1
|
Electrophoretic mobility-shift and super-shift assays for studies and characterization of protein-DNA complexes. Methods Mol Biol 2013; 977:159-67. [PMID: 23436360 DOI: 10.1007/978-1-62703-284-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gene expression is in part regulated by transcription factors that bind specific sequence motifs in genomic DNA. Transcription factors cooperate with the basal machinery to upregulate or downregulate transcription. Experimental data have revealed the importance of interactions among members of distinct families of transcription factors to form complexes that regulate gene expression. Thus, a full characterization of protein-DNA complexes is essential to understanding of gene regulation in a more complex cellular environment. Electrophoretic mobility shift assay (EMSA) is a powerful technique to resolve nucleic acid-protein complexes formed with transcription factors in nuclear extracts. Herein is described how EMSA and super-shift assays were used to characterize several complexes produced from binding of transcription factors to a regulatory DNA sequence upstream from the promoter region of the human NF-IL6 gene.
Collapse
|
2
|
Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS, Huang TS. TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem 2011; 287:2798-809. [PMID: 22130667 DOI: 10.1074/jbc.m111.258947] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A correlation of TCF12 mRNA overexpression with colorectal cancer (CRC) metastasis was suggested by microarray data and validated by the survey of 120 patients. Thirty-three (27.5%) of the 120 patients showed tumor TCF12 mRNA overexpression and had a higher rate of metastatic occurrence (p = 0.020) and a poorer survival outcome (p = 0.014). Abundant TCF12 levels were also observed in human CRC cell lines such as SW620 and LoVo, but a relatively low level was detected in SW480 cells. Knockdown of TCF12 expression in SW620 and LoVo cells drastically reduced their activities of migration, invasion, and metastasis. Tight cell-cell contact and an increase in E-cadherin but a concomitant decrease in fibronectin were observed in TCF12-knockdown cells. Connexin 26, connexin 43, and gap-junction activity were also increased upon TCF12-knockdown. In contrast, ectopic TCF12 overexpression in SW480 cells facilitated fibronectin expression and cell migration and invasion activities but diminished cellular levels of E-cadherin, connexin 26, connexin 43, and gap junction. A physical association of TCF12 with the E-cadherin promoter was evidenced by chromatin immunoprecipitation assay. TCF12 was tightly correlated with cellular expression of Bmi1 and EZH2 and was co-immunoprecipitable with Bmi1 and EZH2, suggesting that TCF12 transcriptionally suppressed E-cadherin expression via polycomb group-repressive complexes. Clinically, TCF12 mRNA overexpression was also correlated with E-cadherin mRNA down-regulation in the tumor tissues of our 120 patients (p = 0.013). These studies suggested that TCF12 functioned as a transcriptional repressor of E-cadherin and its overexpression was significantly correlated with the occurrence of CRC metastasis.
Collapse
Affiliation(s)
- Chun-Chung Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | | | | | |
Collapse
|
3
|
The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 2010; 30:2181-92. [PMID: 20194619 DOI: 10.1128/mcb.01441-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocytopoiesis involves the stepwise differentiation in the bone marrow (BM) of common myeloid precursors (CMPs) to monocytes. The basic helix-loop-helix transcription factor TAL1/SCL plays a critical role in other hematopoietic lineages, and while it had been reported to be expressed by BM-derived macrophages, its role in monocytopoiesis had not been elucidated. Using cell explant models of monocyte/macrophage (MM) differentiation, one originating with CMPs and the other from more committed precursors, we characterized the phenotypic and molecular consequences of inactivation of Tal1 expression ex vivo. While Tal1 knockout had minimal effects on cell survival and slightly accelerated terminal differentiation, it profoundly inhibited cell proliferation and decreased entry into and traversal of the G(1) and S phases. In conjunction, steady-state levels of p16(Ink4a) mRNA were increased and those of Gata2 mRNA decreased. Chromatin immunoprecipitation analysis demonstrated the association of Tal1 and E47, one of its E protein DNA-binding partners, with an E box-GATA sequence element in intron 4 of the Gata2 gene and with three E boxes upstream of p16(Ink4a). Finally, wild-type Tal1, but not a DNA binding-defective mutant, rescued the proliferative defect in Tal1-null MM precursors. These results document the importance of this transcription factor in cell cycle progression and proliferation during monocytopoiesis and the requirement for direct DNA binding in these processes.
