1
|
Chen S, Liu C, Zhou C, Wei Z, Li Y, Xiong L, Yan L, Lv J, Shen L, Xu L. Identification and characterization of a prokaryotic 6-4 photolyase from Synechococcus elongatus with a deazariboflavin antenna chromophore. Nucleic Acids Res 2022; 50:5757-5771. [PMID: 35639925 PMCID: PMC9178010 DOI: 10.1093/nar/gkac416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Synechococcus elongatus, formerly known as Anacystis nidulans, is a representative species of cyanobacteria. It is also a model organism for the study of photoreactivation, which can be fully photoreactivated even after receiving high UV doses. However, for a long time, only one photolyase was found in S. elongatus that is only able to photorepair UV induced cyclobutane pyrimidine dimers (CPDs) in DNA. Here, we characterize another photolyase in S. elongatus, which belongs to iron-sulfur bacterial cryptochromes and photolyases (FeS-BCP), a subtype of prokaryotic 6–4 photolyases. This photolyase was named SePhrB that could efficiently photorepair 6–4 photoproducts in DNA. Chemical analyses revealed that SePhrB contains a catalytic FAD cofactor and an iron-sulfur cluster. All of previously reported FeS-BCPs contain 6,7-dimethyl-8-ribityllumazine (DMRL) as their antenna chromophores. Here, we first demonstrated that SePhrB possesses 7,8-didemethyl-8-hydroxy-5-deazariboflavin (8-HDF) as an antenna chromophore. Nevertheless, SePhrB could be photoreduced without external electron donors. After being photoreduced, the reduced FAD cofactor in SePhrB was extremely stable against air oxidation. These results suggest that FeS-BCPs are more diverse than expected which deserve further investigation.
Collapse
Affiliation(s)
- Simeng Chen
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Chenxi Liu
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Chenchen Zhou
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Zhihui Wei
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Yuting Li
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Lei Xiong
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Liang Yan
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Jun Lv
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Xu
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, China
| |
Collapse
|
2
|
Brettel K, Müller P, Yamamoto J. Kinetics of Electron Returns in Successive Two-Photon DNA Repair by (6-4) Photolyase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Klaus Brettel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Osswald M, Fingerhut BP. Electron Transfer-Induced Active Site Structural Relaxation in 64-Photolyase of Drosophila melanogaster. J Phys Chem B 2021; 125:8690-8702. [PMID: 34323497 DOI: 10.1021/acs.jpcb.1c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While catalytic electron flow and photoreactivation of CPD-photolyases are increasingly understood, the microscopic details of the 64-photolyase repair mechanism are perpetually debated. Here, we investigate in long-time (μs) molecular dynamics simulations combined with extensive quantum mechanical/molecular mechanical (QM/MM) simulations the primary electron transfer (ET) reactions in 64-photolyase of Drosophila melanogaster (D. melanogaster). The characterization of the relative energetics of locally excited and charge separated states in the (6-4) photoproduct enzyme repair complex reveals a charge-separated state involving the adenine moiety of the FADH- cofactor that facilitates reduction of the photoproduct. Microscopic details of the collective reaction coordinate of ET reactions are identified that involve the reorganization of the hydrogen bond network and structural relaxation of the active site. The simulations reveal complex active site relaxation dynamics involving distinguished amino acids (Lys246, His365, and His369), conformational reorganization of the hydroxyl group of the (6-4) photoproduct, and a strengthening of hydrogen bonds with immobilized water molecules. In particular, rotation of the Lys246 side chain is found to impose a double-well character along the reaction coordinate of the ET reaction. Our findings suggest that the primary ET reactions in the (6-4) photoproduct enzyme repair complex of D. melanogaster are governed by a complex multi-minima active site relaxation dynamics and potentially precede the equilibration of the protein. ET pathways mediated by the adenine moiety and the 5' side of the photoproduct are proposed to be relevant for triggering the catalytic (6-4) photoproduct reactivation.
Collapse
Affiliation(s)
- Mara Osswald
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| |
Collapse
|
4
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
5
|
Blasco-Brusola A, Vayá I, Miranda MA. Regioselectivity in the adiabatic photocleavage of DNA-based oxetanes. Org Biomol Chem 2020; 18:9117-9123. [PMID: 33150924 DOI: 10.1039/d0ob01974g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Direct absorption of UVB light by DNA may induce formation of cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts. The latter arise from the rearrangement of unstable oxetane intermediates, which have also been proposed to be the electron acceptor species in the photoenzymatic repair of this type of DNA damage. In the present work, direct photolysis of oxetanes composed of substituted uracil (Ura) or thymine (Thy) derivatives and benzophenone (BP) have been investigated by means of transient absorption spectroscopy from the femtosecond to the microsecond time-scales. The results showed that photoinduced oxetane cleavage takes place through an adiabatic process leading to the triplet excited BP and the ground state nucleobase. This process was markedly affected by the oxetane regiochemistry (head-to-head, HH, vs. head-to-tail, HT) and by the nucleobase substitution; it was nearly quantitative for all investigated HH-oxetanes while it became strongly influenced by the substitution at positions 1 and 5 for the HT-isomers. The obtained results clearly confirm the generality of the adiabatic photoinduced cleavage of BP/Ura or Thy oxetanes, as well as its dependence on the regiochemistry, supporting the involvement of triplet exciplexes. As a matter of fact, when formation of this species was favored by keeping together the Thy and BP units after splitting by means of a linear linker, a transient absorption at ∼400 nm, ascribed to the exciplex, was detected.
Collapse
Affiliation(s)
- Alejandro Blasco-Brusola
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| |
Collapse
|
6
|
Blasco-Brusola A, Vayá I, Miranda MA. Influence of the Linking Bridge on the Photoreactivity of Benzophenone-Thymine Conjugates. J Org Chem 2020; 85:14068-14076. [PMID: 33108203 DOI: 10.1021/acs.joc.0c02088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Benzophenone (BP) is present in a variety of bioactive molecules. This chromophore is able to photosensitize DNA damage, where one of the most relevant BP/DNA interactions occurs with thymine (Thy). In view of the complex photoreactivity previously observed for dyads containing BP covalently linked to thymidine, the aim of this work is to investigate whether appropriate changes in the nature of the spacer could modulate the intramolecular BP/Thy photoreactivity, resulting in an enhanced selectivity. Accordingly, the photobehavior of a series of dyads derived from BP and Thy, separated by linear linkers of different length, has been investigated by steady-state photolysis, as well as femtosecond and nanosecond transient absorption spectroscopy. Irradiation of the dyads led to photoproducts arising from formal hydrogen abstraction or Paterno-Büchi (PB) photoreaction, with a chemoselectivity that was clearly dependent on the nature of the linking bridge; moreover, the PB process occurred with complete regio- and stereoselectivity. The overall photoreactivity increased with the length of the spacer and correlated well with the rate constants estimated from the BP triplet lifetimes. A reaction mechanism explaining these results is proposed, where the key features are the strain associated with the reactive conformations and the participation of triplet exciplexes.
