1
|
Abstract
An ATP-powered DNA translocation machine encapsidates the viral genome in the large dsDNA bacteriophages. The essential components include the empty shell, prohead, and the packaging enzyme, terminase. During translocation, terminase is docked on the prohead's portal protein. The translocation ATPase and the concatemer-cutting endonuclease reside in terminase. Remarkably, terminases, portal proteins, and shells of tailed bacteriophages and herpes viruses show conserved features. These DNA viruses may have descended from a common ancestor. Terminase's ATPase consists of a classic nucleotide binding fold, most closely resembling that of monomeric helicases. Intriguing models have been proposed for the mechanism of dsDNA translocation, invoking ATP hydrolysis-driven conformational changes of portal or terminase powering DNA motion. Single-molecule studies show that the packaging motor is fast and powerful. Recent advances permit experiments that can critically test the packaging models. The viral genome translocation mechanism is of general interest, given the parallels between terminases, helicases, and other motor proteins.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA.
| | | |
Collapse
|
2
|
Ortega ME, Gaussier H, Catalano CE. The DNA maturation domain of gpA, the DNA packaging motor protein of bacteriophage lambda, contains an ATPase site associated with endonuclease activity. J Mol Biol 2007; 373:851-65. [PMID: 17870092 PMCID: PMC2082050 DOI: 10.1016/j.jmb.2007.07.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022]
Abstract
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.
Collapse
Affiliation(s)
- Marcos E. Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO
| | - Helene Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| | - Carlos E. Catalano
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
- * Address correspondence to this author: Department of Medicinal Chemistry, University of Washington School of Pharmacy, H172 Health Science Building, Box 357610, Seattle, WA (206) 685-2468 (phone), (206) 685-3252 (fax), (internet)
| |
Collapse
|
3
|
Bukovska G, Klucar L, Vlcek C, Adamovic J, Turna J, Timko J. Complete nucleotide sequence and genome analysis of bacteriophage BFK20 — A lytic phage of the industrial producer Brevibacterium flavum. Virology 2006; 348:57-71. [PMID: 16457869 DOI: 10.1016/j.virol.2005.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/14/2005] [Accepted: 12/11/2005] [Indexed: 10/25/2022]
Abstract
The entire double-stranded DNA genome of bacteriophage BFK20, a lytic phage of the Brevibacterium flavum CCM 251--industrial producer of L-lysine--was sequenced and analyzed. It consists of 42,968 base pairs with an overall molar G + C content of 56.2%. Fifty-five potential open reading frames were identified and annotated using various bioinformatics tools. Clusters of functionally related putative genes were defined (structural, lytic, replication and regulatory). To verify the annotation of structural proteins, they were resolved by 2D gel electrophoresis and were submitted to N-terminal amino acid sequencing. Structural proteins identified included the portal and major and minor tail proteins. Based on the overall genome sequence comparison, similarities with other known bacteriophage genomes include primarily bacteriophages from Mycobacterium spp. and some regions of Corynebacterium spp. genomes--possible prophages. Our results support the theory that phage genomes are mosaics with respect to each other.
Collapse
Affiliation(s)
- Gabriela Bukovska
- Institute of Molecular Biology, Centre of Excellence for Molecular Medicine, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
4
|
Gaussier H, Yang Q, Catalano CE. Building a virus from scratch: assembly of an infectious virus using purified components in a rigorously defined biochemical assay system. J Mol Biol 2006; 357:1154-66. [PMID: 16476446 DOI: 10.1016/j.jmb.2006.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The assembly of double-stranded DNA (dsDNA) viruses such as poxvirus, the herpesviruses and many bacteriophages is a complex process that requires the coordinated activities of numerous proteins of both viral and host origin. Here, we report the assembly of an infectious wild-type lambda virus using purified proteins and commercially available DNA, and optimization of the assembly reaction in a rigorously defined biochemical system. Seven proteins, purified procapsids and tails, and mature lambda DNA are necessary and sufficient for efficient virus assembly in vitro. Analysis of the reaction suggests that (i) virus assembly in vitro is optimal under conditions that faithfully mimic the intracellular environment within an Escherichia coli cell, (ii) concatemeric DNA is required for the successful completion of virus assembly, (iii) several of the protein components oligomerize concomitant with their step-wise addition to the nascent virus particle and (iv) tail addition is the rate-limiting step in virus assembly. Importantly, the assembled virus may enter either of the developmental pathways (lytic or lysogenic) expected of a lambda virion. Thus, we demonstrate for the first time that a wild-type, complex DNA virus may be assembled from purified components under defined biochemical conditions. This system provides a powerful tool to characterize, at the molecular level, the step-by-step processes required to assemble an infectious virus particle. Given the remarkable similarities between dsDNA bacteriophage and eukaryotic dsDNA viruses, characterization of the lambda system has broad biological implications in our understanding of virus development at a global level.
