1
|
Brand C, Newton-Foot M, Grobbelaar M, Whitelaw A. Antibiotic-induced stress responses in Gram-negative bacteria and their role in antibiotic resistance. J Antimicrob Chemother 2025; 80:1165-1184. [PMID: 40053699 PMCID: PMC12046405 DOI: 10.1093/jac/dkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Bacteria adapt to changes in their natural environment through a network of stress responses that enable them to alter their gene expression to survive in the presence of stressors, including antibiotics. These stress responses can be specific to the type of stress and the general stress response can be induced in parallel as a backup mechanism. In Gram-negative bacteria, various envelope stress responses are induced upon exposure to antibiotics that cause damage to the cell envelope or result in accumulation of toxic metabolic by-products, while the heat shock response is induced by antibiotics that cause misfolding or accumulation of protein aggregates. Antibiotics that result in the production of reactive oxygen species (ROS) induce the oxidative stress response and those that cause DNA damage, directly and through ROS production, induce the SOS response. These responses regulate the expression of various proteins that work to repair the damage that has been caused by antibiotic exposure. They can contribute to antibiotic resistance by refolding, degrading or removing misfolded proteins and other toxic metabolic by-products, including removal of the antibiotics themselves, or by mutagenic DNA repair. This review summarizes the stress responses induced by exposure to various antibiotics, highlighting their interconnected nature, as well the roles they play in antibiotic resistance, most commonly through the upregulation of efflux pumps. This can be useful for future investigations targeting these responses to combat antibiotic-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Chanté Brand
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Keller R, Ariöz C, Hansmeier N, Stenberg-Bruzell F, Burstedt M, Vikström D, Kelly A, Wieslander Å, Daley DO, Hunke S. The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties. Biochemistry 2015; 54:3670-6. [PMID: 25993101 DOI: 10.1021/acs.biochem.5b00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cpx stress response system is induced by various environmental and cellular stimuli. It is also activated in Escherichia coli strains lacking the major phospholipid, phosphatidylethanolamine (PE). However, it is not known whether CpxA directly senses changes in the lipid bilayer or the presence of misfolded proteins due to the lack of PE in their membranes. To address this question, we used an in vitro reconstitution system and vesicles with different lipid compositions to track modulations in the activity of CpxA in different lipid bilayers. Moreover, the Cpx response was validated in vivo by monitoring expression of a PcpxP-gfp reporter in lipid-engineered strains of E. coli. Our combined data indicate that CpxA responds specifically to different lipid compositions.
Collapse
Affiliation(s)
- Rebecca Keller
- †Department of Pharmacy and Biochemistry, Johannes Gutenberg-University, D-55128 Mainz, Germany
| | - Candan Ariöz
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Nicole Hansmeier
- §Department of Microbiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Filippa Stenberg-Bruzell
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Malin Burstedt
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - David Vikström
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Amelie Kelly
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Åke Wieslander
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel O Daley
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sabine Hunke
- ∥Molecular Microbiology, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
3
|
Abstract
The gram-negative bacterial envelope is a complex extracytoplasmic compartment responsible for numerous cellular processes. Among its most important functions is its service as the protective layer separating the cytoplasmic space from the ever-changing external environment. To adapt to the diverse conditions encountered both in the environment and within the mammalian host, Escherichia coli and Salmonella species have evolved six independent envelope stress response systems . This review reviews the sE response, the CpxAR and BaeSR two-component systems (TCS) , the phage shock protein response, and the Rcs phosphorelay system. These five signal transduction pathways represent the most studied of the six known stress responses. The signal for adhesion to abiotic surfaces enters the pathway through the novel outer membrane lipoprotein NlpE, and activation on entry into the exponential phase of growth occurs independently of CpxA . Adhesion could disrupt NlpE causing unfolding of its unstable N-terminal domain, leading to activation of the Cpx response. The most recent class of genes added to the Cpx regulon includes those involved in copper homeostasis. Two separate microarray experiments revealed that exposure of E. coli cells to high levels of external copper leads to upregulation of several Cpx regulon members. The BaeSR TCS has also been shown to mediate drug resistance in Salmonella. Similar to E. coli, the Bae pathway of Salmonella enterica mediates resistance to oxacillin, novobiocin, deoxycholate, β-lactams, and indole.
