ricerche Center for the Study of Biomembranes, Padova, Italy.
| |
Collapse
|
46
|
Friberg H, Connern C, Halestrap AP, Wieloch T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J Neurochem 1999; 72:2488-97. [PMID: 10349859 DOI: 10.1046/j.1471-4159.1999.0722488.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondria from different regions of the brain were prepared, and the activation of the mitochondrial permeability transition (MPT) by calcium was investigated by monitoring the associated mitochondrial swelling. In general, the properties of the MPT in brain mitochondria were found to be qualitatively similar to those observed in liver and heart mitochondria. Thus, swelling was inhibited by adenine nucleotides (AdNs) and low pH (<7.0), whereas thiol reagents and alkalosis facilitated swelling. Cyclosporin A and its nonimmunosuppressive analogue N-methyl-Val-4-cyclosporin A (PKF 220-384) both inhibited swelling and prevented the translocation of cyclophilin D from the matrix to the membranes of cortical mitochondria. However, the calcium sensitivity of the MPT differed in mitochondria from three brain regions (hippocampus > cortex > cerebellum) and is correlated with the susceptibility of these regions to ischemic damage. Depleting mitochondria of AdNs by treatment with pyrophosphate ions sensitized the MPT to [Ca2+] and abolished regional differences, implying regional differences in mitochondrial AdN content. This was confirmed by measurements showing significant differences in AdN content among regions (cerebellum > cortex > hippocampus). Our data add to recent evidence that the MPT may be involved in neuronal death.
Collapse
Affiliation(s)
- H Friberg
- Wallenberg Neuroscience Center, Lund University, and Department of Anesthesiology, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
47
|
Dalla Via L, Di Noto V, Toninello A. Binding of spermidine and putrescine to energized liver mitochondria. Arch Biochem Biophys 1999; 365:231-8. [PMID: 10328817 DOI: 10.1006/abbi.1999.1170] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding of spermidine and putrescine to mitochondrial membranes was studied by applying a thermodynamic model of ligand-receptor interactions developed both for equilibrium and far-from-equilibrium binding processes (V. Di Noto, L. Dalla Via, A. Toninello, and M. Vidali Macromol. Theory Simul. 5, 165-181, 1996). Results demonstrate the presence of two monocoordinated binding sites (S1 and S2) for spermidine and one monocoordinated binding site (S2) for putrescine, all exhibiting high capacity and low affinity. It is proposed that differences in the polyamines' flexibility and hydrophilicity perhaps contributes to the observed variations in their interactions with the two sites. A comparison of the binding parameters of these polyamines with those of spermine reveals differences in the specific function of the S1 and S2 sites, identified in studies of spermine binding (L. Dalla Via, V. Di Noto, D. Siliprandi, and A. Toninello Biochim. Biophys. Acta 1284, 247-252, 1996).
Collapse
Affiliation(s)
- L Dalla Via
- Università di Padova, Centro di Studio delle Biomembrane del CNR di Padova, viale G. Colombo 3, Padova, 35121, Italy
| | | | | |
Collapse
|
48
|
Kushnareva YE, Haley LM, Sokolove PM. The role of low (< or = 1 mM) phosphate concentrations in regulation of mitochondrial permeability: modulation of matrix free Ca2+ concentration. Arch Biochem Biophys 1999; 363:155-62. [PMID: 10049510 DOI: 10.1006/abbi.1998.1039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under a variety of conditions, the permeability of the inner mitochondrial membrane to small solutes can be nonselectively increased. A classic mitochondrial permeability transition (MPT) was originally identified based on its dependence on matrix Ca2+ and its extreme sensitivity to cyclosporin A (CsA). It is now clear, however, that several additional and distinct processes can also produce increases in mitochondrial permeability. Both mitochondrial signal peptides (P. M. Sokolove and K. W. Kinnally, 1996, Arch. Biochem. Biophys. 336, 69-76) and butylated hydroxytoluene (BHT) (P. M. Sokolove and L. M. Haley, 1996, J. Bioenerg. Biomembr. 