Collapse
Affiliation(s)
- Alejandro Blasco-Brusola
- Departamento de Quı́mica, Instituto de Tecnologı́a Quı́mica (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Ignacio Vayá
- Departamento de Quı́mica, Instituto de Tecnologı́a Quı́mica (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Miguel A Miranda
- Departamento de Quı́mica, Instituto de Tecnologı́a Quı́mica (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| |
Collapse
|
7
|
Blasco-Brusola A, Navarrete-Miguel M, Giussani A, Roca-Sanjuán D, Vayá I, Miranda MA. Regiochemical memory in the adiabatic photolysis of thymine-derived oxetanes. A combined ultrafast spectroscopic and CASSCF/CASPT2 computational study. Phys Chem Chem Phys 2020; 22:20037-20042. [PMID: 32870202 DOI: 10.1039/d0cp03084h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The photoinduced cycloreversion of oxetanes has been thoroughly investigated in connection with the photorepair of the well-known DNA (6-4) photoproducts. In the present work, the direct photolysis of the two regioisomers arising from the irradiation of benzophenone (BP) and 1,3-dimethylthymine (DMT), namely the head-to-head (HH-1) and head-to-tail (HT-1) oxetane adducts, has been investigated by combining ultrafast spectroscopy and theoretical multiconfigurational quantum chemistry analysis. Both the experimental and computational results agree with the involvement of an excited triplet exciplex 3[BPDMT]* for the photoinduced oxetane cleavage to generate 3BP* and DMT through an adiabatic photochemical reaction. The experimental signature of 3[BPDMT]* is the appearance of an absorption band at ca. 400 nm, detected by femtosecond transient absorption spectroscopy. Its formation is markedly regioselective, as it is more efficient and proceeds faster for HH-1 (∼2.8 ps) than for HT-1 (∼6.3 ps). This is in line with the theoretical analysis, which predicts an energy barrier to reach the triplet exciplex for HT-1, in contrast with a less hindered profile for HH-1. Finally, the more favorable adiabatic cycloreversion of HH-1 compared to that of HT-1 is explained by its lower probability to reach the intersystem crossing with the ground state, which would induce a radiationless deactivation process leading either to a starting adduct or to a dissociated BP and DMT.
Collapse
Affiliation(s)
- Alejandro Blasco-Brusola
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Angelo Giussani
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| |
Collapse
|
8
|
Pichel N, Vivar M, Fuentes M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. CHEMOSPHERE 2019; 218:1014-1030. [PMID: 30609481 DOI: 10.1016/j.chemosphere.2018.11.205] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 05/17/2023]
Abstract
The lack of access to safe drinking water is one of the biggest challenges facing humanity in the 21st century. Despite the collective global effort that has been made, the drinking water sources of at least 2 billion people are faecally contaminated, resulting in more than half a million diarrhoeal deaths each year, with the majority occurring in developing countries. Technologies for the inactivation of pathogenic microorganisms in water are therefore of great significance for human health and well-being. However, conventional technologies to provide drinking water, although effective, present limitations that impede their global application. These treatment methods often have high energy and chemical demands, which limits their application for the prevention of waterborne diseases in the most vulnerable regions. These shortcomings have led to rapid research and development of advanced alternative technologies. One of these alternative methods is solar disinfection, which is recognised by the World Health Organization as one of the most appropriate methods for producing drinkable water in developing countries. This study reviews conventional technologies that are being applied at medium to large scales to purify water and emerging technologies currently in development. In addition, this paper describes the merits, demerits, and limitations of these technologies. Finally, the review focuses on solar disinfection, including a novel technology recently developed in this field.
Collapse
Affiliation(s)
- N Pichel
- IMDEA Water Institute, Alcalá de Henares, 28805, Spain.
| | - M Vivar
- Grupo IDEA, EPS Linares, Universidad de Jaén, Linares 23700, Spain
| | - M Fuentes
- IMDEA Water Institute, Alcalá de Henares, 28805, Spain; Grupo IDEA, EPS Linares, Universidad de Jaén, Linares 23700, Spain
| |
Collapse
|
9
|
Ma H, Holub D, Gillet N, Kaeser G, Thoulass K, Elstner M, Krauß N, Lamparter T. Two aspartate residues close to the lesion binding site of Agrobacterium (6-4) photolyase are required for Mg 2+ stimulation of DNA repair. FEBS J 2019; 286:1765-1779. [PMID: 30706696 DOI: 10.1111/febs.14770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/05/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022]
Abstract
Prokaryotic (6-4) photolyases branch at the base of the evolution of cryptochromes and photolyases. Prototypical members contain an iron-sulphur cluster which was lost in the evolution of the other groups. In the Agrobacterium (6-4) photolyase PhrB, the repair of DNA lesions containing UV-induced (6-4) pyrimidine dimers is stimulated by Mg2+ . We propose that Mg2+ is required for efficient lesion binding and for charge stabilization after electron transfer from the FADH- chromophore to the DNA lesion. Furthermore, two highly conserved Asp residues close to the DNA-binding site are essential for the effect of Mg2+ . Simulations show that two Mg2+ bind to the region around these residues. On the other hand, DNA repair by eukaryotic (6-4) photolyases is not increased by Mg2+ . In these photolyases, structurally overlapping regions contain no Asp but positively charged Lys or Arg. During the evolution of photolyases, the role of Mg2+ in charge stabilization and enhancement of DNA binding was therefore taken over by a postiviely charged amino acid. Besides PhrB, another prokaryotic (6-4) photolyase from the marine cyanobacterium Prochlorococcus marinus, PromaPL, which contains no iron-sulphur cluster, was also investigated. This photolyase is stimulated by Mg2+ as well. The evolutionary loss of the iron-sulphur cluster due to limiting iron concentrations can occur in a marine environment as a result of iron deprivation. However, the evolutionary replacement of Mg2+ by a positively charged amino acid is unlikely to occur in a marine environment because the concentration of divalent cations in seawater is always sufficient. We therefore assume that this transition could have occurred in a freshwater environment.