Collapse
|
4
|
MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:80-110. [PMID: 18792683 DOI: 10.1007/978-0-387-78885-2_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn M MacRitchie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
5
|
Duguay AR, Silhavy TJ. Quality control in the bacterial periplasm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:121-34. [PMID: 15546662 DOI: 10.1016/j.bbamcr.2004.04.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
Studies of the mechanisms that Gram-negative bacteria use to sense and respond to stress have led to a greater understanding of protein folding in both cytoplasmic and extracytoplasmic locations. In response to stressful conditions, bacteria induce a variety of stress response systems, examples of which are the sigma(E) and Cpx systems in Escherichia coli. Induction of these stress response systems results in upregulation of several gene targets that have been shown to be important for protein folding under normal conditions. Here we review the identification of stress response systems and their corresponding gene targets in E. coli. In addition, we discuss the apparent redundancy of the folding factors in the periplasm, and we consider the potential importance of the functional overlap that exists.
Collapse
Affiliation(s)
- Amy R Duguay
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
6
|
Abstract
Envelope stress responses play important physiological roles in a variety of processes, including protein folding, cell wall biosynthesis, and pathogenesis. Many of these responses are controlled by extracytoplasmic function (ECF) sigma factors that respond to external signals by means of a membrane-localized anti-sigma factor. One of the best-characterized, ECF-regulated responses is the sigma(E) envelope stress response of Escherichia coli. The sigma(E) pathway ensures proper assembly of outer-membrane proteins (OMP) by controlling expression of genes involved in OMP folding and degradation in response to envelope stresses that disrupt these processes. Prevailing evidence suggests that, in E. coli, a second envelope stress response controlled by the Cpx two-component system ensures proper pilus assembly. The sensor kinase CpxA recognizes misfolded periplasmic proteins, such as those generated during pilus assembly, and transduces this signal to the response regulator CpxR through conserved phosphotransfer reactions. Phosphorylated CpxR activates transcription of periplasmic factors necessary for pilus assembly.
Collapse
Affiliation(s)
- T L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9; Canada.
| | | |
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Danese PN, Silhavy TJ. CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 1998; 180:831-9. [PMID: 9473036 PMCID: PMC106961 DOI: 10.1128/jb.180.4.831-839.1998] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 12/06/1997] [Indexed: 02/06/2023] Open
Abstract
The CpxA/R two-component signal transduction system of Escherichia coli can combat a variety of extracytoplasmic protein-mediated toxicities. The Cpx system performs this function, in part, by increasing the synthesis of the periplasmic protease, DegP. However, other factors are also employed by the Cpx system for this stress-combative function. In an effort to identify these remaining factors, we screened a collection of random lacZ operon fusions for those fusions whose transcription is regulated by CpxA/R. Through this approach, we have identified a new locus, cpxP, whose transcription is stimulated by activation of the Cpx pathway. cpxP specifies a periplasmic protein that can combat the lethal phenotype associated with the synthesis of a toxic envelope protein. In addition, we show that cpxP transcription is strongly induced by alkaline pH in a CpxA-dependent manner and that cpxP and cpx mutant strains display hypersensitivity to growth in alkaline conditions.