Collapse
|
4
|
E box motifs as mediators of proviral latency of human retroviruses. Retrovirology 2009; 6:81. [PMID: 19758443 PMCID: PMC2749803 DOI: 10.1186/1742-4690-6-81] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022] Open
Abstract
The palindromic sequence motifs (CANNTG) known as E boxes are considered as binding sites for the basic helix-loop-helix (bHLH) class of DNA-binding proteins. Their presence has been reported in the long terminal repeats (LTR) of the HIV-1 and HTLV-1 proviruses. Their close proximity with the TATA region of both LTRs indicates that the bHLH proteins may act as important regulators of the function of proviral transcription. Indeed, observations on HIV-1 and recent results on HTLV-1 underline that these E boxes may be critically involved in the regulation of the proviral transcription of these human retroviruses. Indeed, of the two E boxes flanking the TATA sequences of the HIV-1 provirus, the 3' E box has been implicated in the transcriptional inhibition of viral gene expression. Such a role might also be played by the unique 5' E box present in the HTLV-1 LTR. In both cases, the expression of tissue-specfic bHLH proteins, like TAL1 might counteract the inhibitory effect exerted by E box proteins, thereby increasing proviral transcription. Finally, a phylogenetic study encompassing several subtypes of these two human retroviruses underlines that these E box motifs have recently appeared in the proviral LTRs and may be considered as potential mediators in the establishment of proviral latency.
Collapse
|
5
|
Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development. Mol Cell Biol 2008; 28:2675-89. [PMID: 18250154 DOI: 10.1128/mcb.01945-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A complete understanding of the transcriptional regulation of developmental lineages requires that all relevant factors be identified. Here, we have taken a proteomic approach to identify novel proteins associated with GATA-1, a lineage-restricted zinc finger transcription factor required for terminal erythroid and megakaryocytic maturation. We identify the Krüppel-type zinc finger transcription factor ZBP-89 as being a component of multiprotein complexes involving GATA-1 and its essential cofactor Friend of GATA-1 (FOG-1). Using chromatin immunoprecipitation assays, we show that GATA-1 and ZBP-89 cooccupy cis-regulatory elements of certain erythroid and megakaryocyte-specific genes, including an enhancer of the GATA-1 gene itself. Loss-of-function studies in zebrafish and mice demonstrate an in vivo requirement for ZBP-89 in megakaryopoiesis and definitive erythropoiesis but not primitive erythropoiesis, phenocopying aspects of FOG-1- and GATA-1-deficient animals. These findings identify ZBP-89 as being a novel transcription factor involved in erythroid and megakaryocytic development and suggest that it serves a cooperative function with GATA-1 and/or FOG-1 in a developmental stage-specific manner.
Collapse
|
6
|
Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Dev Biol 2008; 314:200-14. [DOI: 10.1016/j.ydbio.2007.11.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/19/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
|
7
|
Riggi N, Cironi L, Suvà ML, Stamenkovic I. Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 2007; 213:4-20. [PMID: 17691072 DOI: 10.1002/path.2209] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sarcomas comprise some of the most aggressive solid tumours that, for the most part, respond poorly to chemo- and radiation therapy and are associated with a sombre prognosis when surgical removal cannot be performed or is incomplete. Partly because of their lower frequency, sarcomas have not been studied as intensively as carcinomas and haematopoietic malignancies, and the molecular mechanisms that underlie their pathogenesis are only beginning to be understood. Even more enigmatic is the identity of the primary cells from which these tumours originate. Over the past 25 years, however, several non-random chromosomal translocations have been found to be associated with defined sarcomas. Each of these translocations generates a fusion gene believed to be directly related to the pathogenesis of the sarcoma in which it is expressed. The corresponding fusion proteins provide a unique tool not only to study the process of sarcoma development, but also to identify cells that are permissive for their putative oncogenic properties. This is the first of two reviews that cover the mechanisms whereby specific fusion/mutant gene products participate in sarcoma development and the cellular context that may provide the necessary permissiveness for their expression and oncogenicity. Part 1 of the review focuses on sarcomas that express fusion genes containing TET gene family products, including EWSR1, TLS/FUS, and TAFII68. Part 2 (J Pathol 2007; DOI: 10.1002/path.2008) summarizes our current understanding of the genetic and cellular origins of sarcomas expressing fusion genes exclusive of TET family members; it also covers soft tissue malignancies harbouring specific mutations in RTK-encoding genes, the prototype of which are gastrointestinal stromal tumours (GIST).