Collapse
Affiliation(s)
- Hélène Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
5
|
Maluf NK, Yang Q, Catalano CE. Self-association properties of the bacteriophage lambda terminase holoenzyme: implications for the DNA packaging motor. J Mol Biol 2005; 347:523-42. [PMID: 15755448 DOI: 10.1016/j.jmb.2005.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/01/2005] [Accepted: 01/06/2005] [Indexed: 11/23/2022]
Abstract
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Ave, C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
6
|
Dhar A, Feiss M. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging. J Mol Biol 2005; 347:71-80. [PMID: 15733918 DOI: 10.1016/j.jmb.2004.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/15/2004] [Accepted: 12/15/2004] [Indexed: 11/25/2022]
Abstract
DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.
Collapse
Affiliation(s)
- Alok Dhar
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
7
|
Baumann RG, Black LW. Isolation and characterization of T4 bacteriophage gp17 terminase, a large subunit multimer with enhanced ATPase activity. J Biol Chem 2003; 278:4618-27. [PMID: 12466275 DOI: 10.1074/jbc.m208574200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phage T4 terminase is a two-subunit enzyme that binds to the prohead portal protein and cuts and packages a headful of concatameric DNA. To characterize the T4 terminase large subunit, gp17 (70 kDa), gene 17 was cloned and expressed as a chitin-binding fusion protein. Following cleavage and release of gp17 from chitin, two additional column steps completed purification. The purification yielded (i) homogeneous soluble gp17 highly active in in vitro DNA packaging ( approximately 10% efficiency, >10(8) phage/ml of extract); (ii) gp17 lacking endonuclease and contaminating protease activities; and (iii) a DNA-independent ATPase activity stimulated >100-fold by the terminase small subunit, gp16 (18 kDa), and modestly by portal gp20 and single-stranded binding protein gp32 multimers. Analyses revealed a preparation of highly active and slightly active gp17 forms, and the latter could be removed by immunoprecipitation using antiserum raised against a denatured form of the gp17 protein, leaving a terminase with the increased specific activity (approximately 400 ATPs/gp17 monomer/min) required for DNA packaging. Analysis of gp17 complexes separated from gp16 on glycerol gradients showed that a prolonged enhanced ATPase activity persisted after exposure to gp16, suggesting that constant interaction of the two proteins may not be required during packaging.
Collapse
Affiliation(s)
- Richard G Baumann
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland 21201-1503, USA
| | | |
Collapse
|
8
|
Yang Q, Catalano CE. Biochemical characterization of bacteriophage lambda genome packaging in vitro. Virology 2003; 305:276-87. [PMID: 12573573 DOI: 10.1006/viro.2002.1602] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage lambda has been extensively studied, and the abundance of genetic and biochemical information available makes this an ideal model system to study virus DNA packaging at the molecular level. Limited in vitro packaging efficiency has hampered progress toward this end, however. It has been suggested that limited packaging efficiency is related to poor activity of purified procapsids. We describe the construction of a vector that expresses lambda procapsids with a yield that is 40-fold greater than existing systems. Consistent with previous studies, packaging of a mature lambda genome is very inefficient in vitro, with only 4% of the input procapsids utilized. Concatemeric DNA is the preferred packaging substrate in vivo, and procapsids interact with a nucleoprotein complex known as complex I to initiate genome packaging. When complex I is used as a packaging substrate in vitro, capsid utilization is extremely efficient, and 40% of the input DNA is packaged. Finally, we provide evidence for a packaging-stimulated ATPase activity, and kinetically characterize this reaction quantifying the energetic cost of DNA packaging in bacteriophage lambda.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
9
|
Wieczorek DJ, Didion L, Feiss M. Alterations of the portal protein, gpB, of bacteriophage lambda suppress mutations in cosQ, the site required for termination of DNA packaging. Genetics 2002; 161:21-31. [PMID: 12019220 PMCID: PMC1462103 DOI: 10.1093/genetics/161.1.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cosQ site of bacteriophage lambda is required for DNA packaging termination. Previous studies have shown that cosQ mutations can be suppressed in three ways: by a local suppressor within cosQ, an increase in the length of the lambda chromosome, and missense mutations affecting the prohead's portal protein, gpB. In the present work, revertants of a set of lethal cosQ mutants were screened for suppressors. Seven new cosQ suppressors affected gene B, which encodes the portal protein of the prohead. All seven were allele-nonspecific suppressors of cosQ mutations. Experiments with several phages having two cosQ suppressors showed that the suppression effects were additive. Furthermore, these double suppressors had minimal effects on the growth of cosQ(+) phages. These trans-acting suppressors affecting the portal protein are proposed to allow the mutant cosQ site to be more efficiently recognized, due to the slowing of the rate of translocation.