Collapse
Affiliation(s)
- P N Danese
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
9
|
Paiva WD, Silverman PM. Effects of F-encoded components and F-pilin domains on the synthesis and membrane insertion of TraA'-'PhoA fusion proteins. Mol Microbiol 1996; 19:1277-86. [PMID: 8730869 DOI: 10.1111/j.1365-2958.1996.tb02472.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
F-pilin, the 70-amino-acid F-pilus subunit, accumulates in the cell envelope of F+ strains in a process that requires interactions between its precursor (the traA gene product) and other host and F-encoded proteins. Here, we have used a set of phi(traA-phoA) genes to explore the effects of different TraA domains on the synthesis and membrane insertion of TraA-PhoA fusion proteins, particularly in relation to other F-encoded gene products. The 51-amino-acid TraA leader peptide fused directly to alkaline phosphatase was synthesized at comparable rates and incorporated rapidly and efficiently into the inner membrane in F' and F- cells. A second fusion gene encoded the TraA leader peptide and the first 51 amino acids of F-pilin itself fused to PhoA (TraA'-'PhoA-102 polypeptide). Alkaline phosphatase activities and patterns of pulse-labelled polypeptides indicated that TraA'-'PhoA-102 was synthesized at comparable rates in F' and F- cells, but in neither was the TraA'-'PhoA-102 polypeptide efficiently processed as a membrane protein. A third gene encoded the entire 121-amino-acid TraA polypeptide fused to PhoA (TraA-'PhoA-121 polypeptide). About 70% of the pulse-labelled TraA-'PhoA-121 polypeptide was rapidly processed in F' cells, where it accumulated in the cell envelope as active alkaline phosphatase, whereas in F- cells, < 5% of the pulse-labelled polypeptide was processed. Additionally, the apparent rate of TraA-'PhoA-121 polypeptide synthesis was threefold higher in F' cells. The traQ gene alone could not substitute for F in restoring TraA-'PhoA-121 (or wild-type F-pilin) accumulation.
Collapse
Affiliation(s)
- W D Paiva
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
10
|
Schneider-Poetsch HA. Signal transduction by phytochrome: phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem Photobiol 1992; 56:839-46. [PMID: 1475327 DOI: 10.1111/j.1751-1097.1992.tb02241.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A C-terminal section of phytochromes turned out to share sequence homologies with the full length of the transmitter modules (about 250 amino acids) of bacterial sensor proteins. Coinciding hydrophobic clusters within the homologous domains imply that the overall folding of the two different types of peptides is similar. Hence, phytochromes appear to possess the structural prerequisites to transmit signals in a way bacterial sensor proteins do. The bacterial sensor proteins are known to be environmental stimuli-regulated kinases belonging to two-component systems. After sensing a stimulus by the N-terminal part of the sensor protein, conformational alterations confer the signal to its (mostly) C-terminal transmitter module which in turn is transitionally autophosphorylated at a conserved histidine. From the histidine the phosphate is transferred to the receiver module of a system-specific regulator protein which eventually acts on transcription or enzyme activity. The histidine is not conserved in phytochromes. Instead, a conserved tyrosine is found spatially very close to the histidine position. This tyrosine might play the role of histidine, and kinase function might be associated with this part of phytochrome. In spite of this divergence, the structural similarities point to a common evolutionary origin of the phytochrome and bacterial modules.
Collapse
|
11
|
Steinman HM. Construction of an Escherichia coli K-12 strain deleted for manganese and iron superoxide dismutase genes and its use in cloning the iron superoxide dismutase gene of Legionella pneumophila. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:427-30. [PMID: 1588912 DOI: 10.1007/bf00266247] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An Escherichia coli K-12 strain deleted for sodA and sodB (manganese and iron superoxide dismutases) was constructed and characterized by Southern blotting, enzyme assays, and physiological analyses. The sod deletion strain was used to clone the iron superoxide dismutase gene of Legionella pneumophila by complementation to paraquat resistance.
