1
|
Spiering MJ, Parsons JF, Eisenstein E. On the Biosynthesis of Bioactive Tryptamines in Black Cohosh ( Actaea racemosa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:292. [PMID: 39861645 PMCID: PMC11768127 DOI: 10.3390/plants14020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh (Actaea racemosa L., syn. Cimicifuga racemosa, Nutt., Ranunculaceae) is a multicomponent botanical therapeutic used as a popular remedy for menopause and dysmenorrhea and explored as a treatment in breast and prostate cancer. However, its use and safety are controversial. A. racemosa tissues contain the bioactive serotonin analog N-methylserotonin, which is thought to contribute to the serotonergic activities of black cohosh-containing preparations. A. racemosa has several TDC-like genes hypothesized to encode tryptophan decarboxylases (TDCs) converting L-tryptophan to tryptamine, a direct serotonin precursor in plants. Expression of black cohosh TDC1, TDC2, and TDC3 in Saccharomyces cerevisiae resulted in the production of tryptamine. TDC1 and TDC3 had approximately fourfold higher activity than TDC2, which was attributable to a variable Cys/Ser active site residue identified by site-directed mutagenesis. Co-expression in yeast of the high-activity black cohosh TDCs with the next enzyme in serotonin biosynthesis, tryptamine 5-hydroxylase (T5H), from rice (Oryza sativa) resulted in the production of serotonin, whereas co-expression with low-activity TDCs did not, suggesting that TDC activity is a rate-limiting step in serotonin biosynthesis. Two T5H-like sequences were identified in A. racemose, but their co-expression with the high-activity TDCs in yeast did not result in serotonin production. TDC expression was detected in several black cohosh tissues, and phytochemical analysis using LC-MS revealed several new tryptamines, including tryptamine and serotonin, along with N-methylserotonin and, interestingly, N-N-dimethyl-5-hydroxytryptamine (bufotenine), which may contribute to hepatotoxicity. Incubation of A. racemosa leaves with tryptamine and N-methyltryptamine resulted in increased concentrations of serotonin and N-methylserotonin, respectively, suggesting that methylation of tryptamine precedes hydroxylation in the biosynthesis of N-methylserotonin. This work indicates a significantly greater variety of serotonin derivatives in A. racemosa than previously reported. Moreover, the activities of the TDCs underscore their key role in the production of serotonergic compounds in A. racemosa. Finally, it is proposed that tryptamine is first methylated and then hydroxylated to form the black cohosh signature compound N-methylserotonin.
Collapse
Affiliation(s)
- Martin J. Spiering
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - James F. Parsons
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Edward Eisenstein
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Damoo D, Kretschmer M, Lee CWJ, Herrfurth C, Feussner I, Heimel K, Kronstad JW. Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2024; 25:e70007. [PMID: 39487654 PMCID: PMC11530707 DOI: 10.1111/mpp.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
Pathogens must efficiently acquire nutrients from host tissue to proliferate, and strategies to block pathogen access therefore hold promise for disease control. In this study, we investigated whether heme biosynthesis is an effective target for ablating the virulence of the phytopathogenic fungus Ustilago maydis on maize plants. We first constructed conditional heme auxotrophs of the fungus by placing the heme biosynthesis gene hem12 encoding uroporphyrinogen decarboxylase (Urod) under the control of nitrogen or carbon source-regulated promoters. These strains were heme auxotrophs under non-permissive conditions and unable to cause disease in maize seedlings, thus demonstrating the inability of the fungus to acquire sufficient heme from host tissue to support proliferation. Subsequent experiments characterized the role of endocytosis in heme uptake, the susceptibility of the fungus to heme toxicity as well as the transcriptional response to exogenous heme. The latter RNA-seq experiments identified a candidate ABC transporter with a role in the response to heme and xenobiotics. Given the importance of heme biosynthesis for U. maydis pathogenesis, we tested the ability of the well-characterized herbicide BroadStar to influence disease. This herbicide contains the active ingredient flumioxazin, an inhibitor of Hem14 in the heme biosynthesis pathway, and we found that it was an effective antifungal agent for blocking disease in maize. Thus, repurposing herbicides for which resistant plants are available may be an effective strategy to control pathogens and achieve crop protection.
Collapse
Affiliation(s)
- Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christopher W. J. Lee
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - Kai Heimel
- Institute of Microbiology and Genetics, Department of Microbial Cell Biology, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Petrisková L, Kodedová M, Balážová M, Sychrová H, Valachovič M. Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159523. [PMID: 38866087 DOI: 10.1016/j.bbalip.2024.159523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell - alleviation of the lipotoxicity of unsaturated fatty acids.
Collapse
Affiliation(s)
- Lívia Petrisková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marie Kodedová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mária Balážová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Sychrová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Valachovič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
4
|
Li XB, Huang CL, Zhang Y, Ding JY, Xiang GS, Zhang GH, Yang SC, Hao B. Promiscuous Oxidosqualene Cyclases from Neoalsomitra integrifoliola Catalyzing the Formation of Tetracyclic, Pentacyclic, and Heterocyclic Triterpenes. Org Lett 2024; 26:3119-3123. [PMID: 38588021 DOI: 10.1021/acs.orglett.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Six oxidosqualene cyclases (NiOSC1-NiOSC6) from Neoalsomitra integrifoliola were characterized for the biosynthesis of diverse triterpene scaffolds, including tetracyclic and pentacyclic triterpenes from the 2,3-oxidosqualene (1) and oxacyclic triterpenes from the 2,3:22,23-dioxidosqualene (2). NiOSC1 showed high efficiency in the production of naturally rare (20R)-epimers of oxacyclic triterpenes. Mutagenesis results revealed that the NiOSC1-F731G mutant significantly increased the yields of (20R)-epimers compared to the wild type. Homology modeling and molecular docking elucidated the origin of the (20R)-configuration in the epoxide addition step.