Collapse
Affiliation(s)
- N Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
8
|
Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS, Manning TC, Silbergeld DL, Glackin CA, Reh TA, Rostomily RC. TWIST is expressed in human gliomas and promotes invasion. Neoplasia 2006; 7:824-37. [PMID: 16229805 PMCID: PMC1501937 DOI: 10.1593/neo.04352] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 04/21/2005] [Accepted: 05/18/2005] [Indexed: 11/18/2022] Open
Abstract
TWIST, a basic helix-loop-helix (bHLH) transcription factor that regulates mesodermal development, has been shown to promote tumor cell metastasis and to enhance survival in response to cytotoxic stress. Our analysis of rat C6 glioma cell-derived cDNA revealed TWIST expression, suggesting that the gene may play a role in the genesis and physiology of primary brain tumors. To further delineate a possible oncogenic role for TWIST in the central nervous system (CNS), we analyzed TWIST expression in human gliomas and normal brain by using reverse transcription polymerase chain reaction, Northern blot analysis, in situ hybridization, and immunohistochemistry. TWIST expression was detected in the large majority of human glioma-derived cell lines and human gliomas examined. Levels of TWIST mRNA were associated with the highest grade gliomas, and increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis and subsequent malignant progression. TWIST was also expressed in embryonic and fetal human brain, and in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.
Collapse
Affiliation(s)
- Maria C Elias
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nam CH, Rabbitts TH. The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Mol Ther 2005; 13:15-25. [PMID: 16260184 DOI: 10.1016/j.ymthe.2005.09.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 01/23/2023] Open
Abstract
Chromosomal translocations are primary events in the development of leukemias, representing at least one genetic feature of the putative cancer stem cell. Studies of genes influenced by chromosomal translocations have yielded a vast amount of information about how cancer is initiated and maintained. In particular, acute leukemias have demonstrated that chromosomal translocations often involve transcription regulators that function by interacting with proteins and by controlling cell fate in the aberrant setting of the developing cancer cell. As a quintessential chromosomal translocation gene product, LMO2 has many properties that typify this class of molecule. In addition to its involvement in chromosomal translocations, the LMO2 gene was inadvertently activated in an X-SCID gene therapy trial by retroviral insertion. New molecular therapies targeted directly at the LMO2 protein could have major impact as adjuncts to existing therapies or as therapeutics in their own right. In this review, we outline the current knowledge about LMO2 and some possible routes to develop reagents that might be possible macromolecular drugs in the future.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Endothelium, Vascular/physiology
- Genetic Therapy
- Hematopoiesis
- Humans
- LIM Domain Proteins
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/metabolism
- Metalloproteins/genetics
- Metalloproteins/physiology
- Mice
- Mice, Transgenic
- Multiprotein Complexes/physiology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Proto-Oncogene Proteins
- Retroviridae/genetics
- Transcription, Genetic
- Translocation, Genetic/genetics
- Translocation, Genetic/physiology
Collapse
Affiliation(s)
- Chang-Hoon Nam
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The burgeoning body of information on the genetic changes present in and underlying the development and biology of human cancers has carried implications regarding the possible genetic events that are responsible for not only the genesis of these cancers but also the hope of the cure for these cancers. Chondrosarcomas are a group of tumors that fall into this category. The purpose of this review is to summarize the genetic findings in these tumors. RECENT FINDINGS The histopathologic variability of chondrosarcomas is reflected in the complexity and lack of specificity of their cytogenetic and molecular genetic findings, except for extraskeletal myxoid chondrosarcomas. These are characterized in the preponderant number of cases by a translocation, t(9;22)(q22;q12), and in a small number of cases by variant translocations t(9;17)(q22;q11) and t(9;15)(q22;q21). These translocations lead to the formation of abnormal fusion genes and gene products (proteins). In each of these translocations, the CHN gene is involved, resulting in the chimeric fusion genes EWS/CHN, RBP56/CHN, and TCF12/CHN, respectively. The specific translocations and their associated molecular genetic changes are diagnostic of extraskeletal myxoid chondrosarcomas. The abnormal proteins resulting from these fusion genes aberrantly affect gene transcription and cellular signaling pathways thought to be responsible for initiating sarcoma formation. In skeletal (central) chondrosarcomas of varying histopathologic types, the cytogenetic and molecular genetic findings are variable, complex, and apparently lacking in specificity. These changes may reflect a stepwise process (or processes) of oncogenesis involving an array of genes. SUMMARY Although some cartilaginous tumors are characterized by specific or recurrent chromosome alterations and molecular genetic changes, much is yet to be learned about the nature and sequence of these genetics events and about their unique role in the stepwise process involved in the development and biology of each tumor type, both malignant and nonmalignant. Until such time, some of the genetic changes, particularly the presence of specific translocations, can be of definite diagnostic value.