Collapse
Affiliation(s)
- Douglas J Wieczorek
- Genetics Ph.D. Program and Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
10
|
Bain DL, Berton N, Ortega M, Baran J, Yang Q, Catalano CE. Biophysical characterization of the DNA binding domain of gpNu1, a viral DNA packaging protein. J Biol Chem 2001; 276:20175-81. [PMID: 11279084 DOI: 10.1074/jbc.m100517200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminase enzymes are common to double-stranded DNA viruses. These enzymes "package" the viral genome into a pre-formed capsid. Terminase from bacteriophage lambda is composed of gpA (72.4 kDa) and gpNu1 (20.4 kDa) subunits. We have described the expression and biochemical characterization of gpNu1DeltaK100, a construct comprising the N-terminal 100 amino acids of gpNu1 (Yang, Q., de Beer, T., Woods, L., Meyer, J., Manning, M., Overduin, M., and Catalano, C. E. (1999) Biochemistry 38, 465-477). Here we present a biophysical characterization of this construct. Thermally induced loss of secondary and tertiary structures is fully reversible. Surprisingly, although loss of tertiary structure is cooperative, loss of secondary structure is non-cooperative. NMR and limited proteolysis data suggest that approximately 30 amino acids of gpNu1DeltaK100 are solvent-exposed and highly flexible. We therefore constructed gpNu1DeltaE68, a protein consisting of the N-terminal 68 residues of gpNu1. gpNu1DeltaE68 is a dimer with no evidence of dissociation or further aggregation. Thermally induced unfolding of gpNu1DeltaE68 is reversible, with concomitant loss of both secondary and tertiary structure. The melting temperature increases with increasing protein concentration, suggesting that dimerization and folding are, at least in part, coupled. The data suggest that gpNu1DeltaE68 represents the minimal DNA binding domain of gpNu1. We further suggest that the C-terminal approximately 30 residues in gpNu1DeltaK100 adopt a pseudo-stable alpha-helix that extends from the folded core of the protein. A model describing the role of this helix in the assembly of the packaging apparatus is discussed.
Collapse
Affiliation(s)
- D L Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
11
|
Wieczorek DJ, Feiss M. Defining cosQ, the site required for termination of bacteriophage lambda DNA packaging. Genetics 2001; 158:495-506. [PMID: 11404316 PMCID: PMC1461673 DOI: 10.1093/genetics/158.2.495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacteriophage lambda is a double-stranded DNA virus that processes concatemeric DNA into virion chromosomes by cutting at specific recognition sites termed cos. A cos is composed of three subsites: cosN, the nicking site; cosB, required for packaging initiation; and cosQ, required for termination of chromosome packaging. During packaging termination, nicking of the bottom strand of cosN depends on cosQ, suggesting that cosQ is needed to deliver terminase to the bottom strand of cosN to carry out nicking. In the present work, saturation mutagenesis showed that a 7-bp segment comprises cosQ. A proposal that cosQ function requires an optimal sequence match between cosQ and cosNR, the right cosN half-site, was tested by constructing double cosQ mutants; the behavior of the double mutants was inconsistent with the proposal. Substitutions in the 17-bp region between cosQ and cosN resulted in no major defects in chromosome packaging. Insertional mutagenesis indicated that proper spacing between cosQ and cosN is required. The lethality of integral helical insertions eliminated a model in which DNA looping enables cosQ to deliver a gpA protomer for nicking at cosN. The 7 bp of cosQ coincide exactly with the recognition sequence for the Escherichia coli restriction endonuclease, EcoO109I.