Collapse
Affiliation(s)
- Xiao-Bo Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chun-Li Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Jing-Yang Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Gui-Sheng Xiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Guang-Hui Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Sheng-Chao Yang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Bing Hao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| |
Collapse
|
5
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Wang Y, Zhang H, Ri HC, An Z, Wang X, Zhou JN, Zheng D, Wu H, Wang P, Yang J, Liu DK, Zhang D, Tsai WC, Xue Z, Xu Z, Zhang P, Liu ZJ, Shen H, Li Y. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat Commun 2022; 13:2224. [PMID: 35468919 PMCID: PMC9038795 DOI: 10.1038/s41467-022-29908-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Araliaceae species produce various classes of triterpene and triterpenoid saponins, such as the oleanane-type triterpenoids in Aralia species and dammarane-type saponins in Panax, valued for their medicinal properties. The lack of genome sequences of Panax relatives has hindered mechanistic insight into the divergence of triterpene saponins in Araliaceae. Here, we report a chromosome-level genome of Aralia elata with a total length of 1.05 Gb. The loss of 12 exons in the dammarenediol synthase (DDS)-encoding gene in A. elata after divergence from Panax might have caused the lack of dammarane-type saponin production, and a complementation assay shows that overexpression of the PgDDS gene from Panax ginseng in callus of A. elata recovers the accumulation of dammarane-type saponins. Tandem duplication events of triterpene biosynthetic genes are common in the A. elata genome, especially for AeCYP72As, AeCSLMs, and AeUGT73s, which function as tailoring enzymes of oleanane-type saponins and aralosides. More than 13 aralosides are de novo synthesized in Saccharomyces cerevisiae by overexpression of these genes in combination. This study sheds light on the diversity of saponins biosynthetic pathway in Araliaceae and will facilitate heterologous bioproduction of aralosides.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - He Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Hyok Chol Ri
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Biochemistry Institute, University of Science, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Zeyu An
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xin Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jia-Nan Zhou
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Dongran Zheng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Pengchao Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jianfei Yang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ding-Kun Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan, China
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, China
| | - Zheyong Xue
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
7
|
Whitaker GH, Ernst DC, Downs DM. Absence of MMF1 disrupts heme biosynthesis by targeting Hem1pin Saccharomyces cerevisiae. Yeast 2021; 38:615-624. [PMID: 34559917 PMCID: PMC8958428 DOI: 10.1002/yea.3670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The RidA subfamily of the Rid (YjgF/YER057c/UK114) superfamily of proteins is broadly distributed and found in all domains of life. RidA proteins are enamine/imine deaminases. In the organisms that have been investigated, lack of RidA results in accumulation of the reactive enamine species 2-aminoacrylate (2AA) and/or its derivative imine 2-iminopropanoate (2IP). The accumulated enamine/imine species can damage specific pyridoxal phosphate (PLP)-dependent target enzymes. The metabolic imbalance resulting from the damaged enzymes is organism specific and based on metabolic network configuration. Saccharomyces cerevisiae encodes two RidA homologs, one localized to the cytosol and one to the mitochondria. The mitochondrial RidA homolog, Mmf1p, prevents enamine/imine stress and is important for normal growth and maintenance of mitochondrial DNA. Here, we show that Mmf1p is necessary for optimal heme biosynthesis. Biochemical and/or genetic data herein support a model in which accumulation of 2AA and or 2IP, in the absence of Mmf1p, inactivates Hem1p, a mitochondrially located PLP-dependent enzyme required for heme biosynthesis.
Collapse
Affiliation(s)
| | | | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| |
Collapse
|
8
|
Boyer S, Hérissant L, Sherlock G. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genet 2021; 17:e1009314. [PMID: 33493203 PMCID: PMC7861553 DOI: 10.1371/journal.pgen.1009314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
The environmental conditions of microorganisms' habitats may fluctuate in unpredictable ways, such as changes in temperature, carbon source, pH, and salinity to name a few. Environmental heterogeneity presents a challenge to microorganisms, as they have to adapt not only to be fit under a specific condition, but they must also be robust across many conditions and be able to deal with the switch between conditions itself. While experimental evolution has been used to gain insight into the adaptive process, this has largely been in either unvarying or consistently varying conditions. In cases where changing environments have been investigated, relatively little is known about how such environments influence the dynamics of the adaptive process itself, as well as the genetic and phenotypic outcomes. We designed a systematic series of evolution experiments where we used two growth conditions that have differing timescales of adaptation and varied the rate of switching between them. We used lineage tracking to follow adaptation, and whole genome sequenced adaptive clones from each of the experiments. We find that both the switch rate and the order of the conditions influences adaptation. We also find different adaptive outcomes, at both the genetic and phenotypic levels, even when populations spent the same amount of total time in the two different conditions, but the order and/or switch rate differed. Thus, in a variable environment adaptation depends not only on the nature of the conditions and phenotypes under selection, but also on the complexity of the manner in which those conditions are combined to result in a given dynamic environment.
Collapse
Affiliation(s)
- Sébastien Boyer
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Lucas Hérissant
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Stanchev LD, Marek M, Xian F, Klöhn M, Silvestro D, Dittmar G, López-Marqués RL, Günther Pomorski T. Functional Significance of Conserved Cysteines in the Extracellular Loops of the ATP Binding Cassette Transporter Pdr11p. J Fungi (Basel) 2020; 7:jof7010002. [PMID: 33375075 PMCID: PMC7822014 DOI: 10.3390/jof7010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
The pleiotropic drug resistance (PDR) transporter Pdr11p is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae, where it facilitates the uptake of exogenous sterols. Members of the fungal PDR family contain six conserved cysteines in their extracellular loops (ECL). For the functional analysis of these cysteine residues in Pdr11p, we generated a series of single cysteine-to-serine mutants. All mutant proteins expressed well and displayed robust ATPase activity upon purification. Mass-spectrometry analysis identified two cysteine residues (C582 and C603) in ECL3 forming a disulfide bond. Further characterization by cell-based assays showed that all mutants are compromised in facilitating sterol uptake, protein stability, and trafficking to the plasma membrane. Our data highlight the fundamental importance of all six extracellular cysteine residues for the functional integrity of Pdr11p and provide new structural insights into the PDR family of transporters.
Collapse
Affiliation(s)
- Lyubomir Dimitrov Stanchev
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (L.D.S.); (M.K.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark; (M.M.); (D.S.); (R.L.L.-M.)
| | - Magdalena Marek
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark; (M.M.); (D.S.); (R.L.L.-M.)
| | - Feng Xian
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Rue Thomas Edison 1A-B, L-1445 Strassen, Luxembourg; (F.X.); (G.D.)
| | - Mara Klöhn
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (L.D.S.); (M.K.)
| | - Daniele Silvestro
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark; (M.M.); (D.S.); (R.L.L.-M.)
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Rue Thomas Edison 1A-B, L-1445 Strassen, Luxembourg; (F.X.); (G.D.)
| | - Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark; (M.M.); (D.S.); (R.L.L.-M.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (L.D.S.); (M.K.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark; (M.M.); (D.S.); (R.L.L.-M.)
- Correspondence: ; Tel.: +49-234-322-4430
| |
Collapse
|
10
|
Dembitsky VM. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog Lipid Res 2020; 79:101048. [PMID: 32603672 DOI: 10.1016/j.plipres.2020.101048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
In this review, steroids with a tertiary butyl group, which are usually called neo steroids, are a small group of natural lipids isolated from higher plants, fungi, marine sponges, and yeast. In addition, steroids with a tertiary butyl group have been synthesized in some laboratories in Canada, USA, Europe, and Japan and their biological activity was studied. Some natural neo steroids demonstrate antitumor or hepatoprotective activities. In addition, synthetic neo steroids exhibit anticancer and neuroprotective properties. However, to confirm the above data, both practical and clinical experimental studies are necessary. Nevertheless, the results may be useful for pharmacologists, chemists, biochemists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| |
Collapse
|
11
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
12
|
Takase S, Kera K, Nagashima Y, Mannen K, Hosouchi T, Shinpo S, Kawashima M, Kotake Y, Yamada H, Saga Y, Otaka J, Araya H, Kotera M, Suzuki H, Kushiro T. Allylic hydroxylation of triterpenoids by a plant cytochrome P450 triggers key chemical transformations that produce a variety of bitter compounds. J Biol Chem 2019; 294:18662-18673. [PMID: 31656227 PMCID: PMC6901325 DOI: 10.1074/jbc.ra119.009944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Cucurbitacins are highly oxygenated triterpenoids characteristic of plants in the family Cucurbitaceae and responsible for the bitter taste of these plants. Fruits of bitter melon (Momordica charantia) contain various cucurbitacins possessing an unusual ether bridge between C5 and C19, not observed in other Cucurbitaceae members. Using a combination of next-generation sequencing and RNA-Seq analysis and gene-to-gene co-expression analysis with the ConfeitoGUIplus software, we identified three P450 genes, CYP81AQ19, CYP88L7, and CYP88L8, expected to be involved in cucurbitacin biosynthesis. CYP81AQ19 co-expression with cucurbitadienol synthase in yeast resulted in the production of cucurbita-5,24-diene-3β,23α-diol. A mild acid treatment of this compound resulted in an isomerization of the C23-OH group to C25-OH with the concomitant migration of a double bond, suggesting that a nonenzymatic transformation may account for the observed C25-OH in the majority of cucurbitacins found in plants. The functional expression of CYP88L7 resulted in the production of hydroxylated C19 as well as C5-C19 ether-bridged products. A plausible mechanism for the formation of the C5-C19 ether bridge involves C7 and C19 hydroxylations, indicating a multifunctional nature of this P450. On the other hand, functional CYP88L8 expression gave a single product, a triterpene diol, indicating a monofunctional P450 catalyzing the C7 hydroxylation. Our findings of the roles of several plant P450s in cucurbitacin biosynthesis reveal that an allylic hydroxylation is a key enzymatic transformation that triggers subsequent processes to produce structurally diverse products.