Collapse
Affiliation(s)
- Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Daniel Holub
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | | - Marcus Elstner
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | |
Collapse
|
10
|
Zhao H, Di Mauro G, Lungu-Mitea S, Negrini P, Guarino AM, Frigato E, Braunbeck T, Ma H, Lamparter T, Vallone D, Bertolucci C, Foulkes NS. Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness. Curr Biol 2018; 28:3229-3243.e4. [PMID: 30318355 DOI: 10.1016/j.cub.2018.08.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022]
Abstract
How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.
Collapse
Affiliation(s)
- Haiyu Zhao
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Sebastian Lungu-Mitea
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Pietro Negrini
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Andrea Maria Guarino
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Biology, University of Naples "Federico II," 80126 Naples, Italy
| | - Elena Frigato
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
11
|
Uppula P. Exploration of Conformations, Analysis of Protein and Biological Significance of Histidine Dimers. ChemistrySelect 2018. [DOI: 10.1002/slct.201702559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Purushotham Uppula
- Center for molecular modelling; Indian Institute of Chemical Technology; Tarnaka Hyderabad-500 007 India
- Department of Chemistry; K L Education Foundation, Guntur; Andhra Pradesh India- 522502
| |
Collapse
|
12
|
Jian Y, Maximowitsch E, Liu D, Adhikari S, Li L, Domratcheva T. Indications of 5' to 3' Interbase Electron Transfer as the First Step of Pyrimidine Dimer Formation Probed by a Dinucleotide Analog. Chemistry 2017; 23:7526-7537. [PMID: 28370554 DOI: 10.1002/chem.201700045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Pyrimidine dimers are the most common DNA lesions generated under UV radiation. To reveal the molecular mechanisms behind their formation, it is of significance to reveal the roles of each pyrimidine residue. We thus replaced the 5'-pyrimidine residue with a photochemically inert xylene moiety (X). The electron-rich X can be readily oxidized but not reduced, defining the direction of interbase electron transfer (ET). Irradiation of the XpT dinucleotide under 254 nm UV light generates two major photoproducts: a pyrimidine (6-4) pyrimidone analog (6-4PP) and an analog of the so-called spore photoproduct (SP). Both products are formed by reaction at C4=O of the photo-excited 3'-thymidine (T), which indicates that excitation of a single "driver" residue is sufficient to trigger pyrimidine dimerization. Our quantum-chemical calculations demonstrated that photo-excited 3'-T accepts an electron from 5'-X. The resulting charge-separated radical pair lowers its energy upon formation of interbase covalent bonds, eventually yielding 6-4PP and SP.
Collapse
Affiliation(s)
- Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA.,School of Chemistry & Chemical Engineering, Shaanxi Normal University (SNNU), No. 620, West Chang'an Avenue, Xi'an, Shaanxi, 710119, P. R. China
| | - Egle Maximowitsch
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Degang Liu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA
| | - Surya Adhikari
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, Indiana, 46202, USA.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Yamamoto J, Plaza P, Brettel K. Repair of (6-4) Lesions in DNA by (6-4) Photolyase: 20 Years of Quest for the Photoreaction Mechanism. Photochem Photobiol 2017; 93:51-66. [PMID: 27992654 DOI: 10.1111/php.12696] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 01/05/2023]
Abstract
Exposure of DNA to ultraviolet (UV) light from the Sun or from other sources causes the formation of harmful and carcinogenic crosslinks between adjacent pyrimidine nucleobases, namely cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts. Nature has developed unique flavoenzymes, called DNA photolyases, that utilize blue light, that is photons of lower energy than those of the damaging light, to repair these lesions. In this review, we focus on the chemically challenging repair of the (6-4) photoproducts by (6-4) photolyase and describe the major events along the quest for the reaction mechanisms, over the 20 years since the discovery of (6-4) photolyase.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Pascal Plaza
- Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Kavakli IH, Baris I, Tardu M, Gül Ş, Öner H, Çal S, Bulut S, Yarparvar D, Berkel Ç, Ustaoğlu P, Aydın C. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors. Photochem Photobiol 2017; 93:93-103. [DOI: 10.1111/php.12669] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
- Department of Computational Science and Engineering; Koc University; Sariyer Istanbul Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Mehmet Tardu
- Department of Computational Science and Engineering; Koc University; Sariyer Istanbul Turkey
| | - Şeref Gül
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Haşimcan Öner
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Sibel Çal
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Selma Bulut
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Darya Yarparvar
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Çağlar Berkel
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Pınar Ustaoğlu
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Cihan Aydın
- Department of Molecular Biology and Genetics; Istanbul Medeniyet University; Uskudar Istanbul
| |
Collapse
|
15
|
Douki T, Sage E. Dewar valence isomers, the third type of environmentally relevant DNA photoproducts induced by solar radiation. Photochem Photobiol Sci 2015; 15:24-30. [PMID: 26692437 DOI: 10.1039/c5pp00382b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UV-induced DNA damage is the main initiating event in solar carcinogenesis. UV radiation is known to induce pyrimidine dimers in DNA, including cyclobutane dimers and (6-4) photoproducts which have been extensively studied. In contrast, much less attention has been paid to Dewar valence isomers, the photoisomerisation product of (6-4) photoproducts. Yet, the available data show that Dewar isomers can be produced by exposure to sunlight and may lead to mutations. Dewars are thus environmentally and biologically relevant. The present review summarizes currently available information on the formation, mutagenic properties and repair of this class of UV-induced DNA damage.