Collapse
Affiliation(s)
- D J Wieczorek
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
12
|
Gual A, Camacho AG, Alonso JC. Functional analysis of the terminase large subunit, G2P, of Bacillus subtilis bacteriophage SPP1. J Biol Chem 2000; 275:35311-9. [PMID: 10930407 DOI: 10.1074/jbc.m004309200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminase of bacteriophage SPP1, constituted by a large (G2P) and a small (G1P) subunit, is essential for the initiation of DNA packaging. A hexa-histidine G2P (H6-G2P), which is functional in vivo, possesses endonuclease, ATPase, and double-stranded DNA binding activities. H6-G2P introduces a cut with preference at the 5'-RCGG downward arrowCW-3' sequence. Distamycin A, which is a minor groove binder that mimics the architectural structure generated by G1P at pac, enhances the specific cut at both bona fide 5'-CTATTGCGG downward arrowC-3' sequences within pacC of SPP1 and SF6 phages. H6-G2P hydrolyzes rATP or dATP to the corresponding rADP or dADP and P(i). H6-G2P interacts with two discrete G1P domains (I and II). Full-length G1P and G1PDeltaN62 (lacking domain I) stimulate 3.5- and 1.9-fold, respectively, the ATPase activity of H6-G2P. The results presented suggest that a DNA structure, artificially promoted by distamycin A or facilitated by the assembly of G1P at pacL and/or pacR, stimulates H6-G2P cleavage at both target sites within pacC. In the presence of two G1P decamers per H6-G2P monomer, the H6-G2P endonuclease is repressed, and the ATPase activity stimulated. Based on these results, we propose a model that can account for the role of terminase in headful packaging.
Collapse
Affiliation(s)
- A Gual
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
13
|
Hang JQ, Tack BF, Feiss M. ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging: identification of ATP-interactive amino acids. J Mol Biol 2000; 302:777-95. [PMID: 10993723 DOI: 10.1006/jmbi.2000.4086] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase is the enzyme that mediates lambda DNA packaging into the viral prohead. The large subunit of terminase, gpA (641 amino acid residues), has a high-affinity ATPase activity (K(m)=5 microM). To directly identify gpA's ATP-interacting amino acids, holoterminase bearing a His(6)-tag at the C terminus of gpA was UV-crosslinked with 8-N(3)-[alpha-(32)P]ATP. Tryptic peptides from the photolabeled terminase were purified by affinity chromatography and reverse-phase HPLC. Two labeled peptides of gpA were identified. Amino acid sequencing failed to show the tyrosine residue of the first peptide, E(43)SAY(46)QEGR(50), or the lysine of the second peptide, V(80)GYSK(84)MLL(87), indicating that Y(46) and K(84) were the 8-N(3)-ATP-modified amino acids. To investigate their roles in lambda DNA packaging, Y(46) was changed to E, A, and F, and K(84) was changed to E and A. Purified His(6)-tagged terminases with changes at residues 46 and 84 lacked the gpA high-affinity ATPase activity, though the cos cleavage and cohesive end separation activities were near to those of the wild-type enzyme. In virion assembly reactions using virion DNA as a packaging substrate, the mutant terminases showed severe defects. In summary, the results indicate that Y(46) and K(84) are part of the high-affinity ATPase center of gpA, and show that this ATPase activity is involved in the post-cos cleavage stages of lambda DNA packaging.
