1
|
Satoh I, Gotou K, Nagatsuma S, Nagashima KVP, Kobayashi M, Yu LJ, Madigan MT, Kimura Y, Wang-Otomo ZY. Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149001. [PMID: 37527691 DOI: 10.1016/j.bbabio.2023.149001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Phospholipid-protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1-reaction center core complexes (LH1-RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1-RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex-phospholipid interactions.
Collapse
Affiliation(s)
- I Satoh
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - K Gotou
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - S Nagatsuma
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - K V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - M Kobayashi
- National Institute of Technology, Ariake College, Omuta, Fukuoka 836-8585, Japan
| | - L-J Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - M T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Y Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Z-Y Wang-Otomo
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan.
| |
Collapse
|
2
|
Preparation for Denitrification and Phenotypic Diversification at the Cusp of Anoxia: a Purpose for N 2O Reductase Vis-à-Vis Multiple Roles of O 2. Appl Environ Microbiol 2022; 88:e0105322. [PMID: 36250705 PMCID: PMC9642011 DOI: 10.1128/aem.01053-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation to anoxia by synthesizing a denitrification proteome costs metabolic energy, and the anaerobic respiration conserves less energy per electron than aerobic respiration. This implies a selective advantage of the stringent O2 repression of denitrification gene transcription, which is found in most denitrifying bacteria. In some bacteria, the metabolic burden of adaptation can be minimized further by phenotypic diversification, colloquially termed "bet-hedging," where all cells synthesize the N2O reductase (NosZ) but only a minority synthesize nitrite reductase (NirS), as demonstrated for the model strain Paracoccus denitrificans. We hypothesized that the cells lacking NirS would be entrapped in anoxia but with the possibility of escape if supplied with O2 or N2O. To test this, cells were exposed to gradual O2 depletion or sudden anoxia and subsequent spikes of O2 and N2O. The synthesis of NirS in single cells was monitored by using an mCherry-nirS fusion replacing the native nirS, and their growth was detected as dilution of green, fluorescent fluorescein isothiocyanate (FITC) stain. We demonstrate anoxic entrapment due to e--acceptor deprivation and show that O2 spiking leads to bet-hedging, while N2O spiking promotes NirS synthesis and growth in all cells carrying NosZ. The cells rescued by the N2O spike had much lower respiration rates than those rescued by the O2 spike, however, which could indicate that the well-known autocatalytic synthesis of NirS via NO production requires O2. Our results bring into relief a fitness advantage of pairing restrictive nirS expression with universal NosZ synthesis in energy-limited systems. IMPORTANCE Denitrifying bacteria have evolved elaborate regulatory networks securing their respiratory metabolism in environments with fluctuating oxygen concentrations. Here, we provide new insight regarding their bet-hedging in response to hypoxia, which minimizes their N2O emissions because all cells express NosZ, reducing N2O to N2, while a minority express NirS + Nor, reducing NO2- to N2O. We hypothesized that the cells without Nir were entrapped in anoxia, without energy to synthesize Nir, and that they could be rescued by short spikes of O2 or N2O. We confirm such entrapment and the rescue of all cells by an N2O spike but only a fraction by an O2 spike. The results shed light on the role of O2 repression in bet-hedging and generated a novel hypothesis regarding the autocatalytic nirS expression via NO production. Insight into the regulation of denitrification, including bet-hedging, holds a clue to understanding, and ultimately curbing, the escalating emissions of N2O, which contribute to anthropogenic climate forcing.
Collapse
|
3
|
Roco CA, Bergaust LL, Bakken LR, Yavitt JB, Shapleigh JP. Modularity of nitrogen-oxide reducing soil bacteria: linking phenotype to genotype. Environ Microbiol 2016; 19:2507-2519. [PMID: 26914200 DOI: 10.1111/1462-2920.13250] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 01/25/2016] [Indexed: 12/26/2022]
Abstract
Model denitrifiers convert NO3- to N2 , but it appears that a significant fraction of natural populations are truncated, conducting only one or two steps of the pathway. To better understand the diversity of partial denitrifiers in soil and whether discrepancies arise between the presence of known N-oxide reductase genes and phenotypic features, bacteria able to reduce NO3- to NO2- were isolated from soil, N-oxide gas products were measured for eight isolates, and six were genome sequenced. Gas phase analyses revealed that two were complete denitrifiers, which genome sequencing corroborated. The remaining six accumulated NO and N2 O to varying degrees and genome sequencing of four indicated that two isolates held genes encoding nitrate reductase as the only dissimilatory N-oxide reductase, one contained genes for both nitrate and nitric oxide reductase, and one had nitrate and nitrite reductase. The results demonstrated that N-oxide production was not always predicted by the genetic potential and suggested that partial denitrifiers could be readily isolated among soil bacteria. This supported the hypothesis that each N-oxide reductase could provide a selectable benefit on its own, and therefore, reduction of nitrate to dinitrogen may not be obligatorily linked to complete denitrifiers but instead a consequence of a functionally diverse community.
Collapse
Affiliation(s)
| | - Linda L Bergaust
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ǻs, Norway
| | - Lars R Bakken
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ǻs, Norway
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
4
|
Hassan J, Bergaust LL, Molstad L, de Vries S, Bakken LR. Homeostatic control of nitric oxide (NO) at nanomolar
concentrations in denitrifying bacteria - modelling and experimental determination of NO reductase kinetics in vivo
in P
aracoccus denitrificans. Environ Microbiol 2016; 18:2964-78. [DOI: 10.1111/1462-2920.13129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/01/2015] [Accepted: 11/08/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Junaid Hassan
- Department of Environmental Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Linda L. Bergaust
- Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Ås Norway
| | - Lars Molstad
- Department of Environmental Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Simon de Vries
- Department of Biotechnology; Delft University of Technology; the Netherlands
| | - Lars R. Bakken
- Department of Environmental Sciences; Norwegian University of Life Sciences; Ås Norway
| |
Collapse
|
5
|
Hassan J, Bergaust LL, Wheat ID, Bakken LR. Low probability of initiating nirS transcription explains observed gas kinetics and growth of bacteria switching from aerobic respiration to denitrification. PLoS Comput Biol 2014; 10:e1003933. [PMID: 25375393 PMCID: PMC4222654 DOI: 10.1371/journal.pcbi.1003933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/17/2014] [Indexed: 01/22/2023] Open
Abstract
In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e−-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (, h−1) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With = 0.005 h−1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting (fraction of the cells recruited to denitrification) falls within 0.038–0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a ‘bet-hedging strategy’: switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a ‘false alarm’. In response to oxygen-limiting conditions, denitrifying bacteria produce a set of enzymes to convert / to N2 via NO and N2O. The process (denitrification) helps generate energy for survival and growth during anoxia. Denitrification is imperative for the nitrogen cycle and has far-reaching consequences including contribution to global warming and destruction of stratospheric ozone. Recent experiments provide circumstantial evidence for a previously unknown phenomenon in the model denitrifying bacterium Paracoccus denitrificans: as O2 depletes, only a marginal fraction of its population appears to switch to denitrification. We hypothesise that the low success rate is due to a) low probability for the cells to initiate the transcription of genes (nirS) encoding a key denitrification enzyme (NirS), and b) a limited time-window in which NirS must be produced. Based on this hypothesis, we constructed a dynamic model of denitrification in Pa. denitrificans. The simulation results show that, within the limited time available, a probability of 0.005 h−1 for each cell to initiate nirS transcription (resulting in the recruitment of 3.8–16.1% cells to denitrification) is sufficient to adequately simulate experimental data. The result challenges conventional outlook on the regulation of denitrification in general and that of Pa. denitrificans in particular.
Collapse
Affiliation(s)
- Junaid Hassan
- Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Linda L. Bergaust
- Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - I. David Wheat
- Department of Geography, University of Bergen, Bergen, Norway
| | - Lars R. Bakken
- Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
6
|
Nadeem S, Dörsch P, Bakken LR. The significance of early accumulation of nanomolar concentrations of NO as an inducer of denitrification. FEMS Microbiol Ecol 2012; 83:672-84. [PMID: 23035849 DOI: 10.1111/1574-6941.12024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022] Open
Abstract
Denitrifying bacteria have variable ability to perform efficient and balanced denitrification during oxygen depletion. NO is often assumed to exert a positive feedback in the transcription of denitrification genes, because NO-dependent activators have been identified. The regulatory network of denitrification is complex, however, and the significance of NO signalling needs to be studied in vivo. We utilized acetylene-catalysed NO oxidation to scavenge NO produced by batch cultures of denitrifying bacteria during transition from oxic to anoxic respiration, to explore the effects on the kinetics of NO, N(2) O and N(2) production. The results demonstrated that nanomolar concentrations of NO accumulating prior to complete depletion of oxygen exert a significant positive feedback on the initiation of denitrification in Paracoccus denitrificans. The early NO signal appeared essential to minimize the transient accumulation of NO during the subsequent anoxic phase for Agrobacterium tumefaciens, but not for P. denitrificans and Pseudomonas aureofaciens. In summary, the results indicate that the early accumulation of nanomolar concentrations of NO has a significant, but strain-dependent effect on the expression of denitrification.