Collapse
Affiliation(s)
- Shohei Takase
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Kota Kera
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yoshiki Nagashima
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuto Mannen
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tsutomu Hosouchi
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Sayaka Shinpo
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Moeka Kawashima
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Yuki Kotake
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroki Yamada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Yusuke Saga
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Junnosuke Otaka
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroshi Araya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Masaaki Kotera
- Development Department of Chemical System Engineering, School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
13
|
Functional expression of a bacterial α-ketoglutarate dehydrogenase in the cytosol of Saccharomyces cerevisiae. Metab Eng 2019; 56:190-197. [DOI: 10.1016/j.ymben.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
|
14
|
Forestier E, Romero-Segura C, Pateraki I, Centeno E, Compagnon V, Preiss M, Berna A, Boronat A, Bach TJ, Darnet S, Schaller H. Distinct triterpene synthases in the laticifers of Euphorbia lathyris. Sci Rep 2019; 9:4840. [PMID: 30886213 PMCID: PMC6423090 DOI: 10.1038/s41598-019-40905-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Euphorbia lathyris was proposed about fifty years ago as a potential agroenergetic crop. The tremendous amounts of triterpenes present in its latex has driven investigations for transforming this particular biological fluid into an industrial hydrocarbon source. The huge accumulation of terpenes in the latex of many plant species represent a challenging question regarding cellular homeostasis. In fact, the enzymes, the mechanisms and the controllers that tune the amount of products accumulated in specialized compartments (to fulfill ecological roles) or deposited at important sites (as essential factors) are not known. Here, we have isolated oxidosqualene cyclases highly expressed in the latex of Euphorbia lathyris. This triterpene biosynthetic machinery is made of distinct paralogous enzymes responsible for the massive accumulation of steroidal and non-steroidal tetracyclic triterpenes. More than eighty years after the isolation of butyrospermol from shea butter (Heilbronn IM, Moffet GL, and Spring FS J. Chem. Soc. 1934, 1583), a butyrospermol synthase is characterized in this work using yeast and in folia heterologous expression assays.
Collapse
Affiliation(s)
- Edith Forestier
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Carmen Romero-Segura
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Irini Pateraki
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Emilio Centeno
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Vincent Compagnon
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Myriam Preiss
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Anne Berna
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Albert Boronat
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Thomas J Bach
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Pará, Brazil
| | - Hubert Schaller
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France.
| |
Collapse
|
15
|
Dong L, Pollier J, Bassard JE, Ntallas G, Almeida A, Lazaridi E, Khakimov B, Arendt P, de Oliveira LS, Lota F, Goossens A, Michoux F, Bak S. Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metab Eng 2018; 49:1-12. [PMID: 30016654 DOI: 10.1016/j.ymben.2018.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023]
Abstract
Triterpene cyclases catalyze the first committed step in triterpene biosynthesis, by forming mono- to pentacyclic backbone structures from oxygenated C30 isoprenoid precursors. Squalene epoxidase precedes this cyclization by providing the oxygenated and activated substrate for triterpene biosynthesis. Three squalene epoxidases from Cucurbita pepo (CpSEs) were isolated and shown to have evolved under purifying selection with signs of sites under positive selection in their N- and C-termini. They all localize to the Endoplasmic Reticulum (ER) and produce 2,3-oxidosqualene and 2,3:22,23-dioxidosqualene when expressed in a yeast erg1 (squalene epoxidase) erg7 (lanosterol synthase) double mutant. Co-expression of the CpSEs with four different triterpene cyclases, either transiently in Nicotiana benthamiana or constitutively in yeast, showed that CpSEs boost triterpene production. CpSE2 was the best performing in this regard, which could reflect either increased substrate production or superior channeling of the substrate to the triterpene cyclases. Fluorescence Lifetime Imaging Microscopy (FLIM) analysis with C. pepo cucurbitadienol synthase (CpCPQ) revealed a specific interaction with CpSE2 but not with the other CpSEs. When CpSE2 was transformed into C. pepo hairy root lines, cucurbitacin E production was increased two folds compared to empty vector control lines. This study provides new insight into the importance of SEs in triterpene biosynthesis, suggesting that they may facilitate substrate channeling, and demonstrates that SE overexpression is a new tool for increasing triterpene production in plants and yeast.
Collapse
Affiliation(s)
- Lemeng Dong
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jacob Pollier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Georgios Ntallas
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Aldo Almeida
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Eleni Lazaridi
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 16, DK-1958 Frederiksberg C, Denmark
| | - Philipp Arendt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Louisi Souza de Oliveira
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Frédéric Lota
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91000 Evry, France
| | - Søren Bak
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 2017; 12:e0189816. [PMID: 29281679 PMCID: PMC5744966 DOI: 10.1371/journal.pone.0189816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022] Open
Abstract
Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing new bacterial access to the broad class of triterpenes for biotechnological applications.
Collapse
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Dennis Dienst
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera Wewer
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Maximilian Dietsch
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Kranz-Finger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Hüren
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabine Metzger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Vlada B. Urlacher
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tamara Gigolashvili
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Ilka M. Axmann
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail: (IMA); (TD)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- * E-mail: (IMA); (TD)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
|
18
|
Kim HJ, Jeong MY, Parnell TJ, Babst M, Phillips JD, Winge DR. The Plasma Membrane Protein Nce102 Implicated in Eisosome Formation Rescues a Heme Defect in Mitochondria. J Biol Chem 2016; 291:17417-26. [PMID: 27317660 DOI: 10.1074/jbc.m116.727743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/06/2022] Open
Abstract
The cellular transport of the cofactor heme and its biosynthetic intermediates such as protoporphyrin IX is a complex and highly coordinated process. To investigate the molecular details of this trafficking pathway, we created a synthetic lesion in the heme biosynthetic pathway by deleting the gene HEM15 encoding the enzyme ferrochelatase in S. cerevisiae and performed a genetic suppressor screen. Cells lacking Hem15 are respiratory-defective because of an inefficient heme delivery to the mitochondria. Thus, the biogenesis of mitochondrial cytochromes is negatively affected. The suppressor screen resulted in the isolation of respiratory-competent colonies containing two distinct missense mutations in Nce102, a protein that localizes to plasma membrane invaginations designated as eisosomes. The presence of the Nce102 mutant alleles enabled formation of the mitochondrial respiratory complexes and respiratory growth in hem15Δ cells cultured in supplemental hemin. Respiratory function in hem15Δ cells can also be restored by the presence of a heterologous plasma membrane heme permease (HRG-4), but the mode of suppression mediated by the Nce102 mutant is more efficient. Attenuation of the endocytic pathway through deletion of the gene END3 impaired the Nce102-mediated rescue, suggesting that the Nce102 mutants lead to suppression through the yeast endocytic pathway.