Collapse
Affiliation(s)
- J Q Hang
- College of Medicine, The Molecular Biology Program and Department of Microbiology, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
14
|
Hang Q, Woods L, Feiss M, Catalano CE. Cloning, expression, and biochemical characterization of hexahistidine-tagged terminase proteins. J Biol Chem 1999; 274:15305-14. [PMID: 10336415 DOI: 10.1074/jbc.274.22.15305] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminase enzyme from bacteriophage lambda is composed of two viral proteins (gpA, 73.2 kDa; gpNu1, 20.4 kDa) and is responsible for packaging viral DNA into the confines of an empty procapsid. We are interested in the genetic, biochemical, and biophysical properties of DNA packaging in phage lambda and, in particular, the nucleoprotein complexes involved in these processes. These studies require the routine purification of large quantities of wild-type and mutant proteins in order to probe the molecular mechanism of DNA packaging. Toward this end, we have constructed a hexahistidine (hexa-His)-tagged terminase holoenzyme as well as hexa-His-tagged gpNu1 and gpA subunits. We present a simple, one-step purification scheme for the purification of large quantities of the holoenzyme and the individual subunits directly from the crude cell lysate. Importantly, we have developed a method to purify the highly insoluble gpNu1 subunit from inclusion bodies in a single step. Hexa-His terminase holoenzyme is functional in vivo and possesses steady-state and single-turnover ATPase activity that is indistinguishable from wild-type enzyme. The nuclease activity of the modified holoenzyme is near wild type, but the reaction exhibits a greater dependence on Escherichia coli integration host factor, a result that is mirrored in vivo. These results suggest that the hexa-His-tagged holoenzyme possesses a mild DNA-binding defect that is masked, at least in part, by integration host factor. The mild defect in hexa-His terminase holoenzyme is more significant in the isolated gpA-hexa-His subunit that does not appear to bind DNA. Moreover, whereas the hexa-His-tagged gpNu1 subunit may be reconstituted into a holoenzyme complex with wild-type catalytic activities, gpA-hexa-His is impaired in its interactions with the gpNu1 subunit of the enzyme. The results reported here underscore that a complete biochemical characterization of the effects of purification tags on enzyme function must be performed prior to their use in mechanistic studies.
Collapse
Affiliation(s)
- Q Hang
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
15
|
Arens JS, Hang Q, Hwang Y, Tuma B, Max S, Feiss M. Mutations that extend the specificity of the endonuclease activity of lambda terminase. J Bacteriol 1999; 181:218-24. [PMID: 9864333 PMCID: PMC103552 DOI: 10.1128/jb.181.1.218-224.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
Terminase, an enzyme encoded by the Nu1 and A genes of bacteriophage lambda, is crucial for packaging concatemeric DNA into virions. cosN, a 22-bp segment, is the site on the virus chromosome where terminase introduces staggered nicks to cut the concatemer to generate unit-length virion chromosomes. Although cosN is rotationally symmetric, mutations in cosN have asymmetric effects. The cosN G2C mutation (a G-to-C change at position 2) in the left half of cosN reduces the phage yield 10-fold, whereas the symmetric mutation cosN C11G, in the right half of cosN, does not affect the burst size. The reduction in phage yield caused by cosN G2C is correlated with a defect in cos cleavage. Three suppressors of the cosN G2C mutation, A-E515G, A-N509K, and A-R504C, have been isolated that restore the yield of lambda cosN G2C to the wild-type level. The suppressors are missense mutations that alter amino acids located near an ATPase domain of gpA. lambda A-E515G, A-N509K, and A-R504C phages, which are cosN+, also had wild-type burst sizes. In vitro cos cleavage experiments on cosN G2C C11G DNA showed that the rate of cleavage for A-E515G terminase is three- to fourfold higher than for wild-type terminase. The A-E515G mutation changes residue 515 of gpA from glutamic acid to glycine. Uncharged polar and hydrophobic residues at position 515 suppressed the growth defect of lambda cosN G2C C11G. In contrast, basic (K, R) and acidic (E, D) residues at position 515 failed to suppress the growth defect of lambda cosN G2C C11G. In a lambda cosN+ background, all amino acids tested at position 515 were functional. These results suggest that A-E515G plays an indirect role in extending the specificity of the endonuclease activity of lambda terminase.
Collapse
Affiliation(s)
- J S Arens
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242,
| | | | | | | | | | | |
Collapse
|
16
|
Babbar BK, Gold M. ATP-reactive sites in the bacteriophage lambda packaging protein terminase lie in the N-termini of its subunits, gpA and gpNu1. Virology 1998; 247:251-64. [PMID: 9705918 DOI: 10.1006/viro.1998.9221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-reactive sites in terminase and its subunits have been successfully identified using three different affinity analogs of ATP (2-and 8-azidoATP and FITC) GpA, the larger subunit of terminase, was shown to have a higher affinity for these analogs than gpNu1, the smaller subunit. The suitability of these reagents as affinity analogs of ATP was demonstrated by ATP protection experiments and in vitro assays done with the modified proteins. These analogs were thus shown to modify the ATP-reactive sites. The results obtained from these experiments also indicate the importance of subunit-subunit interactions in the holoenzyme. Terminase, gpA, and gpNu1 were modified with these analogs and the ATP-reactive sites were identified by isolating the modified peptide by reverse-phase chromatography. The sequence analysis of the modified peptides indicates a region including amino acids 18-35 in the N-terminus of gpNu1 and a region including amino acids 59-85 in the N-terminus of gpA as being the ATP-reactive sites.