Collapse
Affiliation(s)
- Shahid Nadeem
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
7
|
Bergaust L, van Spanning RJM, Frostegård Å, Bakken LR. Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. MICROBIOLOGY-SGM 2011; 158:826-834. [PMID: 22174385 PMCID: PMC3541799 DOI: 10.1099/mic.0.054148-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The reductases performing the four steps of denitrification are controlled by a network of transcriptional regulators and ancillary factors responding to intra- and extracellular signals, amongst which are oxygen and N oxides (NO and NO2–). Although many components of the regulatory network have been identified, there are gaps in our understanding of their role(s) in controlling the expression of the various reductases, in particular the environmentally important N2O reductase (N2OR). We investigated denitrification phenotypes of Paracoccus denitrificans mutants deficient in: (i) regulatory proteins (three FNR-type transcriptional regulators, NarR, NNR and FnrP, and NirI, which is involved in transcription activation of the structural nir cluster); (ii) functional enzymes (NO reductase and N2OR); or (iii) ancillary factors involved in N2O reduction (NirX and NosX). A robotized incubation system allowed us to closely monitor changes in concentrations of oxygen and all gaseous products during the transition from oxic to anoxic respiration. Strains deficient in NO reductase were able to grow during denitrification, despite reaching micromolar concentrations of NO, but were unable to return to oxic respiration. The FnrP mutant showed linear anoxic growth in a medium with nitrate as the sole NOx, but exponential growth was restored by replacing nitrate with nitrite. We interpret this as nitrite limitation, suggesting dual transcriptional control of respiratory nitrate reductase (NAR) by FnrP and NarR. Mutations in either NirX or NosX did not affect the phenotype, but the double mutant lacked the potential to reduce N2O. Finally, we found that FnrP and NNR are alternative and equally effective inducers of N2OR.
Collapse
Affiliation(s)
- Linda Bergaust
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Rob J. M. van Spanning
- Department of Molecular Cell Biology, Faculty of Earth and Life Science, VU University, Amsterdam, The Netherlands
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lars R. Bakken
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
8
|
Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025). J Bacteriol 2011; 193:6483-9. [PMID: 21949073 DOI: 10.1128/jb.05324-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.
Collapse
|
9
|
Hartsock A, Shapleigh JP. Mechanisms of oxygen inhibition of nirK expression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2010; 156:3158-3165. [PMID: 20595263 DOI: 10.1099/mic.0.038703-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
R. sphaeroides strain 2.4.3, when lacking the cbb(3) oxidase, is unable to transition from aerobic respiration to denitrification using cellular respiration as a means of reducing oxygen levels. This is due to an inability to express nirK, the gene encoding nitrite reductase. Under certain photosynthetic conditions this strain can transition from aerobic to nitrate respiration, demonstrating that nirK expression can occur in the absence of a functional cbb(3) oxidase. If oxygen levels are reduced under non-photosynthetic conditions using low-oxygen gas mixes, nitrite reductase activity is detected at wild-type levels in the strain lacking the oxidase. In addition, co-culture experiments show that incubation of the cbb(3) deficient strain 2.4.3 with R. sphaeroides 2.4.1, which is nirK deficient but has the high-affinity cbb(3) oxidase, restores denitrification in sealed-vessel experiments. Taken together these results indicate that high end-point O(2) levels are the reason why the strain lacking the cbb(3) oxidase cannot transition from aerobic respiration to denitrification under certain conditions. The protein probably being affected by these O(2) levels is the transcriptional regulator NnrR.
Collapse
Affiliation(s)
- Angela Hartsock
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Identification, functional studies, and genomic comparisons of new members of the NnrR regulon in Rhodobacter sphaeroides. J Bacteriol 2009; 192:903-11. [PMID: 19966004 DOI: 10.1128/jb.01026-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Analysis of the Rhodobacter sphaeroides 2.4.3 genome revealed four previously unidentified sequences similar to the binding site of the transcriptional regulator NnrR. Expression studies demonstrated that three of these sequences are within the promoters of genes, designated paz, norEF, and cdgA, in the NnrR regulon, while the status of the fourth sequence, within the tat operon promoter, remains uncertain. nnrV, under control of a previously identified NnrR site, was also identified. paz encodes a pseudoazurin that is a donor of electrons to nitrite reductase. paz inactivation did not decrease nitrite reductase activity, but loss of pseudoazurin and cytochrome c(2) together reduced nitrite reduction. Inactivation of norEF reduced nitrite and nitric oxide reductase activity and increased the sensitivity to nitrite in a taxis assay. This suggests that loss of norEF increases NO production as a result of decreased nitric oxide reductase activity. 2.4.3 is the only strain of R. sphaeroides with norEF, even though all four of the strains whose genomes have been sequenced have the norCBQD operon and nnrR. norEF was shown to provide resistance to nitrite when it was mobilized into R. sphaeroides strain 2.4.1 containing nirK. Inactivation of the other identified genes did not reveal any detectable denitrification-related phenotype. The distribution of members of the NnrR regulon in R. sphaeroides revealed patterns of coselection of structural genes with the ancillary genes identified here. The strong coselection of these genes indicates their functional importance under real-world conditions, even though inactivation of the majority of them does not impact denitrification under laboratory conditions.
Collapse
|
11
|
Bergaust L, Shapleigh J, Frostegård A, Bakken L. Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environ Microbiol 2008; 10:3070-81. [PMID: 18312398 DOI: 10.1111/j.1462-2920.2007.01557.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ability of Agrobacetrium tumefaciens to perform balanced transitions from aerobic to anaerobic respiration was studied by monitoring oxygen depletion, transcription of nirK and norB, and the concentrations of nitrite, nitric oxide (NO) and nitrous oxide in stirred batch cultures with different initial oxygen, nitrate or nitrite concentrations. Nitrate concentrations (0.2-2 mM) did not affect oxygen depletion, nor the oxygen concentration at which denitrification was initiated (1-2 microM). Nitrite (0.2-2 mM), on the other hand, retarded the oxygen depletion as it reached approximately 20 microM, and caused initiation of active denitrification as oxygen concentrations reached 10-17 microM. Unbalanced transitions occurred in treatments with high cell densities (i.e. with rapid transition from oxic to anoxic conditions), seen as NO accumulation to muM concentrations and impeded nitrous oxide production. This phenomenon was most severe in nitrite treatments, and reduced the cells' ability to respire oxygen during subsequent oxic conditions. Transcripts of norB were only detectable during the period with active denitrification. In contrast, nirK transcripts were detected at low levels both before and after this period. The results demonstrate that the transition from aerobic to anaerobic metabolism is a regulatory challenge, with implications for survival and emission of trace gases from denitrifying bacteria.
Collapse
Affiliation(s)
- Linda Bergaust
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, As, Norway.
| | | | | | | |
Collapse
|
12
|
Gubellini F, Francia F, Turina P, Lévy D, Venturoli G, Melandri BA. Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1340-52. [PMID: 17961501 DOI: 10.1016/j.bbabio.2007.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/26/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.
Collapse
Affiliation(s)
- Francesca Gubellini
- Department of Biology, University of Bologna, Laboratory of Biochemistry and Biophysics, Via Irnerio, 42 I-40126, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Molstad L, Dörsch P, Bakken LR. Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. J Microbiol Methods 2007; 71:202-11. [PMID: 17904668 DOI: 10.1016/j.mimet.2007.08.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/25/2007] [Accepted: 08/29/2007] [Indexed: 11/29/2022]
Abstract
As genomic data for bacteria are unraveled at an increasing speed, there is a need for more efficient and refined techniques to characterize metabolic traits. The regulatory apparatus for denitrification, for instance, has been explored extensively for type strains, but we lack refined observations of how these and wild type denitrifiers respond metabolically to changing environmental conditions. There is a need for new "phenomic" approaches, and the present paper describes one; an automated incubation system for the study of gas kinetics in 15 parallel bacterial cultures. An autosampler with a peristaltic pump takes samples from the headspace, and replaces the sampled gas with He by reversing the pump. The sample flows through the injector of a micro GC (for determination of N(2), O(2), CH(4), CO(2), N(2)O) to the inlet of a chemoluminescence NO analyzer. The linear range for NO is 0.5-10(4) ppmv (CV=2%, detection limit 0.2 ppmv). The gas leakage of N(2) into the system is low and reproducible, allowing the quantification of N(2) production (in flasks with He+O(2) atmosphere) with a detection limit of 150-200 nmol N(2) for a single time increment. The gas loss by each sampling is taken into account, securing mass balance for all gases, thus allowing accurate estimation of electron flows to the various terminal acceptors (O(2), NO(2)(-), NO, N(2)O) throughout the culture's depletion of O(2) and NO(x). We present some experimental results with Agrobacterium tumefaciens, Paracoccus denitrificans and denitrifying communities, demonstrating the system's potential for unraveling contrasting patterns of denitrification gene expression as a function of concentrations of O(2) and NO in the medium.