Collapse
Affiliation(s)
- T Douki
- Univ. Grenoble Alpes, INAC, LCIB, LAN, F-38000 Grenoble, France
| | | |
Collapse
|
16
|
Choi J, Yang C, Fujitsuka M, Tojo S, Ihee H, Majima T. Proton Transfer of Guanine Radical Cations Studied by Time-Resolved Resonance Raman Spectroscopy Combined with Pulse Radiolysis. J Phys Chem Lett 2015; 6:5045-5050. [PMID: 26632994 DOI: 10.1021/acs.jpclett.5b02313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The oxidation of guanine (G) is studied by using transient absorption and time-resolved resonance Raman spectroscopies combined with pulse radiolysis. The transient absorption spectral change demonstrates that the neutral radical of G (G(•)(-H(+))), generated by the deprotonation of G radical cation (G(•+)), is rapidly converted to other G radical species. The formation of this species shows the pH dependence, suggesting that it is the G radical cation (G(•+))' formed from the protonation at the N7 of G(•)(-H(+)). On one hand, most Raman bands of (G(•+))' are up-shifted relative to those of G, indicating the increase in the bonding order of pyrimidine (Pyr) and imidazole rings. The (G(•+))' exhibits the characteristic CO stretching mode at ∼1266 cm(-1) corresponding to a C-O single bond, indicating that the unpaired electron in (G(•+))' is localized on the oxygen of the Pyr ring.
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) , Daejeon 305-701, Republic of Korea
| | - Cheolhee Yang
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) , Daejeon 305-701, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Hyocherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) , Daejeon 305-701, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Pérez-Ruiz R, Jiménez MC, Miranda MA. Hetero-cycloreversions mediated by photoinduced electron transfer. Acc Chem Res 2014; 47:1359-68. [PMID: 24702062 DOI: 10.1021/ar4003224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C═X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.
Collapse
Affiliation(s)
- Raúl Pérez-Ruiz
- Departamento de Química/Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M. Consuelo Jiménez
- Departamento de Química/Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
18
|
Meador JA, Baldwin AJ, Pakulski JD, Jeffrey WH, Mitchell DL, Douki T. The significance of the Dewar valence photoisomer as a UV radiation-induced DNA photoproduct in marine microbial communities. Environ Microbiol 2014; 16:1808-20. [PMID: 24517516 DOI: 10.1111/1462-2920.12414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 11/28/2022]
Abstract
Induction of pyrimidine dimers in DNA by solar UV radiation has drastic effects on microorganisms. To better define the nature of these DNA photoproducts in marine bacterioplankton and eukaryotes, a study was performed during a cruise along a latitudinal transect in the Pacific Ocean. The frequency of all possible cyclobutane pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts (64PPs) and their related Dewar valence isomers (DEWs) was determined by high-performance liquid chromatography-mass spectrometry. Studied samples were bacterioplankton and eukaryotic fractions isolated from sea water either collected before sunrise or exposed to ambient sunlight from sunrise to sunset. Isolated DNA dosimeters were also exposed to daily sunlight for comparison purposes. A first major result was the observation in all samples of large amounts of DEWs, a class of photoproducts rarely considered outside photochemical studies. Evidence was obtained for a major role of UVA in the formation of these photoisomerization products of 64PPs. Considerations on the ratio between the different classes of photoproducts in basal and induced DNA damage suggests that photoenzymatic repair (PER) is an important DNA repair mechanism used by marine microorganisms occupying surface seawater in the open ocean. This result emphasizes the biological role of DEWs which are very poor substrate for PER.
Collapse
Affiliation(s)
- Jarah A Meador
- Center for Radiological Research, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
20
|
Abstract
Flavoproteins often employ radical mechanisms in their enzymatic reactions. This involves paramagnetic species, which can ideally be investigated with electron paramagnetic resonance (EPR) spectroscopy. In this chapter we focus on the example of flavin-based photoreceptors and discuss, how different EPR methods have been used to extract information about the flavin radical's electronic state, its binding pocket, electron-transfer pathways, and about the protein's tertiary and quaternary structure.
Collapse
Affiliation(s)
- Richard Brosi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany,
| | | | | |
Collapse
|
21
|
Faraji S, Wirz L, Dreuw A. Quantum chemical study of the enzymatic repair of T(6-4)C/C(6-4)T UV-photolesions by DNA photolyases. Chemphyschem 2013; 14:2817-24. [PMID: 23821498 DOI: 10.1002/cphc.201300223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Indexed: 11/10/2022]
Abstract
Several strategies have evolved to repair one of the abundant UV radiation-induced damages caused to DNA, namely the mutagenic pyrimidine (6-4) pyrimidone photolesions. DNA (6-4)-photolyases are enzymes repairing these lesions by a photoinitiated electron transfer. An important aspect of a possible repair mechanism is its generality and transferability to different (6-4) lesions. Therefore, previously suggested mechanisms for the repair of the T(6-4)T lesion are here transferred to the T(6-4)C and C(6-4)T lesions and investigated theoretically using quantum chemical methods. Despite the different functional groups of the pyrimidine bases involved, a general valid molecular mechanism was identified, in which the initial step is an electron transfer coupled to a proton transfer from the protonated HIS365 to the N3(') nitrogen of the 3(') pyrimidine, followed by an intramolecular OH/NH2 transfer in one concerted step, which does not require an oxetane/azetidine or isolated water/ammonia intermediate.
Collapse
Affiliation(s)
- Shirin Faraji
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
22
|
Yamamoto J, Martin R, Iwai S, Plaza P, Brettel K. Repair of the (6-4) Photoproduct by DNA Photolyase Requires Two Photons. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Yamamoto J, Martin R, Iwai S, Plaza P, Brettel K. Repair of the (6-4) photoproduct by DNA photolyase requires two photons. Angew Chem Int Ed Engl 2013; 52:7432-6. [PMID: 23761226 DOI: 10.1002/anie.201301567] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/06/2013] [Indexed: 11/06/2022]
Abstract
It takes two (photons) to tango: Single-turnover flash experiments showed that the flavoenzyme (6-4) photolyase uses a successive two-photon mechanism to repair the UV-induced T(6-4)T lesion in DNA (see picture). The intermediate (X) formed by the first photoreaction is likely to be the oxetane-bridged dimer T(ox)T. The enzyme could stabilize the normally short-lived T(ox)T, allowing repair to be completed by the second photoreaction.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | |
Collapse
|
24
|
Condic-Jurkic K, Smith AS, Zipse H, Smith DM. The Protonation States of the Active-Site Histidines in (6-4) Photolyase. J Chem Theory Comput 2012; 8:1078-91. [PMID: 26593369 DOI: 10.1021/ct2005648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The active sites of the (6-4) photolyases contain two conserved histidine residues, which, in the Drosophila melanogaster enzyme, correspond to His365 and His369. While there are nine combinations in which the three possible protonation states of the two histidines (with protons on Nδ (HID), Nε (HIE), or both Nδ and Nε (HIP)) can be paired, there is presently no consensus as to which of these states is present, let alone mechanistically relevant. EPR hyperfine couplings for selected protons of the FADH(•) radical have previously been used to address this issue. Our QM/MM calculations show, however, that the experimental couplings are equally well reproduced by each of the nine combinations. Since the EPR results seemingly cannot be used to unequivocally assign the protonation states, the pKa values of the two histidines were calculated using the popular PROPKA, H++, and APBS approaches, in various environments and for several lesions. These techniques consistently indicate that, at pH = 7, both His365 and His369 should be neutral, although His369 is found to be more prone to becoming protonated. In a comparative approach, a series of molecular dynamics simulations was performed with all nine combinations, employing various reference crystal structures and different oxidation states of the FAD cofactor. The overall result of this approach is in agreement with our pKa results. Consequently, although the introduction of the reduced cofactor results in an increased stability for selected protonated states, particularly the His365═HID and His369═HIP combination, the neutral combination His365═HID and His365═HIE stands out as the most relevant state for the activity of the enzyme.