Collapse
Affiliation(s)
- Hyung J Kim
- From the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| | - Mi-Young Jeong
- From the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| | - Timothy J Parnell
- the Huntsman Cancer Institute, Bioinformatics Shared Resources, Salt Lake City, Utah 84132, and
| | - Markus Babst
- the Department of Biology and Center for Cell and Genomic Science, University of Utah, Salt Lake City, Utah 84112
| | - John D Phillips
- From the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| | - Dennis R Winge
- From the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132,
| |
Collapse
|
19
|
Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell 2016; 161:858-67. [PMID: 25957689 DOI: 10.1016/j.cell.2015.04.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrion maintains and regulates its proteome with chaperones primarily inherited from its bacterial endosymbiont ancestor. Among these chaperones is the AAA+ unfoldase ClpX, an important regulator of prokaryotic physiology with poorly defined function in the eukaryotic mitochondrion. We observed phenotypic similarity in S. cerevisiae genetic interaction data between mitochondrial ClpX (mtClpX) and genes contributing to heme biosynthesis, an essential mitochondrial function. Metabolomic analysis revealed that 5-aminolevulinic acid (ALA), the first heme precursor, is 5-fold reduced in yeast lacking mtClpX activity and that total heme is reduced by half. mtClpX directly stimulates ALA synthase in vitro by catalyzing incorporation of its cofactor, pyridoxal phosphate. This activity is conserved in mammalian homologs; additionally, mtClpX depletion impairs vertebrate erythropoiesis, which requires massive upregulation of heme biosynthesis to supply hemoglobin. mtClpX, therefore, is a widely conserved stimulator of an essential biosynthetic pathway and uses a previously unrecognized mechanism for AAA+ unfoldases.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana S Branco
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Hildick-Smith
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Swenson S, Cannon A, Harris NJ, Taylor NG, Fox JL, Khalimonchuk O. Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes. J Biol Chem 2016; 291:10411-25. [PMID: 26940873 DOI: 10.1074/jbc.m115.707539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Heme a is an essential cofactor for function of cytochrome c oxidase in the mitochondrial electron transport chain. Several evolutionarily conserved enzymes have been implicated in the biosynthesis of heme a, including the heme a synthase Cox15. However, the structure of Cox15 is unknown, its enzymatic mechanism and the role of active site residues remain debated, and recent discoveries suggest additional chaperone-like roles for this enzyme. Here, we investigated Cox15 in the model eukaryote Saccharomyces cerevisiae via several approaches to examine its oligomeric states and determine the effects of active site and human pathogenic mutations. Our results indicate that Cox15 exhibits homotypic interactions, forming highly stable complexes dependent upon hydrophobic interactions. This multimerization is evolutionarily conserved and independent of heme levels and heme a synthase catalytic activity. Four conserved histidine residues are demonstrated to be critical for eukaryotic heme a synthase activity and cannot be substituted with other heme-ligating amino acids. The 20-residue linker region connecting the two conserved domains of Cox15 is also important; removal of this linker impairs both Cox15 multimerization and enzymatic activity. Mutations of COX15 causing single amino acid conversions associated with fatal infantile hypertrophic cardiomyopathy and the neurological disorder Leigh syndrome result in impaired stability (S344P) or catalytic function (R217W), and the latter mutation affects oligomeric properties of the enzyme. Structural modeling of Cox15 suggests these two mutations affect protein folding and heme binding, respectively. We conclude that Cox15 multimerization is important for heme a biosynthesis and/or transfer to maturing cytochrome c oxidase.
Collapse
Affiliation(s)
- Samantha Swenson
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Andrew Cannon
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Nicholas J Harris
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Nicholas G Taylor
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Jennifer L Fox
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Oleh Khalimonchuk
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| |
Collapse
|
21
|
Araki T, Saga Y, Marugami M, Otaka J, Araya H, Saito K, Yamazaki M, Suzuki H, Kushiro T. Onocerin Biosynthesis Requires Two Highly Dedicated Triterpene Cyclases in a FernLycopodium clavatum. Chembiochem 2016; 17:288-90. [DOI: 10.1002/cbic.201500663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Takeshi Araki
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashimita Tama-ku Kawasaki Kanagawa 214-8571 Japan
| | - Yusuke Saga
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashimita Tama-ku Kawasaki Kanagawa 214-8571 Japan
| | - Momo Marugami
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashimita Tama-ku Kawasaki Kanagawa 214-8571 Japan
| | - Junnosuke Otaka
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashimita Tama-ku Kawasaki Kanagawa 214-8571 Japan
| | - Hiroshi Araya
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashimita Tama-ku Kawasaki Kanagawa 214-8571 Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1, Inohana Chuo-ku Chiba-shi Chiba 260-8675 Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1, Inohana Chuo-ku Chiba-shi Chiba 260-8675 Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute; 2-6-7 Kazusa-kamatari Kisarazu Chiba 292-0818 Japan
| | - Tetsuo Kushiro
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashimita Tama-ku Kawasaki Kanagawa 214-8571 Japan
| |
Collapse
|
22
|
Chowdhury R, Chowdhury A, Maranas CD. Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models. Metabolites 2015; 5:536-70. [PMID: 26426067 PMCID: PMC4693185 DOI: 10.3390/metabo5040536] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022] Open
Abstract
Essentiality (ES) and Synthetic Lethality (SL) information identify combination of genes whose deletion inhibits cell growth. This information is important for both identifying drug targets for tumor and pathogenic bacteria suppression and for flagging and avoiding gene deletions that are non-viable in biotechnology. In this study, we performed a comprehensive ES and SL analysis of two important eukaryotic models (S. cerevisiae and CHO cells) using a bilevel optimization approach introduced earlier. Information gleaned from this study is used to propose specific model changes to remedy inconsistent with data model predictions. Even for the highly curated Yeast 7.11 model we identified 50 changes (metabolic and GPR) leading to the correct prediction of an additional 28% of essential genes and 36% of synthetic lethals along with a 53% reduction in the erroneous identification of essential genes. Due to the paucity of mutant growth phenotype data only 12 changes were made for the CHO 1.2 model leading to an additional correctly predicted 11 essential and eight non-essential genes. Overall, we find that CHO 1.2 was 76% less accurate than the Yeast 7.11 metabolic model in predicting essential genes. Based on this analysis, 14 (single and double deletion) maximally informative experiments are suggested to improve the CHO cell model by using information from a mouse metabolic model. This analysis demonstrates the importance of single and multiple knockout phenotypes in assessing and improving model reconstructions. The advent of techniques such as CRISPR opens the door for the global assessment of eukaryotic models.