Collapse
Affiliation(s)
- Lars Molstad
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO box 5003, N-1432 Aas, Norway
| | | | | |
Collapse
|
14
|
Laratta WP, Nanaszko MJ, Shapleigh JP. Electron transfer to nitrite reductase of Rhodobacter sphaeroides 2.4.3: examination of cytochromes c 2 and c Y. Microbiology (Reading) 2006; 152:1479-1488. [PMID: 16622064 DOI: 10.1099/mic.0.28524-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of cytochromec2, encoded bycycA, and cytochromecY, encoded bycycY, in electron transfer to the nitrite reductase ofRhodobacter sphaeroides2.4.3 was investigated using bothin vivoandin vitroapproaches. BothcycAandcycYwere isolated, sequenced and insertionally inactivated in strain 2.4.3. Deletion of either gene alone had no apparent effect on the ability ofR. sphaeroidesto reduce nitrite. In acycA–cycYdouble mutant, nitrite reduction was largely inhibited. However, the expression of the nitrite reductase genenirKfrom a heterologous promoter substantially restored nitrite reductase activity in the double mutant. Using purified protein, a turnover number of 5 s−1was observed for the oxidation of cytochromec2by nitrite reductase. In contrast, oxidation ofcYonly resulted in a turnover of ∼0·1 s−1. The turnover experiments indicate thatc2is a major electron donor to nitrite reductase butcYis probably not. Taken together, these results suggest that there is likely an unidentified electron donor, in addition toc2, that transfers electrons to nitrite reductase, and that the decreased nitrite reductase activity observed in thecycA–cycYdouble mutant probably results from a change innirKexpression.
Collapse
Affiliation(s)
- William P Laratta
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| | - Michael J Nanaszko
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| |
Collapse
|
15
|
Choi PS, Naal Z, Moore C, Casado-Rivera E, Abruña HD, Helmann JD, Shapleigh JP. Assessing the impact of denitrifier-produced nitric oxide on other bacteria. Appl Environ Microbiol 2006; 72:2200-5. [PMID: 16517672 PMCID: PMC1393196 DOI: 10.1128/aem.72.3.2200-2205.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 01/09/2006] [Indexed: 11/20/2022] Open
Abstract
A series of experiments was undertaken to learn more about the impact on other bacteria of nitric oxide (NO) produced during denitrification. The denitrifier Rhodobacter sphaeroides 2.4.3 was chosen as a denitrifier for these experiments. To learn more about NO production by this bacterium, NO levels during denitrification were measured by using differential mass spectrometry. This revealed that NO levels produced during nitrate respiration by this bacterium were in the low muM range. This concentration of NO is higher than that previously measured in denitrifiers, including Achromobacter cycloclastes and Paracoccus denitrificans. Therefore, both 2.4.3 and A. cycloclastes were used in this work to compare the effects of various NO levels on nondenitrifying bacteria. By use of bacterial overlays, it was found that the NO generated by A. cycloclastes and 2.4.3 cells during denitrification inhibited the growth of both Bacillus subtilis and R. sphaeroides 2.4.1 but that R. sphaeroides 2.4.3 caused larger zones of inhibition in the overlays than A. cycloclastes. Both R. sphaeroides 2.4.3 and A. cycloclastes induced the expression of the NO stress response gene hmp in B. subtilis. Taken together, these results indicate that there is variability in the NO concentrations produced by denitrifiers, but, irrespective of the NO levels produced, microbes in the surrounding environment were responsive to the NO produced during denitrification.
Collapse
Affiliation(s)
- Peter S Choi
- Cornell University, Department of Microbiology, Wing Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Baek SH, Shapleigh JP. Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 cells. Appl Environ Microbiol 2005; 71:4427-36. [PMID: 16085833 PMCID: PMC1183285 DOI: 10.1128/aem.71.8.4427-4436.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of the bacteria that form associations with plants are denitrifiers. To learn more about how the association with plants affects expression of denitrification genes, the regulation of nitrite and nitric oxide reductases was investigated in Agrobacterium tumefaciens. Analysis of free-living cells revealed that expression of the genes encoding nitrite and nitric oxide reductases, nirK and nor, respectively, requires low-oxygen conditions, nitric oxide, and the transcriptional regulator NnrR. Expression of nor was monitored in plant-associated bacteria using nor-gfp fusion expression. In root association experiments, only a small percentage of the attached cells were fluorescent, even when they were incubated under a nitrogen atmosphere. Inactivation of nirK had no significant effect on the ability of A. tumefaciens to bind to plant roots regardless of the oxygen tension, but it did decrease the occurrence of root-associated fluorescent cells. When wild-type cells containing the gfp fusion were infiltrated into leaves, most cells eventually became fluorescent. The same result was obtained when a nirK mutant was used, suggesting that nitric oxide activated nor expression in the endophytic bacteria. Addition of a nitric oxide synthase inhibitor to block nitric oxide generation by the plant prevented gfp expression in infiltrated nitrite reductase mutants, demonstrating that plant-derived nitric oxide can activate nor expression in infiltrated cells.
Collapse
Affiliation(s)
- Seung-Hun Baek
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
17
|
Choi PS, Grigoryants VM, Abruña HD, Scholes CP, Shapleigh JP. Regulation and function of cytochrome c' in Rhodobacter sphaeroides 2.4.3. J Bacteriol 2005; 187:4077-85. [PMID: 15937170 PMCID: PMC1151734 DOI: 10.1128/jb.187.12.4077-4085.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome c' (Cyt c') is a c-type cytochrome with a pentacoordinate heme iron. The gene encoding this protein in Rhodobacter sphaeroides 2.4.3, designated cycP, was isolated and sequenced. Northern blot analysis and beta-galactosidase assays demonstrated that cycP transcription increased as oxygen levels decreased and was not repressed under denitrifying conditions as observed in another Rhodobacter species. CO difference spectra performed with extracts of cells grown under different conditions revealed that Cyt c' levels were highest during photosynthetic denitrifying growth conditions. The increase in Cyt c' under this condition was higher than would be predicted from transcriptional studies. Electron paramagnetic resonance analysis of whole cells demonstrated that Cyt c' binds NO during denitrification. Mass spectrometric analysis of nitrogen oxides produced by cells and purified protein did not indicate that Cyt c' has NO reductase activity. Taken together, these results suggest a model where Cyt c' in R. sphaeroides 2.4.3 may shuttle NO to the membrane, where it can be reduced.
Collapse
Affiliation(s)
- Peter S Choi
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
18
|
Laratta WP, Shapleigh JP. Site-directed mutagenesis of NnrR: a transcriptional regulator of nitrite and nitric oxide reductase in Rhodobacter sphaeroides. FEMS Microbiol Lett 2004; 229:173-8. [PMID: 14680695 DOI: 10.1016/s0378-1097(03)00821-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NnrR, a transcriptional activator and member of the CRP/FNR family of regulators, is responsible for controlling the expression of a number of denitrification genes in Rhodobacter sphaeroides 2.4.3. The apparent effector for NnrR is nitric oxide, and in its presence NnrR activates expression of the nirK gene and the nor operon, encoding nitrite reductase and nitric oxide reductase, respectively. Whether nitric oxide directly interacts with NnrR to activate transcription is unknown. Other denitrifiers carry putative orthologs of NnrR. To gain insight into NnrR function, a number of conserved residues were mutagenized. The impact of these changes on NnrR function was assessed by monitoring expression of a nirK-lacZ fusion. In this way a region spanning from Tyr93 to Cys103 that contains residues critical for NnrR activity was identified.