Collapse
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.
| |
Collapse
|
11
|
Hansson A, Manetopoulos C, Jönsson JI, Axelson H. The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTalpha genes. Biochem Biophys Res Commun 2004; 312:1073-81. [PMID: 14651981 DOI: 10.1016/j.bbrc.2003.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Tal1 gene (also called Scl or TCL5) encodes a basic helix-loop-helix transcription factor required for hematopoiesis and vasculogenesis. Additionally, aberrant transcriptional activation of the Tal1 gene is a frequent event in human T cell acute lymphoblastic leukemia (T-ALL). T cell specific expression of TAL1 in mice induces aggressive T cell malignancies, demonstrating the oncogenic potential of TAL1. Yet, the underlying mechanisms of TAL1 induced tumorigenesis are poorly understood. By inhibiting E protein mediated transcription of the pTalpha gene, TAL1 can interfere with the T cell differentiation program. In addition, several studies suggest that TAL1 expression might also enhance proliferation rate. We report here that TAL1 can bind the E boxes in both the p16 and the pTalpha promoters, and functionally suppress the activity of both promoters. These results indicate that TAL1 can affect both T cell proliferation and differentiation. Moreover, we show that overexpression of TAL1 in hematopoietic progenitor cells promotes cell cycle division.
Collapse
Affiliation(s)
- Anders Hansson
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, SE-205 02, Malmö, Sweden
| | | | | | | |
Collapse
|
12
|
Abstract
In the hematopoietic system, lineage commitment and differentiation is controlled by the combinatorial action of transcription factors from diverse families. SCL is a basic helix-loop-helix transcription factor that is an essential regulator at several levels in the hematopoietic hierarchy and whose inappropriate regulation frequently contributes to the development of pediatric T-cell acute lymphoblastic leukemia. This review discusses advances that have shed important light on the functions played by SCL during normal hematopoiesis and leukemogenesis and have revealed an unexpected robustness of hematopoietic stem cell function. Molecular studies have unraveled a mechanism through which gene expression is tightly controlled, as SCL functions within multifactorial complexes that exhibit an all-or-none switch-like behavior in transcription activation, arguing for a quantal process that depends on the concurrent occupation of target loci by all members of the complex. Finally, variations in composition of SCL-containing complexes may ensure flexibility and specificity in the regulation of lineage-specific programs of gene expression, thus providing the molecular basis through which SCL exerts its essential functions at several branch points of the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherche en Immunovirologie et Cancérologie (IRIC), Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: chondrosarcoma and other cartilaginous neoplasms. CANCER GENETICS AND CYTOGENETICS 2003; 143:1-31. [PMID: 12742153 DOI: 10.1016/s0165-4608(03)00002-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | |
Collapse
|
14
|
Abstract
To examine the mechanism of HIV-1 regulation by NF-IL6 in activated human cells, we selected a Jurkat cell line that did not contain endogenous NF-IL6. In this cellular environment, we evaluated the effect of exogenous NF-IL6 on transcription mediated by native and deleted LTR sequences. In Jurkat cells stimulated with LPS and PMA, LTR-mediated transcription was enhanced by NF-IL6. The results of deletion studies revealed a central role for the basal LTR region and the TATA element in the LTR, in upregulation of reporter gene expression by NF-IL6 in activated cells. In the selected cellular environment, regulation of transcription by NF-IL6 was not evident in studies of promoter regions of other genes. The results implied that the basal region of HIV-1 LTR includes molecular properties that support activation of HIV-1 by NF-IL6 in stimulated cells.