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA.
| | - Anupam Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA.
| |
Collapse
|
23
|
Toh SQ, Gobert GN, Malagón Martínez D, Jones MK. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. FEBS J 2015; 282:3632-46. [PMID: 26153121 DOI: 10.1111/febs.13368] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/31/2015] [Accepted: 07/01/2015] [Indexed: 11/28/2022]
Abstract
Schistosomes ingest host erythrocytes, liberating large quantities of haem. Despite its toxicity, haem is an essential factor for numerous biological reactions, and may be an important iron source for these helminths. We used a fluorescence haem analogue, palladium mesoporphyrin, to investigate pathways of haem acquisition, and showed that palladium mesoporphyrin accumulates in the vitellaria (eggshell precursor glands) and ovary of female Schistosoma mansoni. Furthermore, incubation of adult females in 10-100 μm cyclosporin A (IC50 = 2.3 μm) inhibits the uptake of palladium mesoporphyrin to these tissues, with tenfold reductions in fluorescence intensity of the ovary. In vitro exposure to cyclosporin A resulted in significant perturbation of egg production, reducing egg output from 34 eggs per female to 5.7 eggs per female over the incubation period, and retardation of egg development. We characterized a S. mansoni homologue of the haem-responsive genes of Caenorhabditis elegans. The gene (Smhrg-1) encodes a protein with a molecular weight of approximately 17 kDa. SmHRG-1 was able to rescue growth in haem transport-deficient HEM1Δ yeast. Transcriptional suppression of Smhrg-1 in adult S. mansoni worms resulted in significant delay in egg maturation, with 47% of eggs from transcriptionally suppressed worms being identified as immature compared with only 27% of eggs laid by control worms treated with firefly luciferase. Our findings indicate the presence of transmembrane haem transporters in schistosomes, with a high abundance of these molecules being present in tissues involved in oogenesis.
Collapse
Affiliation(s)
- Shu Qin Toh
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
24
|
Dingerdissen H, Weaver DS, Karp PD, Pan Y, Simonyan V, Mazumder R. A framework for application of metabolic modeling in yeast to predict the effects of nsSNV in human orthologs. Biol Direct 2014; 9:9. [PMID: 24894379 PMCID: PMC4057618 DOI: 10.1186/1745-6150-9-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/19/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND We have previously suggested a method for proteome wide analysis of variation at functional residues wherein we identified the set of all human genes with nonsynonymous single nucleotide variation (nsSNV) in the active site residue of the corresponding proteins. 34 of these proteins were shown to have a 1:1:1 enzyme:pathway:reaction relationship, making these proteins ideal candidates for laboratory validation through creation and observation of specific yeast active site knock-outs and downstream targeted metabolomics experiments. Here we present the next step in the workflow toward using yeast metabolic modeling to predict human metabolic behavior resulting from nsSNV. RESULTS For the previously identified candidate proteins, we used the reciprocal best BLAST hits method followed by manual alignment and pathway comparison to identify 6 human proteins with yeast orthologs which were suitable for flux balance analysis (FBA). 5 of these proteins are known to be associated with diseases, including ribose 5-phosphate isomerase deficiency, myopathy with lactic acidosis and sideroblastic anaemia, anemia due to disorders of glutathione metabolism, and two porphyrias, and we suspect the sixth enzyme to have disease associations which are not yet classified or understood based on the work described herein. CONCLUSIONS Preliminary findings using the Yeast 7.0 FBA model show lack of growth for only one enzyme, but augmentation of the Yeast 7.0 biomass function to better simulate knockout of certain genes suggested physiological relevance of variations in three additional proteins. Thus, we suggest the following four proteins for laboratory validation: delta-aminolevulinic acid dehydratase, ferrochelatase, ribose-5 phosphate isomerase and mitochondrial tyrosyl-tRNA synthetase. This study indicates that the predictive ability of this method will improve as more advanced, comprehensive models are developed. Moreover, these findings will be useful in the development of simple downstream biochemical or mass-spectrometric assays to corroborate these predictions and detect presence of certain known nsSNVs with deleterious outcomes. Results may also be useful in predicting as yet unknown outcomes of active site nsSNVs for enzymes that are not yet well classified or annotated.
Collapse
Affiliation(s)
- Hayley Dingerdissen
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Ross Hall, Room 540, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Daniel S Weaver
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Peter D Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Yang Pan
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Ross Hall, Room 540, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Vahan Simonyan
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1451 Rockville Pike, Rockville, MD 20852, USA
| | - Raja Mazumder
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Ross Hall, Room 540, 2300 Eye Street NW, Washington, DC 20037, USA
- McCormick Genomic and Proteomic Center, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
25
|
Plant cyclopropylsterol-cycloisomerase: key amino acids affecting activity and substrate specificity. Biochem J 2014; 459:289-99. [PMID: 24483781 DOI: 10.1042/bj20131239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzyme CPI (cyclopropylsterol-cycloisomerase) from the plant sterol pathway catalyses the cleavage of the 9β,19-cyclopropane ring of the 4α-methyl-cyclopropylsterol cycloeucalenol to produce the Δ8-sterol obtusifoliol. Randomly mutated plasmids carrying the Arabidopsis thaliana cpi gene were screened for inactive CPI mutant enzymes on the basis of their ability to genetically complement a Saccharomyces cerevisiae erg7 (defective in oxidosqualene cyclase) ergosterol auxotroph grown in the presence of exogenous cycloeucalenol, and led to the identification of four catalytically important residues. Site-directed mutagenesis experiments confirmed the role of the identified residues, and demonstrated the importance of selected acidic residues and a conserved G108NYFWTHYFF117 motif. The mutated isomerases were assayed both in vivo by quantification of cycloeucalenol conversion into ergosterol in erg7 cells, and in vitro by examination of activities of recombinant AtCPI (A. thaliana CPI) mutants. These studies show that Gly28, Glu29, Gly108 and Asp260 are crucial for CPI activity and that an hydroxy function at residue 113 is needed for maximal substrate affinity and CPI activity. CPI is inactive on upstream 4α,β-dimethyl-cyclopropylsterol precursors of phytosterols. The single mutation W112L generates a CPI with an extended substrate specificity, that is able to convert 4α,β-dimethyl-cyclopropylsterols into the corresponding Δ8 products. These findings provide insights into the molecular basis of CPI activity and substrate specificity.
Collapse
|
26
|
Hull CM, Loveridge EJ, Rolley NJ, Donnison IS, Kelly SL, Kelly DE. Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:133. [PMID: 25298782 PMCID: PMC4189534 DOI: 10.1186/s13068-014-0133-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/29/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Genetically customised Saccharomyces cerevisiae that can produce ethanol and additional bio-based chemicals from sustainable agro-industrial feedstocks (for example, residual plant biomass) are of major interest to the biofuel industry. We investigated the microbial biorefinery concept of ethanol and squalene co-production using S. cerevisiae (strain YUG37-ERG1) wherein ERG1 (squalene epoxidase) transcription is under the control of a doxycycline-repressible tet0 7 -CYC1 promoter. The production of ethanol and squalene by YUG37-ERG1 grown using agriculturally sourced grass juice supplemented with doxycycline was assessed. RESULTS Use of the tet0 7 -CYC1 promoter permitted regulation of ERG1 expression and squalene accumulation in YUG37-ERG1, allowing us to circumvent the lethal growth phenotype seen when ERG1 is disrupted completely. In experiments using grass juice feedstock supplemented with 0 to 50 μg doxycycline mL(-1), YUG37-ERG1 fermented ethanol (22.5 [±0.5] mg mL(-1)) and accumulated the highest squalene content (7.89 ± 0.25 mg g(-1) dry biomass) and yield (18.0 ± 4.18 mg squalene L(-1)) with supplements of 5.0 and 0.025 μg doxycycline mL(-1), respectively. Grass juice was found to be rich in water-soluble carbohydrates (61.1 [±3.6] mg sugars mL(-1)) and provided excellent feedstock for growth and fermentation studies using YUG37-ERG1. CONCLUSION Residual plant biomass components from crop production and rotation systems represent possible substrates for microbial fermentation of biofuels and bio-based compounds. This study is the first to utilise S. cerevisiae for the co-production of ethanol and squalene from grass juice. Our findings underscore the value of the biorefinery approach and demonstrate the potential to integrate microbial bioprocess engineering with existing agriculture.