28, 199-206), for example, induce permeability increases that are relatively CsA insensitive and that persist in the presence of EGTA. Inorganic phosphate (Pi) appears to play a key role in each of these permeability increases. High (>1 mM) Pi levels facilitate the classic MPT, while Pi concentrations below 1 mM stimulate the permeability increase induced by signal peptides and inhibit that triggered by BHT. The effect of high Pi concentrations can most probably be explained by exchange of the anion for matrix ADP and the resulting alleviation of ADP-mediated inhibition of the MPT (R. G. Lapidus and P. M. Sokolove, 1994, J. Biol. Chem. 269, 18931-18936). In the experiments reported here, the mechanisms underlying the effects of low Pi concentrations on mitochondrial permeability were investigated, by monitoring mitochondrial volume, with the following results: (1) A hitherto unrecognized ability of Pi (<1 mM) to increase the lag preceding induction of the classic MPT by diamide, phenylarsine oxide, and t-butylhydroperoxide was identified. (2) Data were obtained suggesting that all of the effects of low Pi concentration, stimulation of signal peptide-induced swelling, blockade of BHT-induced swelling, and delay of the classic MPT, can be attributed to the capacity of the anion to complex Ca2+ in the mitochondrial matrix. (3) Differences in the responses of these three systems for enhancing mitochondrial permeability to experimental manipulation indicate that matrix Ca2+ plays more than one role in the regulation of mitochondrial permeability. An additional important finding is the observation that failure of EGTA to alter a mitochondrial process need not mean that the process is Ca2+ independent. In a multicompartment system, absence of EGTA action may instead reflect failure of the chelator to gain access to regulatory Ca2+.
Collapse
Affiliation(s)
- Y E Kushnareva
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
49
|
Wudarczyk J, Debska G, Lenartowicz E. Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys 1999; 363:1-8. [PMID: 10049493 DOI: 10.1006/abbi.1998.1058] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is shown that 2-10 microM Zn2+ induces swelling of rat liver mitochondria incubated in a buffered sucrose medium either with valinomycin or with FCCP, Ca2+, ionophore A23187, oligomycin, and nigericin. This swelling was associated with the release of GSH from mitochondria. Both processes were sensitive to known inhibitors of the mitochondrial permeability transition (MPT), cyclosporin A, and Mg2+. Mitochondrial swelling induced by Zn2+ was also inhibited by rotenone, antymycin A, N-ethylmaleimide, butylhydroxytoluene, and spermine, whereas it was stimulated by tert-butyl hydroperoxide, diamide, and monobromobimane. It did not require the addition of phosphate. The same sensitivity to pH of the mitochondrial swelling induced by Zn2+ and by phenylarsine oxide suggests the same site of the interaction, namely, thiol groups. The ability of Zn2+ to induce mitochondrial swelling gradually decreased along with its increasing concentration above 10 microM. It is concluded that micromolar Zn2+ induces the MPT presumably by the interaction with cysteinyl residues. This process is independent of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- J Wudarczyk
- Nencki Institute of Experimental Biology, Pasteur 3, Warsaw, Poland
| | | | | |
Collapse
|
50
|
Abstract
The endogenous polyamines have been extensively studied with respect to their role in cellular death mechanisms, although the results are contradictory. In contrast, their primary metabolites, the N-acetyl polyamines, have not been much studied. It has been hypothesized that the N-acetyl metabolites may play a role in cellular death mechanisms, and some of the variability between different reports may be due to altered polyamine metabolic capacities. Using primary cultures of rat cerebellar granule cells, the effects of N-acetyl metabolites have been examined on basal, cytosine beta-D-arabinofuranoside (Ara-C)-induced and low K+-induced apoptosis. None of the compounds affected either basal or Ara-C-induced apoptosis at low doses. At higher doses, all compounds were toxic. Two compounds, N8-acetyl spermidine and N1-acetyl spermine, were found to protect cells from low K+-induced apoptosis, which has been shown to be p53-independent. In contrast, the parent polyamines were devoid of protective activity at subtoxic doses. This represents the first time that an antiapoptotic effect of N-acetyl polyamines has been demonstrated. These results raise the possibility that these compounds may act as endogenous neuroprotectants. The lack of effect on basal apoptosis provides evidence of at least two forms of p53-independent apoptosis that can be regulated independently.
Collapse
Affiliation(s)
- M D Berry
- Neuropsychiatry Research Unit, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|