Collapse
Affiliation(s)
- Anissa E Buckner
- Department of Chemistry, Purdue University, 1393 Brown Building, W. Lafayette, IN 47907, USA
| | | | | |
Collapse
|
15
|
Yang Y, Pares-Matos EI, Tesmer VM, Dai C, Ashworth S, Huai J, Bina M. Organization of the promoter region of the human NF-IL6 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:102-8. [PMID: 12151100 DOI: 10.1016/s0167-4781(02)00401-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In monocyte/macrophages, the human NF-IL6 gene was activated by LPS or PMA. However, a robust response required stimulation of cells with both LPS and PMA. To examine the molecular basis of this response, we isolated human genomic DNA and determined the nucleotide sequence of a segment (6.4 kb) that included the transcription initiation site of the gene. The unique sequences in the 6.4-kb DNA include several potential transcription factor-binding elements that may explain the molecular basis of the activation of the human NF-IL6 gene by signaling molecules that control the immune and inflammatory responses. Deletion analysis localized an LPS+PMA responsive region downstream position -287, with respect to the transcription initiation site of the NF-IL6 gene. The responsive region includes a potential site for interactions with CREB and a region (-287 to -247) that interacts with SP1 and SP3. In functional assays, the potential CREB site responded to cellular stimulation. The region that interacted with SP1 and SP3 augmented the overall level of activity produced in response to LPS+PMA.
Collapse
Affiliation(s)
- Yingmei Yang
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907-1393, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
DNA-binding and functional assays examined the role played by NF-IL6 in regulation of HIV-1 transcription in human monocyte/macrophages (U937 cells), stimulated with LPS+PMA. When incubated with nuclear extracts from stimulated cells, a region (-189/-147), containing the major NF-IL6-binding sequence and the USF site, interacted selectively with USF1 and USF2. Anti-C/EBPbeta reacted poorly with the complexes produced with the wild-type probe. In contrast, complex formation with NF-IL6 was clearly evident in experiments analyzing a probe containing an insertion in the USF site. In functional assays, increasing concentrations of a decoy against NF-IL6 reduced gene expression from the LTR of the wild-type HIV-1 variant, supporting a critical role for NF-IL6 in regulation of HIV-1 transcription in stimulated monocyte/macrophages. The decoy also reduced gene expression from a deletion construct lacking NF-IL6-binding sequences. The results implied that in LPS+PMA-stimulated monocyte/macrophages, the endogenous NF-IL6 could act via a site-independent pathway in upregulation of HIV-1 transcription. Analysis of a short DNA segment, containing the -189/-147 region, suggested functional interactions of NF-IL6 and USF. In activated cells exogenous NF-IL6 enhanced dramatically gene expression through a short DNA segment containing the NF-kappaB sites, supporting functional interactions of NF-IL6 and NF-kappaB.
Collapse
Affiliation(s)
- Yingmei Yang
- Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907-1393, USA
| | | | | |
Collapse
|
17
|
Tang T, Arbiser JL, Brandt SJ. Phosphorylation by mitogen-activated protein kinase mediates the hypoxia-induced turnover of the TAL1/SCL transcription factor in endothelial cells. J Biol Chem 2002; 277:18365-72. [PMID: 11904294 DOI: 10.1074/jbc.m109812200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix transcription factor TAL1 (or SCL), originally identified from its involvement by a chromosomal rearrangement in T-cell acute lymphoblastic leukemia, is required for hematopoietic development. TAL1 also has a critical role in embryonic vascular remodeling and is expressed in endothelial cells postnatally, although little is known about its function or regulation in this cell type. We report here that the important proangiogenic stimulus hypoxia stimulates phosphorylation, ubiquitination, and proteasomal breakdown of TAL1 in endothelial cells. Tryptic phosphopeptide mapping and chemical inhibitor studies showed that hypoxia induced the mitogen-activated protein kinase-mediated phosphorylation of a single serine residue, Ser(122), in the protein, and site-directed mutagenesis demonstrated that Ser(122) phosphorylation was necessary for hypoxic acceleration of TAL1 turnover in an immortalized murine endothelial cell line. Finally, whereas TAL1 expression was detected in endothelial cells from both large and small vessels, hypoxia-induced TAL1 turnover was observed only in microvascular endothelial cells. Besides their implications for TAL1 function in angiogenic processes, these results demonstrate that a protein kinase(s) important for mitogenic signaling is also utilized in hypoxic endothelial cells to target a transcription factor for destruction.