Collapse
Affiliation(s)
- B K Babbar
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | |
Collapse
|
17
|
Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280:11-29. [PMID: 9653028 DOI: 10.1006/jmbi.1998.1841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of packaging of the lambda chromosome involves completion of translocation of the DNA into the head shell, and conversion of the translocation complex into a cleavage complex. The cleavage reaction introduces staggered nicks into the downstream cosN to generate the right cohesive end of the chromosome. cosQ, a site adjacent to cosN, was found to be required for nicking the bottom strand of cosN; bottom strand nicking was also sequence-specific for bps at the nick site. Nicking of the top strand of cosN (cosNL) was stimulated by cosQ, but fidelity and efficiency of cosNL nicking were largely dictated by other cos subsites (i.e. cosB and I2). Aberrant top-strand cleavage within cosQ was observed in the absence of I2, and nicking at a site 8 nt 5' to the normal cosNL nick site occurred in the absence of cosB. The presence of cosQ was found to be insufficient to arrest DNA translocation in vivo, indicating that cosQ, per se, is not a packaging stop signal. A model is presented in which the role of cosQ is to depolarize the asymmetric arrangement of terminase protomers in the translocation complex so that protomers are configured to match the 2-fold rotational symmetry of cosN.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
18
|
Cai ZH, Hwang Y, Cue D, Catalano C, Feiss M. Mutations in Nu1, the gene encoding the small subunit of bacteriophage lambda terminase, suppress the postcleavage DNA packaging defect of cosB mutations. J Bacteriol 1997; 179:2479-85. [PMID: 9098042 PMCID: PMC178993 DOI: 10.1128/jb.179.8.2479-2485.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases.
Collapse
Affiliation(s)
- Z H Cai
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
19
|
Franklin JL, Mosig G. Expression of the bacteriophage T4 DNA terminase genes 16 and 17 yields multiple proteins. Gene X 1996; 177:179-89. [PMID: 8921865 DOI: 10.1016/0378-1119(96)00299-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The products of the bacteriophage T4 terminase genes 16 and 17 are known to mediate cutting and packaging of concatemeric vegetative DNA. We show here that the larger of these genes, 17, yields multiple protein species. The complex expression of the T4 terminase genes includes overlapping transcripts, probably initiated from multiple promoters, RNA processing at certain preferred sites and translation initiation from multiple ribosome binding sites (RBS). Translation initiation from these RBS may be modulated by inverted repeat (IR) sequences whose folding can be predicted to differ in different RNA species. In T4 infected bacteria, genes 16 and 17 are probably co-transcribed from several near-consensus late promoters upstream from gene 16, and processed at multiple sites. Additional 5' ends of late transcripts are located downstream from a near-consensus late promoter inside gene 17 and further downstream, unrelated to any known promoter consensus sequence. The gene 17 transcripts that are initiated or cleaved internally contain RBS for shorter open reading frames (ORFs) in the same frame as full-length gene product (gp) 17 of 70 kDa. The truncated proteins, a 59-kDa gp17' and a 45-kDa gp17", are synthesized from cloned gene 17 segments in which the first gene 17 RBS is deleted. Expression of gene 17 is different in BL21(DE3) or W3110[pACT7] host bacteria. The gp17' and gp17" proteins are predicted to contain one or more of the ATPase motifs that are common among large subunits of other phage terminases. They lack a predicted single stranded (ss) DNA binding motif that is unique the large terminase proteins in T4 gp17, and that has been implicated in recognizing ssDNA regions in replicating and recombining T4DNA destined to be packaged. We hypothesize that a truncated gene 17' is an evolutionary precursor of the full-size T4 gene 17. Its function may have been maintained to allow processive packaging from double stranded (ds) DNA ends.