Collapse
Affiliation(s)
- H M Steinman
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
12
|
Affiliation(s)
- S A Haney
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
13
|
Pawlowski K, Klosse U, de Bruijn FJ. Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:124-38. [PMID: 1661370 DOI: 10.1007/bf00293830] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Azorhizobium caulinodans ORS571 nifA regulation is partially mediated by the nitrogen regulatory gene ntrC. However, the residual nifA expression in ntrC mutant strains is still modulated by the cellular nitrogen and oxygen status. A second ntrC-homologous region, linked to ntrC, was identified and characterized by site-directed insertion mutagenesis and DNA sequencing. Tn5 insertions in this region cause pleiotropic defects in nitrogen metabolism and affect free-living as well as symbiotic nitrogen fixation. DNA sequencing and complementation studies revealed the existence of a bicistronic operon (ntrYX). NtrY is likely to represent the transmembrane 'sensor' protein element in a two-component regulatory system. NtrX shares a high degree of homology with NtrC proteins of other organisms and probably constitutes the regulator protein element. The regulation of the ntrYX and ntrC loci and the effects of ntrYX, ntrY and ntrX mutations on nifA expression were examined using beta-galactosidase gene fusions. NtrY/NtrX were found to modulate nifA expression and ntrYX transcription was shown to be partially under the control of NtrC.
Collapse
Affiliation(s)
- K Pawlowski
- Max-Planck-Institut für Züchtungsforschung, Köln, FRG
| | | | | |
Collapse
|
14
|
Schneider-Poetsch HA, Braun B, Marx S, Schaumburg A. Phytochromes and bacterial sensor proteins are related by structural and functional homologies. Hypothesis on phytochrome-mediated signal-transduction. FEBS Lett 1991; 281:245-9. [PMID: 2015902 DOI: 10.1016/0014-5793(91)80403-p] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phytochrome and bacterial sensor proteins are related by functional and structural homologies. They are both sensors of environmental stimuli and share structural homologies which comprise a domain of about 250 amino acids (about 28 kg.mol-1). This domain is C-terminal in phytochromes and in several bacterial sensor proteins. In both groups of sensors this domain undergoes conformational changes which are caused by the N-terminal part sensing the stimulus. In the case of bacterial sensors, the conformational alteration is, regulated by additional proteins, conferred to a corresponding regulator protein which then acts on transcription. The coincidences between the two groups of sensors are striking enough to assume phytochrome to transduce signals in a way comparable to the bacterial two-component systems.
Collapse
|
15
|
Roecklein B, Pelletier A, Kuempel P. The tus gene of Escherichia coli: autoregulation, analysis of flanking sequences and identification of a complementary system in Salmonella typhimurium. Res Microbiol 1991; 142:169-75. [PMID: 1925016 DOI: 10.1016/0923-2508(91)90026-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tus gene of Escherichia coli encodes a DNA-binding protein that, when bound to terminator sites, blocks replication forks. One of these sites, TerB, is immediately upstream from tus, and we have determined that the 5' end of tus mRNA is in the TerB site, that tus is autoregulated and that pTus is a very low efficiency promoter. Analysis of the DNA upstream from tus and TerB indicates a set of sensor/regulator genes which are comparable to envZ/ompR. Although tus mutants exhibit no growth phenotype in laboratory conditions, Salmonella typhimurium and E. coli have nevertheless maintained similar termination systems. Sequence homology can be demonstrated by Southern hybridizations, and the systems also exhibit functional complementation: the Tus protein of S. typhimurium blocks DNA replication at the TerA site of E. coli.