Collapse
Affiliation(s)
- Karmen Condic-Jurkic
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.,Excellence Cluster, Engineering of Advanced Materials, University Erlangen-Nürnberg, Nägelsbachstrasse 49b, 91052 Erlangen, Germany
| | - Ana-Sunčana Smith
- Institute of Theoretical Physics, University Erlangen-Nürnberg, Staudtstrasse 9, 91058 Erlangen, Germany.,Excellence Cluster, Engineering of Advanced Materials, University Erlangen-Nürnberg, Nägelsbachstrasse 49b, 91052 Erlangen, Germany
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians Universität, Butenandtstrasse 13, 82131 München, Germany
| | - David M Smith
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.,Computer-Chemie-Centrum, Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| |
Collapse
|
25
|
Fingerhut BP, Heil K, Kaya E, Oesterling S, de Vivie-Riedle R, Carell T. Mechanism of UV-induced Dewar lesion repair catalysed by DNA (6-4) photolyase. Chem Sci 2012. [DOI: 10.1039/c2sc20122d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
26
|
Domratcheva T. Neutral Histidine and Photoinduced Electron Transfer in DNA Photolyases. J Am Chem Soc 2011; 133:18172-82. [DOI: 10.1021/ja203964d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Ai YJ, Liao RZ, Chen SL, Hua WJ, Fang WH, Luo Y. Repair of DNA Dewar photoproduct to (6-4) photoproduct in (6-4) photolyase. J Phys Chem B 2011; 115:10976-82. [PMID: 21834563 DOI: 10.1021/jp204128k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dewar photoproduct (Dewar PP) is the valence isomer of (6-4) photoproduct ((6-4)PP) in photodamaged DNA. Compared to the extensive studied CPD photoproducts, the underlying repair mechanisms for the (6-4)PP, and especially for the Dewar PP, are not well-established to date. In this paper, the repair mechanism of DNA Dewar photoproduct T(dew)C in (6-4) photolyase was elucidated using hybrid density functional theory. Our results showed that, during the repair process, the T(dew)C has to isomerize to T(6-4)C photolesion first via direct C6'-N3' bond cleavage facilitated by electron injection. This isomerization mechanism is energetically much more efficient than other possible rearrangement pathways. The calculations provide a theoretical interpretation to recent experimental observations.
Collapse
Affiliation(s)
- Yue-Jie Ai
- Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Lin G, Chen CH, Pink M, Pu J, Li L. Chemical synthesis, crystal structure and enzymatic evaluation of a dinucleotide spore photoproduct analogue containing a formacetal linker. Chemistry 2011; 17:9658-68. [PMID: 21780208 PMCID: PMC3180863 DOI: 10.1002/chem.201101821] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Indexed: 11/11/2022]
Abstract
Spore photoproduct (SP) is the exclusive DNA photodamage product found in bacterial endospores. Its photoformation and repair by a metalloenzyme spore photoproduct lyase (SPL) composes the unique SP biochemistry. Despite the fact that the SP was discovered almost 50 years ago, its crystal structure is still unknown and the lack of structural information greatly hinders the study of SP biochemistry. Employing a formacetal linker and organic synthesis, we successfully prepared a dinucleotide SP isostere 5R-CH(2) SP, which contains a neutral CH(2) moiety between the two thymine residues instead of a phosphate. The neutral linker dramatically facilitates the crystallization process, allowing us to obtain the crystal structure for this intriguing thymine dimer half a century after its discovery. Further ROESY spectroscopic, DFT computational, and enzymatic studies of this 5R-CH(2) SP compound prove that it possesses similar properties with the 5R-SP species, suggesting that the revealed structure truly reflects that of SP generated in Nature.
Collapse
Affiliation(s)
- Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA)
| | - Chun-Hsing Chen
- Indiana University Molecular Structure Center, Chemistry, A421, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Maren Pink
- Indiana University Molecular Structure Center, Chemistry, A421, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA)
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis (IUPUI), 402 N. Blackford St., Indianapolis, IN 46202 (USA)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202 (USA)
| |
Collapse
|
29
|
Domingo LR, Pérez-Ruiz R, Argüello JE, Miranda MA. DFT Study on the Cycloreversion of Thietane Radical Cations. J Phys Chem A 2011; 115:5443-8. [DOI: 10.1021/jp200177a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis R. Domingo
- Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan E. Argüello
- INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Miguel A. Miranda
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
30
|
Ai YJ, Liao RZ, Chen SF, Luo Y, Fang WH. Theoretical studies on photoisomerizations of (6-4) and Dewar photolesions in DNA. J Phys Chem B 2011; 114:14096-102. [PMID: 20961081 DOI: 10.1021/jp107873w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The (6-4) photoproduct ((6-4) PP) is one of the main lesions in UV-induced DNA damage. The (6-4) PP and its valence isomer Dewar photoproduct (Dewar PP) can have a great threat of mutation and cancer but gained much less attention to date. In this study, with density functional theory (DFT) and the complete active space self-consistent field (CASSCF) methods, the photoisomerization processes between the (6-4) PP and the Dewar PP in the gas phase, the aqueous solution, and the photolyase have been carefully examined. Noticeably, the solvent effect is treated with the CASPT2//CASSCF/Amber (QM/MM) method. Our calculations show that the conical intersection (CI) points play a crucial role in the photoisomerization reaction between the (6-4) PP and the Dewar PP in the gas and the aqueous solution. The ultrafast internal conversion between the S(2) ((1)ππ*) and the S(0) states via a distorted intersection point is found to be responsible for the formation of the Dewar PP lesion at 313 nm, as observed experimentally. For the reversed isomeric process, two channels involving the "dark" excited states have been identified. In addition to the above passages, in the photolyase, a new electron-injection isomerization process as an efficient way for the photorepair of the Dewar PP is revealed.