Collapse
Affiliation(s)
- J L Franklin
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
20
|
Rubinchik S, Parris W, Gold M. The in vitro translocase activity of lambda terminase and its subunits. Kinetic and biochemical analysis. J Biol Chem 1995; 270:20059-66. [PMID: 7650023 DOI: 10.1074/jbc.270.34.20059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The terminase holoenzyme of bacteriophage lambda is a multifunctional protein composed of two subunits, gpNu1 and gpA. In vitro, under certain conditions, terminase can render DNAs from various sources, of varying lengths and termini, resistant to degradation by high concentrations of DNase I. This reaction is completely dependent on the presence of terminase, proheads, a hydrolyzable triphosphate, and a divalent metal ion, and we propose that it is the result of translocation of DNA into proheads by terminase. This reaction is stoichiometric with respect to terminase, DNA, and proheads and can be supported by all deoxyribo- and ribonucleoside triphosphates, but not by the corresponding diphosphates or nonhydrolyzable ATP analogs. Mg2+ and Ca2+ promote the reaction, but Mn2+ and Zn2+ do not. In the absence of spermidine, translocase activity is low, but addition of the Escherichia coli protein integration host factor (IHF) promotes specific translocation of only those DNA fragments containing the terminase-binding site, cosB. When spermidine is present, nonspecific translocation of DNA from any source is stimulated. Under these conditions IHF no longer promotes specificity, but translocation of only cosB-containing DNA fragments can be restored by addition of small amounts of a dialyzed and RNase-treated E. coli extract, suggesting that additional host factor(s) may be involved in determination of packaging specificity. To a limited extent, gpA alone can promote translocation, but gpNu1, which has no translocase activity on its own, must be added to approach the holoenzyme-like activity levels. Formation of viable phage cannot be accomplished by gpA in the absence of gpNu1.
Collapse
Affiliation(s)
- S Rubinchik
- Department of Molecular and Medical Genetics, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Abstract
Phage lambda, like a number of other large DNA bacteriophages and the herpesviruses, produces concatemeric DNA during DNA replication. The concatemeric DNA is processed to produce unit-length, virion DNA by cutting at specific sites along the concatemer. DNA cutting is co-ordinated with DNA packaging, the process of translocation of the cut DNA into the preformed capsid precursor, the prohead. A key player in the lambda DNA packaging process is the phage-encoded enzyme terminase, which is involved in (i) recognition of the concatemeric lambda DNA; (ii) initiation of packaging, which includes the introduction of staggered nicks at cosN to generate the cohesive ends of virion DNA and the binding of the prohead; (iii) DNA packaging, possibly including the ATP-driven DNA translocation; and (iv) following translocation, the cutting of the terminal cosN to complete DNA packaging. To one side of cosN is the site cosB, which plays a role in the initiation of packaging; along with ATP, cosB stimulates the efficiency and adds fidelity to the endonuclease activity of terminase in cutting cosN. cosB is essential for the formation of a post-cleavage complex with terminase, complex I, that binds the prohead, forming a ternary assembly, complex II. Terminase interacts with cosN through its large subunit, gpA, and the small terminase subunit, gpNu1, interacts with cosB. Packaging follows complex II formation. cosN is flanked on the other side by the site cosQ, which is needed for termination, but not initiation, of DNA packaging. cosQ is required for cutting of the second cosN, i.e. the cosN at which termination occurs. DNA packaging in lambda has aspects that differ from other lambda DNA transactions. Unlike the site-specific recombination system of lambda, for DNA packaging the initial site-specific protein assemblage gives way to a mobile, translocating complex, and unlike the DNA replication system of lambda, the same protein machinery is used for both initiation and translocation during lambda DNA packaging.
Collapse
Affiliation(s)
- C E Catalano
- School of Pharmacy, University of Colorado Health Science Center, Denver 80262, USA
| | | | | |
Collapse
|
22
|
Parris W, Rubinchik S, Yang Y, Gold M. A new procedure for the purification of the bacteriophage lambda terminase enzyme and its subunits. Properties of gene product A, the large subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36868-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Rubinchik S, Parris W, Gold M. The in vitro ATPases of bacteriophage lambda terminase and its large subunit, gene product A. The relationship with their DNA helicase and packaging activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36870-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|