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
18
|
O'Neil J, Billa M, Oikemus S, Kelliher M. The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene 2001; 20:3897-905. [PMID: 11439353 DOI: 10.1038/sj.onc.1204519] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 04/03/2001] [Accepted: 04/09/2001] [Indexed: 11/08/2022]
Abstract
Activation of the basic helix-loop-helix (bHLH) gene TAL-1 (or SCL) is the most frequent gain-of-function mutation in pediatric T cell acute lymphoblastic leukemia (T-ALL). Similarly, mis-expression of tal-1 in the thymus of transgenic mice results in the development of clonal T cell lymphoblastic leukemia. To determine the mechanism(s) of tal-1-induced leukemogenesis, we created transgenic mice expressing a DNA binding mutant of tal-1. Surprisingly, these mice develop disease, demonstrating that the DNA binding properties of tal-1 are not required to induce leukemia/lymphoma in mice. However, wild type tal-1 and the DNA binding mutant both form stable complexes with E2A proteins. In addition, tal-1 stimulates differentiation of CD8-single positive thymocytes but inhibits the development of CD4-single positive cells: effects also observed in E2A-deficient mice. Our study suggests that the bHLH protein tal-1 contributes to leukemia by interfering with E2A protein function(s).
Collapse
Affiliation(s)
- J O'Neil
- University of Massachusetts Medical School, Department of Molecular Genetics and Microbiology and the Cancer Center, 373 Plantation Street, Worcester, Massachusetts, MA 01605, USA
| | | | | | | |
Collapse
|
19
|
Ji J, Chakraborty A, Geng M, Zhang X, Amini A, Bina M, Regnier F. Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 745:197-210. [PMID: 10997715 DOI: 10.1016/s0378-4347(00)00192-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper describes a new analytical strategy for identifying proteins in concentration flux based on isotopic labeling peptides in tryptic digests. Primary amino groups in peptides from control and experimental samples were derivatized with acetate and trideuteroacetate, respectively. After mixing samples thus labeled from these two sources, the relative concentration of peptides was determined by isotope ratio analysis with MALDI and ESI mass spectrometry. More than a 100-fold difference in relative concentration could be detected. Simplification of complex tryptic digests prior to mass spectral analysis was achieved by selection of histidine-containing peptides with immobilized metal affinity sorbents or of glycopeptides by lectin columns. Because most of these peptides have sequences that are unique to a single protein, they are a signature of the protein from which they were derived; providing a facile route to protein analysis.
Collapse
Affiliation(s)
- J Ji
- Department of Chemistry, Purdue University, Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bina M, Demmon S, Pares-Matos EI. Syndromes associated with Homo sapiens pol II regulatory genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:171-219. [PMID: 10697410 DOI: 10.1016/s0079-6603(00)64005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The molecular basis of human characteristics is an intriguing but an unresolved problem. Human characteristics cover a broad spectrum, from the obvious to the abstract. Obvious characteristics may include morphological features such as height, shape, and facial form. Abstract characteristics may be hidden in processes that are controlled by hormones and the human brain. In this review we examine exaggerated characteristics presented as syndromes. Specifically, we focus on human genes that encode transcription factors to examine morphological, immunological, and hormonal anomalies that result from deletion, insertion, or mutation of genes that regulate transcription by RNA polymerase II (the Pol II genes). A close analysis of abnormal phenotypes can give clues into how sequence variations in regulatory genes and changes in transcriptional control may give rise to characteristics defined as complex traits.