Collapse
Affiliation(s)
- B Roecklein
- Molecular, Cellular and Developmental Biology Department, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
16
|
Ninfa AJ. Protein Phosphorylation and the Regulation of Cellular Processes by the Homologous Two-Component Regulatory Systems of Bacteria. GENETIC ENGINEERING 1991; 13:39-72. [PMID: 1369339 DOI: 10.1007/978-1-4615-3760-1_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- A J Ninfa
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
17
|
Osbourn AE, Clarke BR, Stevens BJ, Daniels MJ. Use of oligonucleotide probes to identify members of two-component regulatory systems in Xanthomonas campestris pathovar campestris. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:145-51. [PMID: 2233675 DOI: 10.1007/bf00283036] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-component regulatory systems comprising a sensor and a regulator protein, both with highly conserved amino acid domains, and commonly genetically linked, have been described in a range of bacterial species and are involved in sensing environmental stimuli. We used two oligonucleotide probes matching the postulated coding regions for domains of sensor and regulator proteins respectively in Xanthomonas campestris pathovar campestris (Xcc) to identify possible two-component regulatory systems in Xcc. Two different fragments of Xcc DNA with homology to both of these probes were cloned. The DNA sequence of part of one of these fragments encompassed a potential open reading frame (ORF), the predicted amino acid sequence of which had extensive homology with regulator proteins of two-component regulatory systems. Analysis of the predicted amino acid sequence for the 3' end of an adjacent ORF revealed a very high level of homology with the C-terminal end of sensor proteins. Strains of Xcc with Tn5-induced mutations in the regulator gene were affected in extracellular polysaccharide production, and also in resistance to salt and chloramphenicol. No effects of mutation in the second clone were observed.
Collapse
Affiliation(s)
- A E Osbourn
- Sainsbury Laboratory, John Innes Institute, Norwich, UK
| | | | | | | |
Collapse
|
18
|
Abstract
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism.
Collapse
Affiliation(s)
- B J Bachmann
- Department of Biology, Yale University, New Haven, Connecticut 06511-7444
| |
Collapse
|
19
|
Rainwater S, Silverman PM. The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene. J Bacteriol 1990; 172:2456-61. [PMID: 2185221 PMCID: PMC208883 DOI: 10.1128/jb.172.5.2456-2461.1990] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An existing cpxA(Ts) mutant was resistant to amikacin at levels that inhibited completely the growth of a cpxA+ and a cpxA deletion strain and failed to grow as efficiently on exogenous proline. These properties are similar to those of mutants altered in a gene mapped to the cpxA locus and variously designated as ecfB, ssd, and eup. The amikacin resistance phenotype of the cpxA mutant was inseparable by recombination from the cpxA mutant phenotype (inability to grow at 41 degrees C without exogenous isoleucine and valine) and was recessive to the cpxA+ allele of a recombinant plasmid. Using methods that ensured independent mutations in the cpxA region of the chromosome, we isolated six new amikacin-resistant mutants following nitrosoguanidine mutagenesis. Three-factor crosses mapped the mutations to the cpxA locus. When transferred by P1 transduction to a cpxB11 Hfr strain, each of the mutations conferred the Tra- and Ilv- phenotypes characteristic of earlier cpxA mutants. Two of the new mutations led to a significantly impaired ability to utilize exogenous proline, and four led to partial resistance to colicin A. Two of the new cpxA alleles were recessive to the cpxA+ allele, and four were dominant, albeit to different degrees. On the basis of these data, we argue that cpxA, ecfB, eup, and ssd are all the same gene. We discuss the cellular function of the cpxA gene product in that light.
Collapse
Affiliation(s)
- S Rainwater
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | |
Collapse
|
20
|
Abstract
Colanic acid capsule synthesis in Escherichia coli K-12 is regulated by RcsB and RcsC. The amino acid sequences of these two proteins, deduced from the nucleotide sequence reported here, demonstrate their homology to environmentally responsive two-component regulators that have been reported in both gram-positive and gram-negative bacteria. In our model, RcsC acts as the sensor and RcsB acts as the receiver or effector to stimulate capsule synthesis from cps genes. In addition, RcsC shows limited homology to the other effectors in its C terminus. Fusions of rcsC to phoA that resulted in PhoA+ strains demonstrated that RcsC is a transmembrane protein with a periplasmic N-terminal domain and cytoplasmic C-terminal domain. Additional control of this regulatory network is provided by the dependence on the alternate sigma factor, RpoN, for the synthesis of RcsB. The rcsB and rcsC genes, which are oriented convergently with their stop codons 196 base pairs apart, are separated by a long direct repeat including two repetitive extragenic palindromic sequences.