Collapse
Affiliation(s)
- William P Laratta
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
19
|
Zhou S, Kvikstad E, Kile A, Severin J, Forrest D, Runnheim R, Churas C, Hickman JW, Mackenzie C, Choudhary M, Donohue T, Kaplan S, Schwartz DC. Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4.1 and its use for whole-genome shotgun sequence assembly. Genome Res 2003; 13:2142-51. [PMID: 12952882 PMCID: PMC403714 DOI: 10.1101/gr.1128803] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 06/30/2003] [Indexed: 11/24/2022]
Abstract
Rhodobacter sphaeroides 2.4.1 is a facultative photoheterotrophic bacterium with tremendous metabolic diversity, which has significantly contributed to our understanding of the molecular genetics of photosynthesis, photoheterotrophy, nitrogen fixation, hydrogen metabolism, carbon dioxide fixation, taxis, and tetrapyrrole biosynthesis. To further understand this remarkable bacterium, and to accelerate an ongoing sequencing project, two whole-genome restriction maps (EcoRI and HindIII) of R. sphaeroides strain 2.4.1 were constructed using shotgun optical mapping. The approach directly mapped genomic DNA by the random mapping of single molecules. The two maps were used to facilitate sequence assembly by providing an optical scaffold for high-resolution alignment and verification of sequence contigs. Our results show that such maps facilitated the closure of sequence gaps by the early detection of nascent sequence contigs during the course of the whole-genome shotgun sequencing process.
Collapse
Affiliation(s)
- Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, UW Biotechnology Center, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yin S, Fuangthong M, Laratta WP, Shapleigh JP. Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl Environ Microbiol 2003; 69:3938-44. [PMID: 12839764 PMCID: PMC165187 DOI: 10.1128/aem.69.7.3938-3944.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine if green fluorescent protein could be used as a reporter for detecting nitric oxide production, gfp was fused to nnrS from Rhodobacter sphaeroides 2.4.3. nnrS was chosen because its expression requires nitric oxide. The presence of the fusion in R. sphaeroides 2.4.3 resulted in a significant increase in fluorescent intensity of the cells, but only when nitrite reductase was active. Cells lacking nitrite reductase activity and consequently the ability to generate nitric oxide were only weakly fluorescent when grown under denitrification-inducing conditions. One of the R. sphaeroides strains unable to generate nitric oxide endogenously was used as a reporter to detect exogenously produced nitric oxide. Incubation of this strain with sodium nitroprusside, a nitric oxide generator, significantly increased its fluorescence intensity. Mixing of known denitrifiers with the reporter strain also led to significant increases in fluorescence intensity, although the level varied depending on the denitrifier used. The reporter was tested on unknown isolates capable of growing anaerobically in the presence of nitrate, and one of these was able to induce expression of the fusion. Analysis of the 16S rRNA gene sequence of this isolate placed it within the Thauera aromatica subgroup, which is known to contain denitrifiers. These experiments demonstrate that this green fluorescent protein-based assay provides a useful method for assessing the ability of bacteria to produce nitric oxide.
Collapse
Affiliation(s)
- Shixue Yin
- Department of Agronomy, Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Laratta WP, Choi PS, Tosques IE, Shapleigh JP. Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: evidence for transcriptional regulation. J Bacteriol 2002; 184:3521-9. [PMID: 12057946 PMCID: PMC135133 DOI: 10.1128/jb.184.13.3521-3529.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides strain 2.4.3 is capable of diverse metabolic lifestyles, including denitrification. The regulation of many Rhodobacter genes involved in redox processes is controlled, in part, by the PrrBA two-component sensor-regulator system, where PrrB serves as the sensor kinase and PrrA is the response regulator. Four strains of 2.4.3 carrying mutations within the prrB gene were isolated in a screen for mutants unable to grow anaerobically on medium containing nitrite. Studies revealed that the expression of nirK, the structural gene encoding nitrite reductase, in these strains was significantly decreased compared to its expression in 2.4.3. Disruption of prrA also eliminated the ability to grow both photosynthetically and anaerobically in the dark on nitrite-amended medium. Complementation with prrA restored the wild-type phenotype. The PrrA strain exhibited a severe decrease in both nitrite reductase activity and expression of a nirK-lacZ fusion. Nitrite reductase activity in the PrrA strain could be restored to wild-type levels by using nirK expressed from a heterologous promoter, suggesting that the loss of nitrite reductase activity in the PrrA and PrrB mutants was not due to problems with enzyme assembly or the supply of reductant. Inactivation of prrA had no effect on the expression of the gene encoding NnrR, a transcriptional activator required for the expression of nirK. Inactivation of ccoN, part of the cbb(3)-type cytochrome oxidase shown to regulate the kinase activity of PrrB, also caused a significant decrease in both nirK expression and Nir activity. This was unexpected, since PrrA-P accumulates in the ccoN strain. Together, these results demonstrate that PrrBA plays an essential role in the regulation of nirK.
Collapse
Affiliation(s)
- William P Laratta
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
22
|
Boyce SG, Leuking DR. Purification and characterization of a long-chain acyl coenzyme A thioesterase from Rhodopseudomonas sphaeroides. Biochemistry 2002. [DOI: 10.1021/bi00296a023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Bartnikas TB, Wang Y, Bobo T, Veselov A, Scholes CP, Shapleigh JP. Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a haem-copper protein. MICROBIOLOGY (READING, ENGLAND) 2002; 148:825-833. [PMID: 11882718 DOI: 10.1099/00221287-148-3-825] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upstream of the nor and nnrR cluster in Rhodobacter sphaeroides 2.4.3 is a previously uncharacterized gene that has been designated nnrS. nnrS is only expressed when 2.4.3 is grown under denitrifying conditions. Expression of nnrS is dependent on the transcriptional regulator NnrR, which also regulates expression of genes required for the reduction of nitrite to nitrous oxide, including nirK and nor. Deletion analysis indicated the sequence 5'-TTGCG(N4)CACAA-3', which is similar to sequences found in nirK and nor, is required for nnrS expression. Mutation of this sequence to the consensus Fnr-binding sequence by changing two bases in each half site caused nnrS expression to become nitrate independent. Inactivation of nnrS did not affect nitric oxide metabolism, nor did it affect expression of any of the genes involved in nitric oxide metabolism. However, taxis towards nitrate and nitrite was affected by nnrS inactivation. Purification of a histidine-tagged NnrS demonstrated that NnrS is a haem- and copper-containing membrane protein. Genes encoding putative orthologues of NnrS are sometimes but not always found in bacteria encoding nitrite and/or nitric oxide reductase.
Collapse
Affiliation(s)
- Thomas B Bartnikas
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - Yousheng Wang
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - Tanya Bobo
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - Andrei Veselov
- Department of Chemistry, Center of Biophysics and Biochemistry, University at Albany, SUNY, Albany, NY 12222, USA2
| | - Charles P Scholes
- Department of Chemistry, Center of Biophysics and Biochemistry, University at Albany, SUNY, Albany, NY 12222, USA2
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| |
Collapse
|
24
|
Jain R, Shapleigh JP. Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2505-2515. [PMID: 11535790 DOI: 10.1099/00221287-147-9-2505] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequencing of the region flanking nirK, the gene encoding the copper-containing nitrite reductase in Rhodobacter sphaeroides 2.4.3, has identified two genes whose products could potentially be involved in nitrite reductase expression and activity. One of the genes has been designated nirV. Putative nirV orthologues are found in other denitrifiers, where they are also located downstream of the structural gene for nitrite reductase. The nirV in 2.4.3 is apparently cotranscribed with nirK. Inactivation of nirV had no effect on cell growth, or on nitrite reductase expression or activity. Downstream of nirV and divergently transcribed is a gene, designated ppaZ, encoding a protein with significant similarity to pseudoazurins from other denitrifiers. However, three of the four residues required for binding of the type I copper centre are not conserved in the deduced sequence of the protein in 2.4.3. ppaZ is expressed only when oxygen becomes limiting. ppaZ expression is dependent on both FnrL and NnrR, and a putative binding site for these proteins has been identified. Expression of ppaZ is also dependent on the two-component PrrB/PrrA system. Inactivation of ppaZ had no significant effect on cell growth or on nitrite reductase expression or activity. Expression of a maltose-binding protein-PpaZ fusion indicated that the protein could not bind copper. Examination of the genome of the related bacterium R. sphaeroides 2.4.1 revealed that it encodes ppaZ but not nirV and evidence is presented suggesting that a common ancestor of 2.4.3 and 2.4.1 had both nitrite and nitric oxide reductase activity but as the strains diverged 2.4.1 lost nirK and nirV, making it incapable of nitrite reduction.