Collapse
Affiliation(s)
- Yue-Jie Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
31
|
Wu QQ, Song QH. Photosensitized splitting of thymine dimer or oxetane unit by a covalently N-linked carbazole via electron transfer in different marcus regions. J Phys Chem B 2011; 114:9827-32. [PMID: 20614917 DOI: 10.1021/jp1035579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many similarities exist between the two classes of enzymes, cyclobutane photolyases and (6-4) photolyases have certain important differences. The most significant difference is in their repair quantum yields, cyclobutane photolyases with a uniformly high efficiency (0.7-0.98) and very low repair efficiency for (6-4) photolyases (0.05-0.1). To understand the significant difference, we prepared two classes of model compounds, covalently N-linked dimer- (1) or oxetane-carbazole (2) compounds with a dimethylene or trimethylene group as a linker. Under light irradiation, the dimer or oxetane unit of model compounds can be sensitized to split by the excited carbazole via an intramolecular electron transfer. The splitting reaction of dimer or oxetane unit in model compounds is strongly solvent dependent. In nonpolar solvents, such as cyclohexane or THF, no fluorescence quenching of the carbazole moiety of model compounds relative to a free carbazole, N-methylcarbazole, was observed and thus no splitting occurred. In polar solvents, two classes of model compounds reveal two reverse solvent effects on the splitting quantum yield. One is an inverse relation between the quantum yield and the polarity of the solvent for dimer-model systems, and another is a normal relation for oxetane-model systems. This phenomenon was also observed with another two classes of model compounds, covalently linked dimer- or oxetane-indole. Based on Marcus theory and thermodynamic data, it has been rationalized that the two reverse solvent effects derive from back electron transfer in the splitting process lying in the different Marcus regions. Back electron transfer lies in the Marcus inverted region for dimer-model systems and the normal region for oxetane-model systems. From repair solvent behavior of the two classes of model compounds, we gained some insights into the major difference in the repair efficiency for the two classes of photolyases.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | | |
Collapse
|
32
|
|
33
|
Martín-Ortiz J, Quirante JJ. Thermolysis of 2-methyloxetane: a computational study. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Sarkar S, Kiely R, McHugh PJ. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair. ACTA ACUST UNITED AC 2010; 191:1061-8. [PMID: 21135142 PMCID: PMC3002029 DOI: 10.1083/jcb.201006178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ino80 facilitates restoration of nucleosome structure during NER-mediated repair of UV-induced lesions. Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4–Rad23 and is recruited to chromatin by Rad4 in a UV damage–dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.
Collapse
Affiliation(s)
- Sovan Sarkar
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, England, UK
| | | | | |
Collapse
|
35
|
Heil K, Pearson D, Carell T. Chemical investigation of light induced DNA bipyrimidine damage and repair. Chem Soc Rev 2010; 40:4271-8. [PMID: 21076781 DOI: 10.1039/c000407n] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In all organisms, genetic information is stored in DNA and RNA. Both of these macromolecules are damaged by many exogenous and endogenous events, with UV irradiation being one of the major sources of damage. The major photolesions formed are the cyclobutane pyrimidine dimers (CPD), pyrimidine-pyrimidone-(6-4)-photoproducts, Dewar valence isomers and, for dehydrated spore DNA, 5-(α-thyminyl)-5,6-dihydrothymine (SP). In order to be able to investigate how nature's repair and tolerance mechanisms protect the integrity of genetic information, oligonucleotides containing sequence and site-specific UV lesions are essential. This tutorial review provides an overview of synthetic procedures by which these oligonucleotides can be generated, either through phosphoramidite chemistry or direct irradiation of DNA. Moreover, a brief summary on their usage in analysing repair and tolerance processes as well as their biological effects is provided.
Collapse
Affiliation(s)
- Korbinian Heil
- Center for Integrative Protein Science CiPSM at the Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | |
Collapse
|
36
|
Xu L, Zhu G. The Roles of Several Residues of Escherichia coli DNA Photolyase in the Highly Efficient Photo-Repair of Cyclobutane Pyrimidine Dimers. J Nucleic Acids 2010; 2010. [PMID: 20871655 PMCID: PMC2939405 DOI: 10.4061/2010/794782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 07/07/2010] [Accepted: 08/07/2010] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli DNA photolyase is an enzyme that repairs the major kind of UV-induced lesions, cyclobutane pyrimidine dimer (CPD) in DNA utilizing 350-450 nm light as energy source. The enzyme has very high photo-repair efficiency (the quantum yield of the reaction is ~0.85), which is significantly greater than many model compounds that mimic photolyase. This suggests that some residues of the protein play important roles in the photo-repair of CPD. In this paper, we have focused on several residues discussed their roles in catalysis by reviewing the existing literature and some hypotheses.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, Wuhu 241000, China
| | | |
Collapse
|
37
|
Glas AF, Kaya E, Schneider S, Heil K, Fazio D, Maul MJ, Carell T. DNA (6-4) photolyases reduce Dewar isomers for isomerization into (6-4) lesions. J Am Chem Soc 2010; 132:3254-5. [PMID: 20166732 DOI: 10.1021/ja910917f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repair of the Dewar valence isomers by (6-4) photolyases proceeds via an enzyme catalyzed ring-opening reaction of the Dewar lesion to the (6-4) photoproduct.