Collapse
|
21
|
Dorman CJ, Chatfield S, Higgins CF, Hayward C, Dougan G. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun 1989; 57:2136-40. [PMID: 2543631 PMCID: PMC313852 DOI: 10.1128/iai.57.7.2136-2140.1989] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ompC, ompD, and ompF genes encode the three major porins of Salmonella typhimurium. ompR encodes a positive regulator required for the expression of ompC and ompF. Transposon-generated mutations in ompC, ompD, ompF, and ompR were introduced into the S. typhimurium mouse virulent strain SL1344 by P22-mediated transduction. Following preliminary characterization in vitro, the strains were used to challenge BALB/c mice by using the oral or intravenous route. Strains harboring ompC or ompF mutations were as virulent as SL1344 after oral challenge. Strains harboring ompD mutations had a slight reduction in virulence. In contrast, ompR mutants failed to kill BALB/c mice after oral challenge and the intravenous 50% lethal dose was reduced by approximately 10(5). The ompR mutants persisted in murine tissues for several weeks following oral or intravenous challenge. Furthermore, mice orally immunized with these ompR mutant strains were well protected against challenge with virulent SL1344.
Collapse
Affiliation(s)
- C J Dorman
- Department of Biochemistry, University of Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Winans SC, Kerstetter RA, Ward JE, Nester EW. A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Bacteriol 1989; 171:1616-22. [PMID: 2921246 PMCID: PMC209789 DOI: 10.1128/jb.171.3.1616-1622.1989] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The VirA protein is one of two proteins required for transcriptional activation of Agrobacterium tumefaciens virulence genes in response to phenolic compounds released by plants during infection. We describe two experimental approaches which indicate that this protein has a transmembrane topology. First, spheroplasts of Escherichia coli or wild-type A. tumefaciens expressing the VirA protein were treated with proteinase K to digest periplasmic proteins, and the remaining proteins were immunologically stained on Western blots (immunoblots) by using anti-VirA antibody. Second, transposon TnphoA was used to generate translational fusions between virA and phoA, the latter of which is the structural gene for alkaline phosphatase. Both techniques indicated that VirA spans the cytoplasmic membrane, with approximately 275 amino acids near the amino terminus being localized in the periplasmic space and the rest of the protein being localized in the cytoplasm. We also show that overexpression of VirA in E. coli is deleterious to cell growth and that this phenomenon depends on the synthesis of either the second hydrophobic core or some nearby portion of the VirA protein.
Collapse
Affiliation(s)
- S C Winans
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
23
|
Weber RF, Silverman PM. The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467-78. [PMID: 3058985 DOI: 10.1016/0022-2836(88)90013-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene cpxA of Escherichia coli K12 encodes the 52,000 Mr CpxA polypeptide. The complete cpxA nucleotide sequence, reported here, predicted that CpxA contains two extended, hydrophobic segments in its amino-terminal half and could therefore be a membrane protein. Using a lac-cpxA operon fusion plasmid to overproduce CpxA and an immunochemical assay to detect the polypeptide, we show that CpxA fractionated with the bacterial inner membrane during differential and isopycnic sedimentation. Moreover, the protein could be solubilized by extraction of crude membranes with non-ionic detergents but not with KCl or NaOH, indicating that Cpx is an intrinsic membrane component. Analysis of TnphoA insertions in cpxA indicated that the region between the hydrophobic segments of CpxA is periplasmic, whereas the region carboxy-terminal to the second such segment is cytoplasmic. Based on these structural data, we propose that CpxA functions as a trans-membrane sensory protein. The DNA sequence data also indicate that cpxA is the 3' gene of an operon.