Collapse
Affiliation(s)
- Claire M Hull
- />Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - E Joel Loveridge
- />School of Chemistry, Cardiff University, Cardiff, Wales CF10 3AT UK
| | - Nicola J Rolley
- />Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Iain S Donnison
- />Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Wales SY23 3EE UK
| | - Steven L Kelly
- />Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Diane E Kelly
- />Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| |
Collapse
|
27
|
Cloning of the δ-aminolevulinic acid synthase structural gene in yeast. Curr Genet 2013; 7:175-83. [PMID: 24173275 DOI: 10.1007/bf00434887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/1983] [Indexed: 10/26/2022]
Abstract
HEM1, the structural gene for δ-aminolevulinic acid synthase, has been isolated on recombinant plasmids. A yeast genomic pool constructed in the E. coli - yeast shuttle vector YEp13 was used to clone the HEM1 gene by complementation. A leu2 hem1 yeast mutants was transformed with the yeast genomic pool and hybrid YEp13 plasmids carrying the HEM1 gene were cloned by their ability to complement both the leu2 and hem1 mutations in the recipient strain. The yeast transformants, bearing the HEM1-containing plasmids pYe(HEM1), showed a 24-28 fold increase in δ-aminolevulinic acid synthase activity and in the intracellular content of δ-aminolevulinic acid (5-8 fold) as compared to wild type strains, suggesting that the p(HEM1) gene is being expressed as a catalytically active enzyme which can be transported into the mitochondria. However, the transformant strains did not present higher-than-normal content of heme or cytochromes either in glucose or in glycerol media, indicating that the production of δ-aminolevulinic acid is not the rate-limiting step in heme biosynthesis in yeast.
Collapse
|
28
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
29
|
Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. EUKARYOTIC CELL 2013; 12:725-38. [PMID: 23475705 DOI: 10.1128/ec.00345-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sterol import has been characterized under various conditions in three distinct fungal species, the model organism Saccharomyces cerevisiae and two human fungal pathogens Candida glabrata and Candida albicans, employing cholesterol, the sterol of higher eukaryotes, as well as its fungal equivalent, ergosterol. Import was confirmed by the detection of esterified cholesterol within the cells. Comparing the three fungal species, we observe sterol import under three different conditions. First, as previously well characterized, we observe sterol import under low oxygen levels in S. cerevisiae and C. glabrata, which is dependent on the transcription factor Upc2 and/or its orthologs or paralogs. Second, we observe sterol import under aerobic conditions exclusively in the two pathogenic fungi C. glabrata and C. albicans. Uptake emerges during post-exponential-growth phases, is independent of the characterized Upc2-pathway and is slower compared to the anaerobic uptake in S. cerevisiae and C. glabrata. Third, we observe under normoxic conditions in C. glabrata that Upc2-dependent sterol import can be induced in the presence of fetal bovine serum together with fluconazole. In summary, C. glabrata imports sterols both in aerobic and anaerobic conditions, and the limited aerobic uptake can be further stimulated by the presence of serum together with fluconazole. S. cerevisiae imports sterols only in anaerobic conditions, demonstrating aerobic sterol exclusion. Finally, C. albicans imports sterols exclusively aerobically in post-exponential-growth phases, independent of Upc2. For the first time, we provide direct evidence of sterol import into the human fungal pathogen C. albicans, which until now was believed to be incapable of active sterol import.
Collapse
|
30
|
The zinc cluster protein Sut1 contributes to filamentation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 12:244-53. [PMID: 23223039 DOI: 10.1128/ec.00214-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sut1 is a transcriptional regulator of the Zn(II)(2)Cys(6) family in the budding yeast Saccharomyces cerevisiae. The only function that has been attributed to Sut1 is sterol uptake under anaerobic conditions. Here, we show that Sut1 is also expressed in the presence of oxygen, and we identify a novel function for Sut1. SUT1 overexpression blocks filamentous growth, a response to nutrient limitation, in both haploid and diploid cells. This inhibition by Sut1 is independent of its function in sterol uptake. Sut1 downregulates the expression of GAT2, HAP4, MGA1, MSN4, NCE102, PRR2, RHO3, and RHO5. Several of these Sut1 targets (GAT2, HAP4, MGA1, RHO3, and RHO5) are essential for filamentation in haploids and/or diploids. Furthermore, the expression of the Sut1 target genes, with the exception of MGA1, is induced during filamentous growth. We also show that SUT1 expression is autoregulated and inhibited by Ste12, a key transcriptional regulator of filamentation. We propose that Sut1 partially represses the expression of GAT2, HAP4, MGA1, MSN4, NCE102, PRR2, RHO3, and RHO5 when nutrients are plentiful. Filamentation-inducing conditions relieve this repression by Sut1, and the increased expression of Sut1 targets triggers filamentous growth.
Collapse
|
31
|
Soto IC, Fontanesi F, Myers RS, Hamel P, Barrientos A. A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. Cell Metab 2012; 16:801-13. [PMID: 23217259 PMCID: PMC3523284 DOI: 10.1016/j.cmet.2012.10.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/01/2022]
Abstract
Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae, a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production.
Collapse
Affiliation(s)
- Iliana C Soto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
32
|
Franken ACW, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways. FEMS Microbiol Lett 2012; 335:104-12. [PMID: 22889260 DOI: 10.1111/j.1574-6968.2012.02655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 11/27/2022] Open
Abstract
To increase knowledge on haem biosynthesis in filamentous fungi like Aspergillus niger, pathway-specific gene expression in response to haem and haem intermediates was analysed. This analysis showed that iron, 5'-aminolevulinic acid (ALA) and possibly haem control haem biosynthesis mostly via modulating expression of hemA [coding for 5'-aminolevulinic acid synthase (ALAS)]. A hemA deletion mutant (ΔhemA) was constructed, which showed conditional lethality. Growth of ΔhemA was supported on standard nitrate-containing media with ALA, but not by hemin. Growth of ΔhemA could be sustained in the presence of hemin in combination with ammonium instead of nitrate as N-source. Our results suggest that a branch-off within the haem biosynthesis pathway required for sirohaem synthesis is responsible for lack of growth of ΔhemA in media containing nitrate as sole N-source, because of the requirement of sirohaem for nitrate assimilation, as a cofactor of nitrite reductase. In contrast to the situation in Saccharomyces cerevisiae, cysteine, but not methionine, was found to further improve growth of ΔhemA. These results demonstrate that A. niger can use exogenous hemin for its cellular processes. They also illustrate important differences in regulation of haem biosynthesis and in the role of haem and sirohaem in A. niger compared to S. cerevisiae.