Collapse
Affiliation(s)
- M Bina
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47097, USA
| | | | | |
Collapse
|
21
|
Huang S, Brandt SJ. mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol Cell Biol 2000; 20:2248-59. [PMID: 10688671 PMCID: PMC110841 DOI: 10.1128/mcb.20.6.2248-2259.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the TAL1 (or SCL) gene is the most frequent gain-of-function mutation in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 belongs to the basic helix-loop-helix (HLH) family of transcription factors that bind as heterodimers with the E2A and HEB/HTF4 gene products to a nucleotide sequence motif termed the E-box. Reported to act both as an activator and as a repressor of transcription, the mechanisms underlying TAL1-regulated gene expression are poorly understood. We report here that the corepressor mSin3A is associated with TAL1 in murine erythroleukemia (MEL) and human T-ALL cells. Interaction mapping showed that the basic-HLH domain of TAL1 was both necessary and sufficient for TAL1-mSin3A interaction. TAL1 was found, in addition, to interact with the histone deacetylase HDAC1 in vitro and in vivo, and a specific histone deacetylase inhibitor, trichostatin A (TSA), relieved TAL1-mediated repression of an E-box-containing promoter and a GAL4 reporter linked to a thymidine kinase minimal promoter. Further, TAL1 association with mSin3A and HDAC1 declined during dimethyl sulfoxide-induced differentiation of MEL cells in parallel with a decrease in mSin3A abundance. Finally, TSA had a synergistic effect with enforced TAL1 expression in stimulating MEL cells to differentiate, while constitutive expression of mSin3A inhibited MEL cell differentiation. These results demonstrate that a corepressor complex containing mSin3A and HDAC1 interacts with TAL1 and restricts its function in erythroid differentiation. This also has implications for this transcription factor's actions in leukemogenesis.
Collapse
Affiliation(s)
- S Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
22
|
Park ST, Nolan GP, Sun XH. Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J Exp Med 1999; 189:501-8. [PMID: 9927512 PMCID: PMC2192921 DOI: 10.1084/jem.189.3.501] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1998] [Revised: 10/18/1998] [Indexed: 02/05/2023] Open
Abstract
Two models have been proposed for the molecular mechanism by which the Tal1 oncogene causes T cell acute lymphoblastic leukemia (T-ALL). The activation model suggests that Tal1 as heterodimers with the E2A transcription factor activates the expression of oncogenes. The inhibition model postulates that Tal1 interferes with the tumor-suppressing function of E2A. In the Jurkat T cell line, originally derived from a patient with T-ALL, Tal1 is complexed with E2A proteins and the transcriptional activity of E2A is very low. When E2A activity was restored by expressing an E2A-Tal1 fusion protein, E-T/2, the Jurkat cells underwent growth arrest and subsequently apoptosis, thus supporting the inhibition model and suggesting that E2A loss may contribute to leukemic progression.
Collapse
Affiliation(s)
- S T Park
- Department of Cell Biology, New York University Medical Center, New York 10016, USA
| | | | | |
Collapse
|
23
|
Elefanty AG, Robb L, Begley CG. Factors involved in leukaemogenesis and haemopoiesis. BAILLIERE'S CLINICAL HAEMATOLOGY 1997; 10:589-614. [PMID: 9421618 DOI: 10.1016/s0950-3536(97)80028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review describes the chromosomal abnormalities in T-cell acute lymphoblastic leukaemia (ALL) which result in the over-expression of the gene SCL, which encodes a helix-loop-helix transcription factor. Also described are how gene targeting studies have revealed a key role for SCL in normal haemopoiesis. Next, the BCR-ABL fusion protein, seen in chronic myeloid leukaemia (CML) and in some patients with ALL, is discussed. Finally, the involvement of members of the core-binding factor (CBF) gene family in leukaemogenesis are described. Members of this gene family are involved in the generation of fusion proteins as a result of t(8;21) and inv(16), the most common translocations associated with acute myeloid leukaemia (AML). They provide a useful model of the way in which aberrant transcriptional function, brought about through genetic alterations, can modify haemopoietic development.
Collapse
Affiliation(s)
- A G Elefanty
- Division of Cancer and Haematology, Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | |
Collapse
|
24
|
Nielsen AL, Norby PL, Pedersen FS, Jorgensen P. E-box sequence and context-dependent TAL1/SCL modulation of basic helix-loop-helix protein-mediated transcriptional activation. J Biol Chem 1996; 271:31463-9. [PMID: 8940159 DOI: 10.1074/jbc.271.49.31463] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TAL1/SCL is a basic helix-loop-helix (bHLH) oncoprotein that is expressed in several cell lines including many hematolymphoid cells, but not in T- and B-lineage cells. The TAL1 gene was originally discovered as being transcriptionally activated by chromosomal rearrangements in T-cell acute lymphoblastic leukemia (T-ALL). Here we have shown that TAL1 and the ubiquitously expressed murine bHLH transcription factor ALF1 formed heterodimers that, compared with ALF1 homodimers, had a more restricted E-box specificity and bound preferentially to the glucocorticoid-responsive E-box (Egre) motif (AACAGATGGT). Overexpression of the dominant inhibitory HLH protein Id1 in NIH3T3 cells reduced the transcriptional activity mediated by ALF1 homodimers, whereas the transcriptional activity mediated by TAL1/ALF1 heterodimers was resistant to Id overexpression. Our results show that ALF1 may serve as a dimerization partner for the bHLH oncoprotein TAL1 and form a complex with a distinctive DNA binding property. These findings support the hypothesis that the leukemic characteristics of the TAL1 oncoprotein could be mediated by activation of a set of target genes as heterodimeric complexes with ubiquitously expressed bHLH transcription factors such as ALF1 and that a principal role of TAL1 might be to neutralize an Id-mediated inactivation.