Collapse
Affiliation(s)
- R F Weber
- Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
24
|
Stock J, Simms S. Methylation, demethylation, and deamidation at glutamate residues in membrane chemoreceptor proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 231:201-12. [PMID: 3046246 DOI: 10.1007/978-1-4684-9042-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- J Stock
- Department of Molecular Biology, Princeton University, N.J
| | | |
Collapse
|
25
|
MacFarlane SA, Merrick MJ. Analysis of the Klebsiella pneumoniae ntrB gene by site-directed in vitro mutagenesis. Mol Microbiol 1987; 1:133-42. [PMID: 3329695 DOI: 10.1111/j.1365-2958.1987.tb00505.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of in-frame insertion and deletion mutations have been constructed in vitro in the Klebsiella pneumoniae ntrB gene and the effects of each mutant NtrB protein on NtrC activity have been assessed after reintroduction of the ntrB mutation into the glnA ntrBC operon. These experiments suggest that the phosphorylation of NtrC catalysed by NtrB not only makes NtrC competent as a transcriptional activator but also improves the DNA-binding properties and hence the negative control functions of NtrC. The variety of NtrB phenotypes obtained suggest a structure/function model for the protein.
Collapse
Affiliation(s)
- S A MacFarlane
- AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton, UK
| | | |
Collapse
|
26
|
Drummond MH, Wootton JC. Sequence of nifL from Klebsiella pneumoniae: mode of action and relationship to two families of regulatory proteins. Mol Microbiol 1987; 1:37-44. [PMID: 2838726 DOI: 10.1111/j.1365-2958.1987.tb00524.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present the nucleotide sequence of K. pneumoniae nifL, which negatively regulates nif transcription in response to oxygen and fixed nitrogen. It shows partial sequence homology to the general nitrogen regulatory proteins NtrB of K. pneumoniae and Bradyrhizobium parasponiae. This homology is weaker than that shown between the NifA and NtrC activator components of the nif and general nitrogen control systems. The N-terminal section of the NifL protein includes a structural duplication sharing sequence homology with part of NtrB, and a region containing a cysteine pair which might be implicated in redox control Unlike NtrB, NifL appears to lack a DNA-binding motif, consistent with evidence that NifL represses by interacting directly with NifA. The C-terminal section of NifL shows clear homology to NtrB and to a family of proteins involved in transcriptional control or chemotaxis, each of which probably interacts with a member of the family of regulatory proteins showing homology to NtrC.
Collapse
Affiliation(s)
- M H Drummond
- AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton, UK
| | | |
Collapse
|
27
|
Silverman PM, Eoyang L. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis. J Bacteriol 1987; 169:2494-9. [PMID: 3294793 PMCID: PMC212102 DOI: 10.1128/jb.169.6.2494-2499.1987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.
Collapse
|
28
|
Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75722-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Eoyang L, Silverman PM. Role of small subunit (IlvN polypeptide) of acetohydroxyacid synthase I from Escherichia coli K-12 in sensitivity of the enzyme to valine inhibition. J Bacteriol 1986; 166:901-4. [PMID: 3011751 PMCID: PMC215211 DOI: 10.1128/jb.166.3.901-904.1986] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Most of the coding sequence for the IlvN polypeptide subunit of acetohydroxyacid synthase I was deleted from the ilvB+ ilvN+ plasmid pTCN12 by in vitro methods. Several ilvB+ delta ilvN derivatives of pTCN12 were identified among transformants of a strain otherwise lacking any acetohydroxyacid synthase. Deletion derivatives produced an enzymatically active IlvB polypeptide, as shown by the Ilv+ phenotype of transformed cells and by immunologic and enzymatic assays. However, whereas the growth of pTCN12 transformants was sensitive to valine inhibition, growth of the ilvB+ delta ilvN transformants was relatively resistant. Moreover, in vitro analyses confirmed that both acetolactate and acetohydroxybutyrate synthesis in extracts of the ilvB+ delta ilvN transformants was resistant to valine inhibition, in comparison with that in extracts of pTCN12 transformants or with that catalyzed by purified acetohydroxyacid synthase I. The IlvN polypeptide had a minimal effect, if any, on IlvB polypeptide accumulation as measured by immunoprecipitation, but its absence resulted in a greater than 10-fold reduction in enzyme specific activity.
Collapse
|