Collapse
Affiliation(s)
- Angelique C W Franken
- Department of Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A, Daum G. Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:647-53. [PMID: 22342273 PMCID: PMC3790963 DOI: 10.1016/j.bbalip.2012.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/12/2012] [Accepted: 01/30/2012] [Indexed: 02/02/2023]
Abstract
In a previous study (Spanova et al., 2010, J. Biol. Chem., 285, 6127–6133) we demonstrated that squalene, an intermediate of sterol biosynthesis, accumulates in yeast strains bearing a deletion of the HEM1 gene. In such strains, the vast majority of squalene is stored in lipid particles/droplets together with triacylglycerols and steryl esters. In mutants lacking the ability to form lipid particles, however, substantial amounts of squalene accumulate in organelle membranes. In the present study, we investigated the effect of squalene on biophysical properties of lipid particles and biological membranes and compared these results to artificial membranes. Our experiments showed that squalene together with triacylglycerols forms the fluid core of lipid particles surrounded by only a few steryl ester shells which transform into a fluid phase below growth temperature. In the hem1∆ deletion mutant a slight disordering effect on steryl esters was observed indicated by loss of the high temperature transition. Also in biological membranes from the hem1∆ mutant strain the effect of squalene per se is difficult to pinpoint because multiple effects such as levels of sterols and unsaturated fatty acids contribute to physical membrane properties. Fluorescence spectroscopic studies using endoplasmic reticulum, plasma membrane and artificial membranes revealed that it is not the absolute squalene level in membranes but rather the squalene to sterol ratio which mainly affects membrane fluidity/rigidity. In a fluid membrane environment squalene induces rigidity of the membrane, whereas in rigid membranes there is almost no additive effect of squalene. In summary, our results demonstrate that squalene (i) can be well accommodated in yeast lipid particles and organelle membranes without causing deleterious effects; and (ii) although not being a typical membrane lipid may be regarded as a mild modulator of biophysical membrane properties.
Collapse
Affiliation(s)
- Miroslava Spanova
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Dagmar Zweytick
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - Karl Lohner
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - Lisa Klug
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Technology, Graz University of Technology, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Corresponding author at: Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, A-8010 Graz, Austria. Tel.: + 43 316 873 6462; fax: + 43 316 873 6952.
| |
Collapse
|
34
|
Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic 2011; 12:1341-55. [PMID: 21689253 DOI: 10.1111/j.1600-0854.2011.01234.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologs of the mammalian oxysterol-binding protein (Osh1-7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1(ts)) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well as by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in non-vesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM.
Collapse
|
35
|
Marek M, Milles S, Schreiber G, Daleke DL, Dittmar G, Herrmann A, Müller P, Pomorski TG. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity. J Biol Chem 2011; 286:21835-43. [PMID: 21521689 DOI: 10.1074/jbc.m111.244525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.
Collapse
Affiliation(s)
- Magdalena Marek
- Institute of Biology, Humboldt University of Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Achcar F, Camadro JM, Mestivier D. A Boolean probabilistic model of metabolic adaptation to oxygen in relation to iron homeostasis and oxidative stress. BMC SYSTEMS BIOLOGY 2011; 5:51. [PMID: 21489274 PMCID: PMC3094212 DOI: 10.1186/1752-0509-5-51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 04/13/2011] [Indexed: 01/16/2023]
Abstract
Background In aerobically grown cells, iron homeostasis and oxidative stress are tightly linked processes implicated in a growing number of diseases. The deregulation of iron homeostasis due to gene defects or environmental stresses leads to a wide range of diseases with consequences for cellular metabolism that remain poorly understood. The modelling of iron homeostasis in relation to the main features of metabolism, energy production and oxidative stress may provide new clues to the ways in which changes in biological processes in a normal cell lead to disease. Results Using a methodology based on probabilistic Boolean modelling, we constructed the first model of yeast iron homeostasis including oxygen-related reactions in the frame of central metabolism. The resulting model of 642 elements and 1007 reactions was validated by comparing simulations with a large body of experimental results (147 phenotypes and 11 metabolic flux experiments). We removed every gene, thus generating in silico mutants. The simulations of the different mutants gave rise to a remarkably accurate qualitative description of most of the experimental phenotype (overall consistency > 91.5%). A second validation involved analysing the anaerobiosis to aerobiosis transition. Therefore, we compared the simulations of our model with different levels of oxygen to experimental metabolic flux data. The simulations reproducted accurately ten out of the eleven metabolic fluxes. We show here that our probabilistic Boolean modelling strategy provides a useful description of the dynamics of a complex biological system. A clustering analysis of the simulations of all in silico mutations led to the identification of clear phenotypic profiles, thus providing new insights into some metabolic response to stress conditions. Finally, the model was also used to explore several new hypothesis in order to better understand some unexpected phenotypes in given mutants. Conclusions All these results show that this model, and the underlying modelling strategy, are powerful tools for improving our understanding of complex biological problems.
Collapse
Affiliation(s)
- Fiona Achcar
- Modelling in Integrative Biology, Institut Jacques Monod - UMR7592 - CNRS - Univ. Paris-Diderot, Paris, France
| | | | | |
Collapse
|
37
|
The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 2011; 188:325-38. [PMID: 21467572 DOI: 10.1534/genetics.111.128322] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes.
Collapse
|
38
|
Chiu LD, Hamaguchi HO. The "Raman spectroscopic signature of life" is closely related to haem function in budding yeasts. JOURNAL OF BIOPHOTONICS 2011; 4:30-33. [PMID: 20391543 DOI: 10.1002/jbio.201000029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/16/2010] [Accepted: 03/24/2010] [Indexed: 05/29/2023]
Abstract
HEM1 gene encodes δ-aminolevulinate synthase that is required for haem synthesis. It is an essential gene for yeast survival. The Raman spectra of HEM1 knockout (hem1Δ) yeast cells lacks a Raman band at 1602 cm(-1) that has been shown to reflect cell metabolic activity. This result suggests that the molecule giving rise to the"Raman spectroscopic signature of life" is closely related to haem functions in the cell. High amount of squalene is also observed in the hem1Δ strain, which is another new discovery of this study.
Collapse
Affiliation(s)
- Liang-da Chiu
- Department of Chemistry, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 Japan
| | | |
Collapse
|
39
|
Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G. Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem 2009; 285:6127-33. [PMID: 20032462 DOI: 10.1074/jbc.m109.074229] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Squalene belongs to the group of isoprenoids and is a precursor for the synthesis of sterols, steroids, and ubiquinones. In the yeast Saccharomyces cerevisiae, the amount of squalene can be increased by variation of growth conditions or by genetic manipulation. In this report, we show that a hem1Delta mutant accumulated a large amount of squalene, which was stored almost exclusively in cytoplasmic lipid particles/droplets. Interestingly, a strain bearing a hem1Delta deletion in a dga1Delta lro1Delta are1Delta are2Delta quadruple mutant background (QMhem1Delta), which is devoid of the classical storage lipids, triacylglycerols and steryl esters, and lacks lipid particles, accumulated squalene at similar amounts as the hem1Delta mutant in a wild type background. In QMhem1Delta, however, increased amounts of squalene were found in cellular membranes, especially in microsomes. The fact that QMhem1Delta did not form lipid particles indicated that accumulation of squalene solely was not sufficient to initiate proliferation of lipid particles. Most importantly, these results also demonstrated that (i) squalene was not lipotoxic under the conditions tested, and (ii) organelle membranes in yeast can accommodate relatively large quantities of this non-polar lipid without compromising cellular functions. In summary, localization of squalene as described here can be regarded as an unconventional example of non-polar lipid storage in cellular membranes.