Collapse
Affiliation(s)
- A L Nielsen
- Department of Molecular Biology, Aarhus University, C. F. Mollers Allé 130, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
25
|
Nielsen AL, Nørby PL, Pedersen FS, Jørgensen P. Various modes of basic helix-loop-helix protein-mediated regulation of murine leukemia virus transcription in lymphoid cell lines. J Virol 1996; 70:5893-901. [PMID: 8709209 PMCID: PMC190607 DOI: 10.1128/jvi.70.9.5893-5901.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The transcriptionally regulatory regions of the lymphomagenic Akv and SL3-3 murine leukemia retroviruses (MLVs) contain two types of E-box consensus motifs, CAGATG. One type, EA/S, is located in the upstream promoter region, and the other, E(gre), is located in a tandem repeat with enhancer properties. We have examined the requirements of the individual E-boxes in MLV transcriptional regulation. In lymphoid cell lines only, the E(gre)-binding protein complexes included ALF1 or HEB and E2A basic helix-loop-helix proteins. Ectopic ALF1 and E2A proteins required intact E(gre) motifs for mediating transcriptional activation. ALF1 transactivated transcription of Akv MLV through the two E(gre) motifs equally, whereas E2A protein required the promoter-proximal E(gre) motif. In T- and B-cell lines, the E(gre) motifs were of major importance for Akv MLV transcriptional activity, while the EA/S motif had some effect. In contrast, neither E(gre) nor EA/S motifs contributed pronouncedly to Akv MLV transcription in NIH 3T3 cells lacking DNA-binding ALF1 or HEB and E2A proteins. The Id1 protein was found to repress ALF1 activity in vitro and in vivo. Moreover, ectopic Id1 repressed E(gre)-directed but not EA/S-directed MLV transcription in lymphoid cell lines. In conclusion, E(gre) motifs and interacting basic helix-loop-helix proteins are important determinants for MLV transcriptional activity in lymphocytic cell lines.
Collapse
Affiliation(s)
- A L Nielsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
26
|
Abstract
A variety of unique chromosome translocations are found in the malignant cells of patients with T cell acute lymphoblastic leukemia (T-ALL). Molecular analysis of these translocations has implicated nine different proto-oncogenes in the pathogenesis of T-ALL. Despite the apparent genetic complexity of this disease, recent studies have uncovered a common pathway of T-ALL development that involves two distinct families of transcription factors.
Collapse
Affiliation(s)
- L Y Hwang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9140, USA
| | | |
Collapse
|
27
|
Bockamp EO, McLaughlin F, Murrell A, Green AR. Transcription factors and the regulation of haemopoiesis: lessons from GATA and SCL proteins. Bioessays 1994; 16:481-8. [PMID: 7945276 DOI: 10.1002/bies.950160707] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the central issues of developmental biology concerns the molecular mechanisms whereby a multipotent cell gives rise to distinct differentiated progeny. Differences between specialised cell types reflect variations in their patterns of gene expression. The regulation of transcription initiation is an important control point for gene expression and it is, therefore, not surprising that transcription factors play a pivotal role in mammalian development and differentiation. Haemopoiesis offers a uniquely tractable system for the study of lineage commitment and differentiation. The importance of transcription factors in the normal regulation of haemopoiesis is underlined by the frequency with which transcription factors are targeted by leukaemogenic mutations. Studies of the function and regulation of haemopoietic transcription factors, especially those expressed in lineage-restricted patterns, should greatly increase our understanding of the molecular control of haemopoiesis. In this review we have focused on insights provided by recent studies of the GATA and SCL proteins.
Collapse
Affiliation(s)
- E O Bockamp
- University of Cambridge Department of Haematology, MRC Centre, UK
| | | | | | | |
Collapse
|