Collapse
Affiliation(s)
- Roshan Jain
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA1
| |
Collapse
|
25
|
MacGregor BJ, Karls RK, Donohue TJ. Transcription of the Rhodobacter sphaeroides cycA P1 promoter by alternate RNA polymerase holoenzymes. J Bacteriol 1998; 180:1-9. [PMID: 9422585 PMCID: PMC106841 DOI: 10.1128/jb.180.1.1-9.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1997] [Accepted: 10/28/1997] [Indexed: 02/05/2023] Open
Abstract
These experiments sought to identify what form of RNA polymerase transcribes the P1 promoter for the Rhodobacter sphaeroides cytochrome c2 gene (cycA). In vitro, cycA P1 was recognized by an RNA polymerase holoenzyme fraction that transcribes several well-characterized Escherichia coli heat shock (sigma32) promoters. The in vivo effects of mutations flanking the transcription initiation site (+1) also suggested that cycA P1 was recognized by an RNA polymerase similar to E. coli Esigma32. Function of cycA P1 was not altered by mutations more than 35 bp upstream of position +1 or by alterations downstream of -7. A point mutation at position -34 that is towards the E. coli Esigma32 -35 consensus sequence (G34T) increased cycA P1 activity approximately 20-fold, while several mutations that reduced or abolished promoter function changed highly conserved bases in presumed -10 or -35 elements. In addition, cycA P1 function was retained in mutant promoters with a spacer region as short as 14 nucleotides. When either wild-type or G34T promoters were incubated with reconstituted RNA polymerase holoenzymes, cycA P1 transcription was observed only with samples containing either a 37-kDa subunit that is a member of the heat shock sigma factor family (Esigma37) or a 38-kDa subunit that also allows core RNA polymerase to recognize E. coli heat shock promoters (Esigma38). (R. K. Karls, J. Brooks, P. Rossmeissl, J. Luedke, and T. J. Donohue, J. Bacteriol. 180:10-19, 1998).
Collapse
Affiliation(s)
- B J MacGregor
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
26
|
Puskas A, Greenberg EP, Kaplan S, Schaefer AL. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 1997; 179:7530-7. [PMID: 9393720 PMCID: PMC179706 DOI: 10.1128/jb.179.23.7530-7537.1997] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodobacter sphaeroides is a free-living, photoheterotrophic bacterium known for its genomic and metabolic complexity. We have discovered that this purple photosynthetic organism possesses a quorum-sensing system. Quorum sensing occurs in a number of eukaryotic host-associated gram-negative bacteria. In these bacteria there are two genes required for quorum sensing, the luxR and luxI homologs, and there is an acylhomoserine lactone signal molecule synthesized by the product of the luxI homolog. In R. sphaeroides, synthesis of a novel homoserine lactone signal, 7,8-cis-N-(tetradecenoyl)homoserine lactone, is directed by a luxI homolog termed cerI. Two open reading frames immediately upstream of cerI are proposed to be components of the quorum-sensing system. The first of these is a luxR homolog termed cerR, and the second is a small open reading frame of 159 bp. Inactivation of cerI in R. sphaeroides results in mucoid colony formation on agar and formation of large aggregates of cells in liquid cultures. Clumping of CerI mutants in liquid culture is reversible upon addition of the acylhomoserine lactone signal and represents a phenotype unlike those controlled by quorum sensing in other bacteria.
Collapse
Affiliation(s)
- A Puskas
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77224, USA
| | | | | | | |
Collapse
|
27
|
Tosques IE, Kwiatkowski AV, Shi J, Shapleigh JP. Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 1997; 179:1090-5. [PMID: 9023188 PMCID: PMC178802 DOI: 10.1128/jb.179.4.1090-1095.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nitrite reductase catalyzes the reduction of nitrite to nitric oxide, the first step in denitrification to produce a gaseous product. We have cloned the gene nirK, which encodes the copper-type nitrite reductase from a denitrifying variant of Rhodobacter sphaeroides, strain 2.4.3. The deduced open reading frame has significant identity with other copper-type nitrite reductases. Analysis of the promoter region shows that transcription initiates 31 bases upstream of the translation start codon. The transcription initiation site is 43.5 bases downstream of a putative binding site for a transcriptional activator. Maximal expression of a nirK-lacZ construct in 2.4.3 requires both a low level of oxygen and the presence of a nitrogen oxide. nirK-lacZ expression was severely impaired in a nitrite reductase-deficient strain of 2.4.3. This suggests that nirK expression is dependent on nitrite reduction. The inability of microaerobically grown nitrite reductase-deficient cells to induce nirK-lacZ expression above basal levels in medium unamended with nitrate demonstrates that changes in oxygen concentrations are not sufficient to modulate nirK expression.
Collapse
Affiliation(s)
- I E Tosques
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
28
|
Kwiatkowski AV, Shapleigh JP. Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem 1996; 271:24382-8. [PMID: 8798693 DOI: 10.1074/jbc.271.40.24382] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During denitrification, freely diffusible nitric oxide (NO) is generated for use as a terminal electron acceptor. NO is produced by nitrite reductase (Nir) and reduced to nitrous oxide by nitric oxide reductase (Nor). Using Nir and Nor-deficient mutants of Rhodobacter sphaeroides 2.4.3, we have shown that the endogenous production of NO or the addition of exogenous NO induces transcription of certain genes encoding Nir and Nor. A Nor-deficient strain was found to be capable of expressing wild type levels of nirK-lacZ and norB-lacZ fusions in medium unamended with nitrogen oxides. When this experiment is performed in the presence of hemoglobin, fusion expression is eliminated. NO and the NO-generator, sodium nitroprusside, can induce expression of both fusions in a strain lacking Nir and the consequent ability to produce NO. Sodium nitroprusside cannot induce expression of nirK-lacZ in a strain lacking the transcriptional activator NnrR (nitrite and nitric oxide reductase regulator). Addition of the cyclic nucleotides cAMP and 8-bromoguanosine-cGMP does not result in expression of either fusion. These results demonstrate that denitrifying bacteria produce NO as a signal molecule to activate expression of the genes encoding proteins required for NO metabolism.
Collapse
Affiliation(s)
- A V Kwiatkowski
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
29
|
Maskus M, Pariente F, Wu Q, Toffanin A, Shapleigh JP, Abruña HD. Electrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)2]3+ and their application to cellular NO determinations. Anal Chem 1996; 68:3128-34. [PMID: 8797375 DOI: 10.1021/ac951063g] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide can be electrocatalytically reduced at electrodes modified with electropolymerized films of [Cr(v-tpy)2]3+. Upon further modification with a thin film of Nafion (to prevent interferences from anions, especially nitrite), these electrodes can be employed as NO sensors in solution with submicromolar detection limits and fast response. We have carried out preliminary studies of cellular NO release from Rhodobacter sphaeroides bacterial cells with excellent results.
Collapse
Affiliation(s)
- M Maskus
- Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tosques IE, Shi J, Shapleigh JP. Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol 1996; 178:4958-64. [PMID: 8759861 PMCID: PMC178280 DOI: 10.1128/jb.178.16.4958-4964.1996] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During denitrification, the production and consumption of nitric oxide (NO), an obligatory and freely diffusible intermediate, must be tightly regulated in order to prevent accumulation of this highly reactive nitrogen oxide. Sequencing upstream of norCB, the structural genes for NO reductase, in the denitrifying bacterium Rhodobacter sphaeroides 2.4.3, we have identified a gene, designated nnrR, which encodes a protein that is a member of the cyclic AMP receptor family of transcriptional regulators. Insertional inactivation of nnrR prevents growth on nitrite, as well as the reduction of nitrite and NO, but has no effect on reduction of nitrate or photosynthetic growth. By using nirK-lacZ and norB-lacZ fusions, we have shown that NnrR is a positive transcriptional regulator of these genes. nnrR is expressed at a low constitutive level throughout the growth of R. sphaeroides 2.4.3. These results show that NnrR is not a global regulator but is instead a regulator of genes whose products are directly responsible for production and reduction of NO. Evidence is also presented suggesting that an NnrR homolog may be present in the nondenitrifying bacterium R. sphaeroides 2.4.1. The likely effector of NnrR activity, as determined on the basis of work detailed in this paper and other studies, is discussed.