Collapse
Affiliation(s)
- Andreas F Glas
- Center for Integrative Protein Science, Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Role of Lys281 in the Dunaliella salina (6-4) photolyase reaction. Curr Microbiol 2010; 62:146-51. [PMID: 20533040 DOI: 10.1007/s00284-010-9687-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
His(354) and His(358), two highly conserved histidines in Xenopus laevis (6-4) photolyase [equivalent to His(401) and His(405), in Dunaliella salina (6-4) photolyase], are critical for photoreactivation. They act as a base and an acid, respectively. However, the remaining high repair activity when the pH value is higher than the pKa of histidine suggests the involvement of other basic amino acids in photoreactivation. According to the results of in vivo enzyme assay and three-dimension structural model of Dunaliella salina (6-4) photolyase we hypothesized that Lys(281) might be involved in the photoreactivation over the pH range from 10.0 to 11.0. To test this, we generated two mutant forms of the (6-4) photolyase, K281G and K281R mutant, by overlap extension polymerase chain reaction, and performed the enzyme assay with these mutants. From these results we conclude that the Lys(281), which is highly conserved in (6-4) photolyases, participates in the photoreactivation and acts as an acid to donate a proton to His(401) when the environmental pH is higher than the pKa value of histidine.
Collapse
|
39
|
Elias Argüello J, Pérez-Ruiz R, Miranda MA. Photoinduced Electron-Transfer Cycloreversion of Thietanes: The Role of Ion−Molecule Complexes. Org Lett 2010; 12:1884-7. [DOI: 10.1021/ol100520m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Elias Argüello
- INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina, and Departamento de Química, Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Raúl Pérez-Ruiz
- INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina, and Departamento de Química, Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel A. Miranda
- INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina, and Departamento de Química, Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
40
|
Domratcheva T, Schlichting I. Electronic structure of (6-4) DNA photoproduct repair involving a non-oxetane pathway. J Am Chem Soc 2010; 131:17793-9. [PMID: 19921821 DOI: 10.1021/ja904550d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutagenic pyrimidine-pyrimidone (6-4) photoproducts are one of the main DNA lesions induced by solar UV radiation. These lesions can be photoreversed by (6-4) photolyases. The originally published repair mechanism involves rearrangement of the lesion into an oxetane intermediate upon binding to the (6-4) photolyase, followed by light-induced electron transfer from the reduced flavin cofactor. In a recent crystallographic study on a (6-4) photoproduct complexed with (6-4) photolyase from Drosophila melanogaster no oxetane was observed, raising the possibility of a non-oxetane repair mechanism. Using quantum-chemical calculations we find that in addition to repair via an oxetane, a direct transfer of the hydroxyl group results in reversal of the radical anion (6-4) photoproduct. In both mechanisms, the transition states have high energies and correspond to avoided crossings of the ground and excited electronic states. To study whether the repair can proceed via these state crossings, the excited-state potential energy curves were computed. The radical excitation energies and accessibility of the nonadiabatic repair path were found to depend on hydrogen bonds and the protonation state of the lesion. On the basis of the energy calculations, a nonadiabatic repair of the excited (6-4) lesion radical anion via hydroxyl transfer is probable. This repair mechanism is in line with the recent structural data on the (6-4) photolyase from D. melanogaster .
Collapse
Affiliation(s)
- Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | |
Collapse
|
41
|
Glas AF, Schneider S, Maul MJ, Hennecke U, Carell T. Crystal structure of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) and Dewar photolesions. Chemistry 2009; 15:10387-96. [PMID: 19722240 DOI: 10.1002/chem.200901004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UV-light irradiation induces the formation of highly mutagenic lesions in DNA, such as cis-syn cyclobutane pyrimidine dimers (CPD photoproducts), pyrimidine(6-4)pyrimidone photoproducts ((6-4) photoproducts) and their Dewar valence isomers ((Dew) photoproducts). Here we describe the synthesis of defined DNA strands containing these lesions by direct irradiation. We show that all lesions are efficiently repaired except for the T(Dew)T lesion, which cannot be cleaved by the repair enzyme under our conditions. A crystal structure of a T(6-4)C lesion containing DNA duplex in complex with the (6-4) photolyase from Drosophila melanogaster provides insight into the molecular recognition event of a cytosine derived photolesion for the first time. In light of the previously postulated repair mechanism, which involves rearrangement of the (6-4) lesions into strained four-membered ring repair intermediates, it is surprising that the not rearranged T(6-4)C lesion is observed in the active site. The structure, therefore, provides additional support for the newly postulated repair mechanism that avoids this rearrangement step and argues for a direct electron injection into the lesion as the first step of the repair reaction performed by (6-4) DNA photolyases.
Collapse
Affiliation(s)
- Andreas F Glas
- Department for Chemistry and Biochemistry, Ludwig-Maximilians University, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
42
|
Yamamoto J, Hitomi K, Hayashi R, Getzoff ED, Iwai S. Role of the carbonyl group of the (6-4) photoproduct in the (6-4) photolyase reaction. Biochemistry 2009; 48:9306-12. [PMID: 19715341 DOI: 10.1021/bi900956p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The (6-4) photoproduct, which is one of the major UV-induced DNA lesions, causes carcinogenesis with high frequency. The (6-4) photolyase is a flavoprotein that can restore this lesion to the original bases, but its repair mechanism has not been elucidated. In this study, we focused on the interaction between the enzyme and the 3' pyrimidone component of the (6-4) photoproduct and prepared a substrate analogue in which the carbonyl group, a hydrogen-bond acceptor, was replaced with an imine, a hydrogen-bond donor, to investigate the involvement of this carbonyl group in the (6-4) photolyase reaction. UV irradiation of oligodeoxyribonucleotides containing a single thymine-5-methylisocytosine site yielded products with absorption bands at wavelengths longer than 300 nm, similar to those obtained from the conversion of the TT site to the (6-4) photoproduct. Nuclease digestion, MALDI-TOF mass spectrometry, and the instability of the products indicated the formation of the 2-iminopyrimidine-type photoproduct. Analyses of the reaction and the binding of the (6-4) photolyase using these oligonucleotides revealed that this imine analogue of the (6-4) photoproduct was not repaired by the (6-4) photolyase, although the enzyme bound to the oligonucleotide with considerable affinity. These results indicate that the carbonyl group of the 3' pyrimidone ring plays an important role in the (6-4) photolyase reaction. On the basis of these results, we discuss the repair mechanism.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
43
|
Schleicher E, Bittl R, Weber S. New roles of flavoproteins in molecular cell biology: Blue-light active flavoproteins studied by electron paramagnetic resonance. FEBS J 2009; 276:4290-303. [DOI: 10.1111/j.1742-4658.2009.07141.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Müller M, Carell T. Structural biology of DNA photolyases and cryptochromes. Curr Opin Struct Biol 2009; 19:277-85. [PMID: 19487120 DOI: 10.1016/j.sbi.2009.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/28/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Photolyases repair cytotoxic and mutagenic UV-induced photolesions in DNA by using an amazing light-dependent repair mechanism. It involves light absorption, electron transfer from an excited reduced and deprotonated FADH(-) to the flipped-out photolesion, followed by the fragmentation of the photolesions. Cryptochromes are highly related proteins that no longer repair damaged DNA, but function as photoreceptors. They feature strikingly similar protein architectures to photolyases and contain an FAD cofactor as well. However, cryptochromes possess an additional signal-transmitting domain, attached either to the N-termini or C-termini. Recently, the field of photorepair and blue-light photoperception has experienced significant progress particularly in structural biology, which is summarized in this review. Today, crystal structures of many family members are known and most recently even complexes of photolyases and DASH-type cryptochrome bound to their DNA substrates became available providing insight into the critical electron and energy transfer reactions that enable genome repair.