Collapse
Affiliation(s)
- I E Tosques
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
31
|
Wiggli M, Cornacchia L, Saegesser R, Bachofen R, Ghosh R. Characterization of Rhodospirillum rubrum ST2. A new Tn5-induced carotenoid-less mutant for functional studies. Microbiol Res 1996. [DOI: 10.1016/s0944-5013(96)80056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Mather MW, McReynolds LM, Yu CA. An enhanced broad-host-range vector for gram-negative bacteria: avoiding tetracycline phototoxicity during the growth of photosynthetic bacteria. Gene 1995; 156:85-8. [PMID: 7737520 DOI: 10.1016/0378-1119(95)00074-g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A mobilizable, broad-host-range (bhr) plasmid was derived from the widely used IncP1 vector pRK415. The new vector, pRKD418, contains an additional resistance gene and an enlarged multiple cloning site (MCS) region. The optimal growth of pRK415-containing bacteria under photosynthetic conditions generally requires the use of optical filters to protect the selective antibiotic tetracycline (Tc) from photooxidation with the resulting production of toxic photoproducts; pRK415 is not stably maintained in the absence of selective pressure. The addition of a trimethoprim-resistant dihydrofolate reductase-encoding gene provided for optimal photosynthetic growth in the presence of a selective antibiotic without any special apparatus. The presence of an antibiotic marker not found in commonly used cloning vectors in many cases facilitates the subcloning of inserts into the bhr plasmid. The new MCS region provides further cloning flexibility with at least sixteen available restriction sites. Easily constructed derivative plasmids, exemplified by pRKD418KmE, provide a convenient screening procedure for the detection of recombinants during subcloning.
Collapse
Affiliation(s)
- M W Mather
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
33
|
Davis CM, Bustamante PL, Loach PA. Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated alpha- and beta-polypeptides, bacteriochlorophyll alpha, and carotenoid. J Biol Chem 1995; 270:5793-804. [PMID: 7890709 DOI: 10.1074/jbc.270.11.5793] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methodology has been developed to reconstitute carotenoids and bacteriochlorophyll alpha with isolated light-harvesting complex I (LHI) polypeptides of both Rhodobacter sphaeroides and Rhodospirillum rubrum. Reconstitution techniques first developed in this laboratory using the LHI polypeptides of R. rubrum, R. sphaeroides, and Rhodobacter capsulatus reproduced bacteriochlorophyll alpha spectral properties characteristic of LHI complexes lacking carotenoids. In this study, carotenoids are supplied either as organic-solvent extracts of chromatophores or as thin-layer chromatography or high performance liquid chromatography-purified species. The resulting LHI complexes exhibit carotenoid and bacteriochlorophyll a spectral properties characteristic of native LHI complexes of carotenoid-containing bacteria. Absorption and circular dichroism spectra support the attainment of a native-like carotenoid environment in the reconstituted LHI complexes. For both R. sphaeroides- and R. rubrum-reconstituted systems, fluorescence excitation spectra reveal appropriate carotenoid to bacteriochlorophyll alpha energy-transfer efficiencies based on comparisons with the in vivo systems. In the case of R. rubrum reconstitutions, carotenoids afford protection from photodynamic degradation. Thus, carotenoids reconstituted into LHI exhibit spectral and functional characteristics associated with native pigments. Heterologous reconstitutions demonstrate the applicability of the developed assay in dissecting the molecular environment of carotenoids in light-harvesting complexes.
Collapse
Affiliation(s)
- C M Davis
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | |
Collapse
|
34
|
Chen YR, Usui S, Yu CA, Yu L. Role of subunit IV in the cytochrome b-c1 complex from Rhodobacter sphaeroides. Biochemistry 1994; 33:10207-14. [PMID: 8060987 DOI: 10.1021/bi00199a050] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rhodobacter sphaeroides mutants lacking subunit IV (M(r) = 14,384) of the cytochrome b-c1 complex (representative mutant strain, RS delta IV-2) have been constructed by site-specific recombination between the wild-type genomic subunit IV structural gene (fbcQ) and a suicide plasmid containing a defective fbcQ sequence. RS delta IV-2 gives rise to a photosynthetically competent phenotype after a period of adaptation. The chemical compositions, spectral properties, and cytochrome b-c1 complex activities in subunit IV-deficient chromatophores from adapted RS delta IV-2 are similar to those in wild-type chromatophores. However, the apparent Km for Q2H2 for the b-c1 complex in subunit IV-deficient chromatophores from adapted RS delta IV-2 cells is about four times higher than that in chromatophores from wild-type cells. The cytochrome b-c1 complex activity in subunit IV-deficient chromatophores of adapted RS delta IV-2 cells is more labile to detergent treatment than that from wild-type cells. The specific activities of dodecylmaltoside-solubilized fractions of RS delta IV-2, based on cytochrome b, are only one-fourth that of the untreated chromatophores. Introducing a wild-type fbcQ operon on a stable low copy number plasmid, pRK415, into RS delta IV-2 restores photosynthetic growth behavior, the apparent Km value for Q2H2, and tolerance to detergent treatment to that of wild-type cells. Cytochrome b-c1 complex purified from adapted RS delta IV-2 contains only three subunits. It has only 25% of the activity of the four-subunit enzyme. This low activity is accompanied by an increase of the apparent Km for Q2H2 from 3 to 13 microM, suggesting that subunit IV may be involved in quinone binding in addition to its structural role.
Collapse
Affiliation(s)
- Y R Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078
| | | | | | | |
Collapse
|
35
|
Yun CH, Barquera B, Iba K, Takamiya KI, Shapleigh J, Crofts AR, Gennis RB. Deletion of the gene encoding cytochromeb562fromRhodobacter sphaeroides. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07015.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Neidle EL, Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 1993; 175:2292-303. [PMID: 8468290 PMCID: PMC204517 DOI: 10.1128/jb.175.8.2292-2303.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nucleotide sequences of the Rhodobacter sphaeroides hemA and hemT genes, encoding 5-aminolevulinic acid (ALA) synthase isozymes, were determined. ALA synthase catalyzes the condensation of glycine and succinyl coenzyme A, the first and rate-limiting step in tetrapyrrole biosynthesis. The hemA and hemT structural gene sequences were 65% identical to each other, and the deduced HemA and HemT polypeptide sequences were 53% identical, with an additional 16% of aligned amino acids being similar. HemA and HemT were homologous to all characterized ALA synthases, including two human ALA synthase isozymes. In addition, they were evolutionarily related to 7-keto-8-aminopelargonic acid synthetase (BioF) and 2-amino-3-ketobutyrate coenzyme A ligase (Kbl), enzymes which catalyze similar reactions. Two hemA transcripts were identified, both expressed under photosynthetic conditions at levels approximately three times higher than those found under aerobic conditions. A single transcriptional start point was identified for both transcripts, and a consensus sequence at this location indicated that an Fnr-like protein may be involved in the transcriptional regulation of hemA. Transcription of hemT was not detected in wild-type cells under the physiological growth conditions tested. In a mutant strain in which the hemA gene had been inactivated, however, hemT was expressed. In this mutant, hemT transcripts were characterized by Northern (RNA) hybridization, primer extension, and ribonuclease protection techniques. A small open reading frame of unknown function was identified upstream of, and transcribed in the same direction as, hemA.
Collapse
Affiliation(s)
- E L Neidle
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
37
|
Neidle EL, Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol 1993; 175:2304-13. [PMID: 8468291 PMCID: PMC204518 DOI: 10.1128/jb.175.8.2304-2313.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the photosynthetic bacterium Rhodobacter sphaeroides, two genes, hemA and hemT, each encode a distinct 5-aminolevulinic acid (ALA) synthase isozyme (E. L. Neidle and S. Kaplan, J. Bacteriol. 175:2292-2303, 1993). This enzyme catalyzes the first and rate-limiting step in a branched pathway for tetrapyrrole formation, leading to the biosynthesis of hemes, bacteriochlorophylls, and corrinoids. In an attempt to determine the functions of hemA and hemT, mutant strains were constructed with specific chromosomal disruptions. These chromosomal disruption allowed hemA and hemT to be precisely localized on the larger and smaller of two R. sphaeroides chromosomes, respectively. Mutants carrying a single hemA or hemT disruption grew well without the addition of ALA, whereas a mutant, HemAT1, in which hemA and hemT had both been inactivated required exogenous ALA for growth. The growth rates, ALA synthase enzyme levels, and the amounts of bacteriochlorophyll-containing intracytoplasmic membrane spectral complexes of all strains were compared. Under photosynthetic growth conditions, the levels of bacteriochlorophyll, carotenoids, and B800-850 and B875 light-harvesting complexes were significantly lower in the Hem mutants than in the wild type. In the mutant strains, available bacteriochlorophyll appeared to be preferentially targeted to the B875 light-harvesting complex relative to the B800-850 complex. In strain HemAT1, the amount of B800-850 complex varied with the concentration of ALA added to the growth medium, and under conditions of ALA limitation, no B800-850 complexes could be detected. In the Hem mutants, there were aberrant transcript levels corresponding to the puc and puf operons encoding structural polypeptides of the B800-850 and B875 complexes. These results suggest that hemA and hemT expression is coupled to the genetic control of the R. sphaeroides photosynthetic apparatus.
Collapse
Affiliation(s)
- E L Neidle
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
38
|
Ghosh R, Cornacchia L, Bachofen R. Gene expression of the B875 light-harvesting prepolypeptides from Rhodospirillum rubrum in Escherichia coli. Photochem Photobiol 1993; 57:352-5. [PMID: 8451297 DOI: 10.1111/j.1751-1097.1993.tb02299.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The gene coding for the prepolypeptides of alpha and beta, obtained as a 429 bp fragment from chromosomal DNA of Rhodospirillum rubrum S1 by polymerase chain reaction amplification, were cloned in tandem into the high-level expression vector pOTSNco 12 for expression in Escherichia coli. The vector pOTSNco12 is a derivative of the pAS vector system, which contains the strong lambda PL promotor and is under tight control by the cI857 repressor encoded by the expression strain AR58. Induction of transcription from the lambda PL promotor is achieved by shifting the growth temperature from 32 to 42 degrees C. Expression of the gene products was monitored by sodium dodecylsulfate polyacrylamide gel electrophoresis and western blotting. The expressed B875 light-harvesting prepolypeptides were located in the E. coli inner membrane and could not be removed by washing with high salt. The amount of expressed B875 light-harvesting prepolypeptides was estimated to be about 0.1% of the total soluble protein.
Collapse
Affiliation(s)
- R Ghosh
- Department of Microbiology, Basel, Switzerland
| | | | | |
Collapse
|
39
|
Van Doren SR, Yun CH, Crofts AR, Gennis RB. Assembly of the Rieske iron-sulfur subunit of the cytochrome bc1 complex in the Escherichia coli and Rhodobacter sphaeroides membranes independent of the cytochrome b and c1 subunits. Biochemistry 1993; 32:628-36. [PMID: 8380704 DOI: 10.1021/bi00053a031] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Rieske iron-sulfur subunit of the cytochrome bc1 complex from Rhodobacter sphaeroides has been expressed in Escherichia coli and also in a strain of Rb. sphaeroides lacking the other subunits of the bc1 complex. PCR products encoding the full-length subunit were introduced into expression vectors to produce the subunit alone or the subunit fused behind the mature portion of the E. coli maltose binding protein (MBP), but lacking the MBP signal sequence. These proteins are both located in the cytoplasmic membrane. The unfused Rieske subunit assembles a Rieske-like iron-sulfur cluster, but with EPR characteristics which differ from the normal rhombic signal observed in the cytochrome bc1 complex. The overproduced MBP fusion protein, on the other hand, does not contain an EPR-detectable iron-sulfur cluster. Subfragments of the Rieske subunit lacking the amino-terminal hydrophobic anchor also lack the iron-sulfur cluster were expressed in E. coli. When expressed in Rb. sphaeroides in the absence of the cytochrome b and c1 subunits, the fully metalated Rieske subunit with the diagnostic gy = 1.90 EPR signal is observed in the cytoplasmic membrane. The fact that the Rieske subunit has an assembled iron-sulfur cluster and is bound to either the E. coli or the Rb. sphaeroides membrane in the absence of the other subunits of the bc1 complex demonstrates a mode of membrane attachment independent of the other components of the complex. These data are consistent with models in which the Rieske subunit is bound to the membrane via a single membrane-spanning helix located near the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S R Van Doren
- Department of Physiology and Biophysics, University of Illinois, Urbana-Champaign 61801
| | | | | | | |
Collapse
|
40
|
Rott MA, Witthuhn VC, Schilke BA, Soranno M, Ali A, Donohue TJ. Genetic evidence for the role of isocytochrome c2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants. J Bacteriol 1993; 175:358-66. [PMID: 8380401 PMCID: PMC196149 DOI: 10.1128/jb.175.2.358-366.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Rhodobacter sphaeroides, cytochrome c2 (cyt c2)-deficient mutants are photosynthetically incompetent (PS-). However, mutations which suppress the photosynthetic deficiency (spd mutations) of cyt c2 mutants increase the levels of a cyt c2 isoform, isocyt c2. To determine whether isocyt c2 was required for photosynthetic growth of Spd mutants, we used Tn5 mutagenesis to generate a PS- mutant (TP39) that lacks both cyt c2 and isocyt c2. DNA sequence analysis of wild-type DNA that restores isocyt c2 production and photosynthetic growth to TP39 indicates that it encodes the isocyt c2 structural gene, cycI. The Tn5 insertion in TP39 is approximately 1.5 kb upstream of cycI, and our results show that it is polar onto cycI. The cycI gene has been physically mapped to a region of chromosome I that is approximately 700 kb from the R. sphaeroides photosynthetic gene cluster. Construction of a defined cycI null mutant and complementation of several mutants with the cycI gene under the control of the cyt c2 promoter region indicate that an increase in the levels of isocyt c2 alone is necessary and sufficient for photosynthetic growth in the absence of cyt c2. The data are discussed in terms of the obligate role of isocyt c2 in cyt c2-independent photosynthesis of R. sphaeroides.
Collapse
Affiliation(s)
- M A Rott
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | | | | | | | |
Collapse
|
41
|
Neidle EL, Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol 1992; 174:6444-54. [PMID: 1400197 PMCID: PMC207600 DOI: 10.1128/jb.174.20.6444-6454.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the photosynthetic bacterium Rhodobacter sphaeroides, a chromosomal gene, rdxA, which encodes a 52-kDa protein, was found to be homologous to fixG, the first gene of a Rhizobium meliloti nitrogen fixation operon on the pSym plasmid (D. Kahn, M. David, O. Domergue, M.-L. Daveran, J. Ghai, P. R. Hirsch, and J. Batut, J. Bacteriol. 171:929-939, 1989). The deduced amino acid sequences of RdxA and FixG are 53% identical and 73% similar; sequence analyses suggested that each has five transmembrane helices and a central region resembling bacterial-type ferredoxins. Translational fusion proteins with an alkaline phosphatase reporter group were expressed in both R. sphaeroides and Escherichia coli and were used to assess the membrane topology of RdxA. Its ferredoxinlike sequence, which may bind two [4Fe-4S] centers, was found to be cytoplasmically located. Genetic disruptions showed that rdxA is not essential for nitrogen fixation in R. sphaeroides. Immediately downstream of rdxA, an open reading frame (ORFT2) that encoded a 48-kDa protein was found. This DNA sequence was not homologous to any region of the R. meliloti fixG operon. The N-terminal sequence of the ORFT2 gene product resembled amino acid sequences found in members of the GntR family of regulatory proteins (D. J. Haydon and J. R. Guest, FEMS Microbiol. Lett. 79:291-296, 1991). The rdxA gene was localized to the smaller of two R. sphaeroides chromosomes, upstream of and divergently transcribed from hemT, which encodes one of two 5-aminolevulinate synthase isozymes. The rdxA and hemT genes may share a transcriptional regulatory region. Southern hybridization analysis demonstrated the presence of an rdxA homolog on the R. sphaeroides large chromosome. The functions of this homolog, like those of rdxA, remain to be determined, but roles in oxidation-reduction processes are likely.
Collapse
Affiliation(s)
- E L Neidle
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
42
|
Saegesser R, Ghosh R, Bachofen R. Stability of broad host range cloning vectors in the phototrophic bacteriumRhodospirillum rubrum. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Myers CR, Myers JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 1992; 174:3429-38. [PMID: 1592800 PMCID: PMC206023 DOI: 10.1128/jb.174.11.3429-3438.1992] [Citation(s) in RCA: 243] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In gram-negative bacteria, numerous cell functions, including respiration-linked electron transport, have been ascribed to the cytoplasmic membrane. Gram-negative bacteria which use solid substrates (e.g., oxidized manganese or iron) as terminal electron acceptors for anaerobic respiration are presented with a unique problem: they must somehow establish an electron transport link across the outer membrane between large particulate metal oxides and the electron transport chain in the cytoplasmic membrane. When the metal-reducing bacterium Shewanella putrefaciens MR-1 is grown under anaerobic conditions and membrane fractions are purified from cells lysed by an EDTA-lysozyme-polyoxyethylene cetyl ether (Brij 58) protocol, approximately 80% of its membrane-bound cytochromes are localized in its outer membrane. These outer membrane cytochromes could not be dislodged by treatment with chaotropic agents or by increased concentrations of the nonionic detergent Brij 58, suggesting that they are integral membrane proteins. Cytochrome distribution in cells lysed by a French press protocol confirm the localization of cytochromes to the outer membrane of anaerobically grown cells. This novel cytochrome distribution could play a key role in the anaerobic respiratory capabilities of this bacterium, especially in its ability to mediate manganese and iron reduction.