Collapse
Affiliation(s)
- Markus Müller
- Center for Integrated Protein Science CiPS(M) at the Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | |
Collapse
|
45
|
Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc Natl Acad Sci U S A 2009; 106:6962-7. [PMID: 19359474 PMCID: PMC2678464 DOI: 10.1073/pnas.0809180106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Indexed: 11/18/2022] Open
Abstract
Homologous flavoproteins from the photolyase (PHR)/cryptochrome (CRY) family use the FAD cofactor in PHRs to catalyze DNA repair and in CRYs to tune the circadian clock and control development. To help address how PHR/CRY members achieve these diverse functions, we determined the crystallographic structure of Arabidopsis thaliana (6-4) PHR (UVR3), which is strikingly (>65%) similar in sequence to human circadian clock CRYs. The structure reveals a substrate-binding cavity specific for the UV-induced DNA lesion, (6-4) photoproduct, and cofactor binding sites different from those of bacterial PHRs and consistent with distinct mechanisms for activities and regulation. Mutational analyses were combined with this prototypic structure for the (6-4) PHR/clock CRY cluster to identify structural and functional motifs: phosphate-binding and Pro-Lys-Leu protrusion motifs constricting access to the substrate-binding cavity above FAD, sulfur loop near the external end of the Trp electron-transfer pathway, and previously undefined C-terminal helix. Our results provide a detailed, unified framework for investigations of (6-4) PHRs and the mammalian CRYs. Conservation of key residues and motifs controlling FAD access and activities suggests that regulation of FAD redox properties and radical stability is essential not only for (6-4) photoproduct DNA repair, but also for circadian clock-regulating CRY functions. The structural and functional results reported here elucidate archetypal relationships within this flavoprotein family and suggest how PHRs and CRYs use local residue and cofactor tuning, rather than larger structural modifications, to achieve their diverse functions encompassing DNA repair, plant growth and development, and circadian clock regulation.
Collapse
Affiliation(s)
- Kenichi Hitomi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Luciano DiTacchio
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Andrew S. Arvai
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Sang-Tae Kim
- Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Takeshi Todo
- Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - John A. Tainer
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Elizabeth D. Getzoff
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
46
|
Maul MJ, Barends TRM, Glas AF, Cryle MJ, Domratcheva T, Schneider S, Schlichting I, Carell T. Crystal structure and mechanism of a DNA (6-4) photolyase. Angew Chem Int Ed Engl 2009; 47:10076-80. [PMID: 18956392 DOI: 10.1002/anie.200804268] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Melanie J Maul
- Centre for Integrative Protein Science, Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Maul M, Barends T, Glas A, Cryle M, Domratcheva T, Schneider S, Schlichting I, Carell T. Röntgenkristallstruktur und Mechanismus der DNA-(6-4)-Photolyase. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200804268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
49
|
Yamamoto J, Tanaka Y, Iwai S. Spectroscopic analysis of the pyrimidine(6-4)pyrimidone photoproduct: insights into the (6-4) photolyase reaction. Org Biomol Chem 2008; 7:161-6. [PMID: 19081959 DOI: 10.1039/b815458a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a dinucleoside monophosphate of the (15)N-labeled (6-4) photoproduct, which is one of the major UV-induced lesions in DNA, to investigate the (6-4) photolyase repair mechanism, and characterized its protonation state by measuring (15)N NMR spectra as a function of pH. We expected that chemical-shift changes of the pyrimidone (15)N3, due to protonation, would be observed at pH 3, as observed for the (15)N-labeled 5-methylpyrimidin-2-one nucleoside. Interestingly, however, the changes were observed only in alkaline solutions. In UV absorption spectroscopy and HPLC analyses under acidic conditions, a change in the maximum absorption wavelength, due to the protonation-induced hydrolysis, was observed at and below pH 1, but not at pH 2, whereas the protonation of 5-methylpyrimidin-2-one occurred at pH values between 2 and 3. These results indicated that the pK(a) value for this N3 is remarkably lower than that of a normal pyrimidone ring, and strongly suggest that an intramolecular hydrogen bond is formed between the N3 of the 3' base and the 5-OH of the 5' base under physiological conditions. The results of this study have implications not only for the recognition and reaction mechanisms of (6-4) photolyase, but also for the chemical nature of the (6-4) photoproduct.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | |
Collapse
|
50
|
Asgatay S, Petermann C, Harakat D, Guillaume D, Taylor JS, Clivio P. Evidence that the (6-4) photolyase mechanism can proceed through an oxetane intermediate. J Am Chem Soc 2008; 130:12618-9. [PMID: 18763765 DOI: 10.1021/ja805214s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the analogue of TpT methylated at the 3'-end N3 position (Tpm3T), we demonstrate that when the oxetane/(6-4) pathway is precluded, water addition occurs at the 3'-end C6 position of the oxetane intermediate to provide its opening. Photoreversal of this (6-4) photoproduct C6 hydrate brings the first experimental evidence that the (6-4) photolyase repair can proceed through an oxetane intermediate.
Collapse
Affiliation(s)
- Saâdia Asgatay
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 6229, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | | | | | | | | | | |
Collapse
|