Collapse
Affiliation(s)
- C R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
44
|
Examination of the functional roles of 5 highly conserved residues in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42639-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Rott MA, Fitch J, Meyer TE, Donohue TJ. Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains of Rhodobacter sphaeroides. Arch Biochem Biophys 1992; 292:576-82. [PMID: 1309978 DOI: 10.1016/0003-9861(92)90033-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Rhodobacter sphaeroides, mutations that suppress the photosynthetic deficiency (spd mutations) of strains lacking cytochrome c2 (cyt c2) cause accumulation of a periplasmic cyt c2 isoform that has been designated isocytochrome c2 (isocyt c2). In this study, a new method for purification of both cyt c2 and isocyt c2 is described that uses periplasmic fluid as a starting material. In addition, antiserum to isocyt c2 has been used to demonstrate that all suppressor mutants contain an isocyt c2 of approximately 15 kDa. Western blot analysis indicates that isocyt c2 was present at lower levels in both wild-type and cyt c2 mutants than in spd-containing mutants. Although isocyt c2 is detectable under all growth conditions in wild-type cells, the highest level of isocyt c2 is present under aerobic conditions. Our results demonstrate that spd mutations increase the steady state level of isocyt c2 under photosynthetic conditions. Although the physiological function of isocyt c2 in wild-type cells is not known, we show that a nitrate-regulated protein in Rhodobacter sphaeroides f. sp. denitrificans also reacts with the isocyt c2 antiserum.
Collapse
Affiliation(s)
- M A Rott
- Department of Bacteriology, University of Wisconsin-Madison 57306
| | | | | | | |
Collapse
|
46
|
Suwanto A, Kaplan S. Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes. J Bacteriol 1992; 174:1135-45. [PMID: 1735708 PMCID: PMC206406 DOI: 10.1128/jb.174.4.1135-1145.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A 600-bp oriT-containing DNA fragment from the Rhodobacter sphaeroides 2.4.1 S factor (oriTs) (A. Suwanto and S. Kaplan, J. Bacteriol. 174:1124-1134, 1992) was shown to promote polarized chromosomal transfer when provided in cis. A Kmr-oriTs-sacR-sacB (KTS) DNA cassette was constructed by inserting oriTs-sacR-sacB into a pUTmini-Tn5 Km1 derivative. With this delivery system, KTS appeared to be randomly inserted into the genome of R. sphaeroides, generating mutant strains which also gained the ability to act as Hfr donors. An AseI site in the Kmr cartridge (from Tn903) and DraI and SnaBI sites in sacR-sacB (the levansucrase gene from Bacillus subtilis) were employed to localize the KTS insertion definitively by pulsed-field gel electrophoresis. The orientation of oriTs at the site of insertion was determined by Southern hybridization analysis. Interrupted mating experiments performed with some of the Hfr strains exhibited a gradient of marker transfer and further provided genetic evidence for the circularity and presence of two chromosomal linkage groups in this bacterium. The genetic and environmental conditions for optimized mating between R. sphaeroides strains were also defined. The results presented here and our physical map of the R. sphaeroides 2.4.1 genome are discussed in light of the presence of two chromosomes.
Collapse
Affiliation(s)
- A Suwanto
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
47
|
Suwanto A, Kaplan S. A self-transmissible, narrow-host-range endogenous plasmid of Rhodobacter sphaeroides 2.4.1: physical structure, incompatibility determinants, origin of replication, and transfer functions. J Bacteriol 1992; 174:1124-34. [PMID: 1735707 PMCID: PMC206405 DOI: 10.1128/jb.174.4.1124-1134.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodobacter sphaeroides 2.4.1 naturally harbors five cryptic endogenous plasmids (C. S. Fornari, M. Watkins, and S. Kaplan, Plasmid 11:39-47, 1984). The smallest plasmid (pRS241e), with a molecular size of 42 kb, was observed to be a self-transmissible plasmid which can transfer only to certain strains of R. sphaeroides. Transfer frequencies can be as high as 10(-2) to 10(-3) per donor under optimal mating conditions in liquid media in the absence of oxygen. pRS241e, designated the S factor, was also shown to possess a narrow host range, failing either to replicate or to be maintained in Escherichia coli, Agrobacterium tumefaciens, and Rhizobium meliloti. It was further revealed that one of the remaining four endogenous plasmids, pRS241d, was also transmissible at a frequency similar to that of the S. factor. As a cointegrate with pSUP203, S was maintained in E. coli, providing sufficient DNA from which a physical map of S could be constructed. Progressive subcloning of S-factor DNA, in conjunction with assays of plasmid transfer, led to the localization and identification of oriV (IncA), IncB, and the putative oriT locus. The DNA sequence of the 427 bp containing oriTs revealed topological similarity to other described oriT sequences, consisting of an A-T-rich DNA region, several direct and inverted repeats, and putative integration host factor (IHF)-binding sites, and was shown to be functional in promoting plasmid transfer.
Collapse
Affiliation(s)
- A Suwanto
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
48
|
MacGregor BJ, Donohue TJ. Evidence for two promoters for the cytochrome c2 gene (cycA) of Rhodobacter sphaeroides. J Bacteriol 1991; 173:3949-57. [PMID: 1648072 PMCID: PMC208040 DOI: 10.1128/jb.173.13.3949-3957.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodobacter sphaeroides cytochrome c2 (cyt c2) is a periplasmic heme protein, encoded by cycA, that is required for photosynthetic growth and for one branch of the aerobic electron transport chain. cycA mRNA and cyt c2 are more abundant photosynthetically than aerobically. We report here that there are four cycA transcripts by high-resolution Northern (RNA) blot analysis, and we have mapped 10 5' ends by primer extension. Complementation of a cycA null mutant shows that there are at least two cycA promoters: one within 89 bp upstream of the translation initiation codon for a transcript beginning at -28, and at least one within 484 bp upstream for the remaining nine 5' ends. The 5' ends at -28 and -137 are more abundant in aerobically grown cells, while those at -38, -155, -250, and -300 are more abundant photosynthetically. DNA sequences with homology to the Escherichia coli sigma 70 consensus promoter sequence precede the 5' ends at -28 and -274, and there is weak homology upstream of the -82 and -250 ends.
Collapse
Affiliation(s)
- B J MacGregor
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
49
|
Yun C, Van Doren S, Crofts A, Gennis R. The use of gene fusions to examine the membrane topology of the L-subunit of the photosynthetic reaction center and of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99114-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Sockett RE, Armitage JP. Isolation, characterization, and complementation of a paralyzed flagellar mutant of Rhodobacter sphaeroides WS8. J Bacteriol 1991; 173:2786-90. [PMID: 1850401 PMCID: PMC207858 DOI: 10.1128/jb.173.9.2786-2790.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A paralyzed Rhodobacter sphaeroides mutant strain (PARA1) was isolated by a motility screening procedure following mutagenesis of wild-type R. sphaeroides WS8-N with the transposable element TnphoA (Tn5 IS50L::phoA). PARA1 synthesized a wild-type level of flagellin, as detected by Western immunoblotting with antiflagellar antiserum. Flagellar staining showed that flagellin was assembled into apparently normal external flagellar filaments. Electron micrographs of basal body structures from PARA1 showed that some ring structures that were present were similar to those in wild-type R. sphaeroides WS8-N. PARA1 cells were nonmotile under all growth conditions. No pseudorevertants to motility were seen when PARA1 was grown in the presence of kanamycin to select for the presence of the transposon. The presence of the single copy of TnphoA in the PARA1 chromosome was demonstrated by Southern blotting. Western blotting of cytoplasmic, periplasmic, and membrane fractions of PARA1 with anti-alkaline phosphatase antiserum showed that the transposon had been inserted in-frame into a gene encoding a membrane protein. A SalI restriction endonuclease fragment was cloned from the chromosome of PARA1; this fragment contained a portion of the transposon and R. sphaeroides DNA sequence 5' of the site of insertion. This flanking R. sphaeroides DNA sequence was used to probe an R. sphaeroides WS8 cosmid library. A cosmid designated c19 hybridized to the probe, and a SalI restriction endonuclease fragment derived from this cosmid restored wild-type motility to PARA1 when introduced into this mutant strain by conjugation. The significance of this finding in a bacterium with unidirectionally rotating flagella is discussed.
Collapse
Affiliation(s)
- R E Sockett
- Department of Biochemistry, University of Oxford, England
| | | |
Collapse
|