Collapse
Affiliation(s)
- Miroslava Spanova
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Lin M, Unden H, Jacquier N, Schneiter R, Just U, Höfken T. The Cdc42 effectors Ste20, Cla4, and Skm1 down-regulate the expression of genes involved in sterol uptake by a mitogen-activated protein kinase-independent pathway. Mol Biol Cell 2009; 20:4826-37. [PMID: 19793923 DOI: 10.1091/mbc.e09-01-0034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4, and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into cells. Here, we show that Ste20, Cla4, and Skm1 form a complex with Sut1, a transcriptional regulator that promotes sterol uptake. All three PAKs can translocate into the nucleus and down-regulate the expression of genes involved in sterol uptake, including the Sut1 targets AUS1 and DAN1 by a novel mechanism. Consistently, deletion of either STE20, CLA4, or SKM1 results in an increased sterol influx and PAK overexpression inhibits sterol uptake. For Ste20, we demonstrate that the down-regulation of gene expression requires nuclear localization and kinase activity of Ste20. Furthermore, the Ste20-mediated control of expression of sterol uptake genes depends on SUT1 but is independent of a mitogen-activated protein kinase signaling cascade. Together, these observations suggest that PAKs translocate into the nucleus, where they modulate expression of sterol uptake genes via Sut1, thereby controlling sterol homeostasis.
Collapse
Affiliation(s)
- Meng Lin
- Institute of Biochemistry, Christian Albrecht University, 24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. EUKARYOTIC CELL 2009; 8:1511-20. [PMID: 19700638 DOI: 10.1128/ec.00166-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron acquisition is a critical aspect of the virulence of many pathogenic microbes, and iron limitation is an important defense mechanism for mammalian hosts. We are examining mechanisms of iron regulation and acquisition in the fungal pathogen Cryptococcus neoformans, and here, we characterize the roles of the ferroxidases Cfo1 and Cfo2. Cfo1 is required for the reductive iron uptake system that mediates the utilization of transferrin, an important iron source for C. neoformans during infection. The virulence of a cfo1 mutant was attenuated in a mouse model of cryptococcosis, and the mutant also displayed increased sensitivities to the antifungal drugs fluconazole and amphotericin B. Wild-type levels of drug sensitivity were restored by the addition of exogenous heme, which suggested that reduced levels of intracellular iron may curtail heme levels and interfere with ergosterol biosynthesis. We constructed green fluorescent protein (GFP) fusion proteins and found elevated expression of Cfo1-GFP upon iron limitation, as well as localization of the fusion to the plasma membrane. Trafficking to this location was disrupted by a defect in the catalytic subunit of cyclic AMP-dependent protein kinase. This result is consistent with findings from studies indicating an influence of the kinase on the expression of protein-trafficking functions in C. neoformans.
Collapse
|
42
|
Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:859-71. [PMID: 18326586 DOI: 10.1128/ec.00414-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unlike pathogenic fungi, the budding yeast Saccharomyces cerevisiae is not efficient at using heme as a nutritional source of iron. Here we report that for this yeast, heme uptake is induced under conditions of heme starvation. Heme synthesis requires oxygen, and yeast grown anaerobically exhibited an increased uptake of hemin. Similarly, a strain lacking aminolevulinate synthase exhibited a sixfold increase in hemin uptake when grown without 2-aminolevulinic acid. We used microarray analysis of cells grown under reduced oxygen tension or reduced intracellular heme conditions to identify candidate genes involved in heme uptake. Surprisingly, overexpression of PUG1 (protoporphyrin uptake gene 1) resulted in reduced utilization of exogenous heme by a heme-deficient strain and, conversely, increased the utilization of protoporphyrin IX. Pug1p was localized to the plasma membrane by indirect immunofluorescence and subcellular fractionation. Strains overexpressing PUG1 exhibited decreased accumulation of [(55)Fe]hemin but increased accumulation of protoporphyrin IX compared to the wild-type strain. To measure the effect of PUG1 overexpression on intracellular heme pools, we used a CYC1-lacZ reporter, which is activated in the presence of heme, and we monitored the activity of a heme-containing metalloreductase, Fre1p, expressed from a constitutive promoter. The data from these experiments were consistent with a role for Pug1p in inducible protoporphyrin IX influx and heme efflux.
Collapse
|
43
|
Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. EUKARYOTIC CELL 2007; 7:387-400. [PMID: 18156292 DOI: 10.1128/ec.00323-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with analyses of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low-oxygen conditions. Several additional lines of evidence obtained suggest that these responses could involve effects on heme. First, the hem1Delta mutant lacking the first enzyme in the heme biosynthetic pathway showed increased sensitivity to sampangine, and exogenously supplied hemin partially rescued the inhibitory activity of sampangine in wild-type cells. In addition, heterozygous mutants with deletions in genes involved in five out of eight steps in the heme biosynthetic pathway showed increased susceptibility to sampangine. Furthermore, spectral analyses of pyridine extracts indicated significant accumulation of free porphyrins in sampangine-treated cells. Transcriptional profiling experiments were also performed with C. albicans to investigate the response of a pathogenic fungal species to sampangine. Taking into account the known differences in the physiological responses of C. albicans and S. cerevisiae to low oxygen, significant correlations were observed between the two transcription profiles, suggestive of heme-related defects. Our results indicate that the antifungal activity of the plant alkaloid sampangine is due, at least in part, to perturbations in the biosynthesis or metabolism of heme.
Collapse
|
44
|
Rasbery JM, Shan H, LeClair RJ, Norman M, Matsuda SPT, Bartel B. Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. J Biol Chem 2007; 282:17002-13. [PMID: 17426032 DOI: 10.1074/jbc.m611831200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Squalene epoxidase converts squalene into oxidosqualene, the precursor of all known angiosperm cyclic triterpenoids, which include membrane sterols, brassinosteroid phytohormones, and non-steroidal triterpenoids. In this work, we have identified six putative Arabidopsis squalene epoxidase (SQE) enzymes and used heterologous expression in yeast to demonstrate that three of these enzymes, SQE1, SQE2, and SQE3, can epoxidize squalene. We isolated and characterized Arabidopsis sqe1 mutants and discovered severe developmental defects, including reduced root and hypocotyl elongation. Adult sqe1-3 and sqe1-4 plants have diminished stature and produce inviable seeds. The sqe1-3 mutant accumulates squalene, consistent with a block in the triterpenoid biosynthetic pathway. Therefore, SQE1 function is necessary for normal plant development, and the five SQE-like genes remaining in this mutant are not fully redundant with SQE1.
Collapse
Affiliation(s)
- Jeanne M Rasbery
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
45
|
Köffel R, Schneiter R. Yeh1 constitutes the major steryl ester hydrolase under heme-deficient conditions in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1018-25. [PMID: 16835446 PMCID: PMC1489292 DOI: 10.1128/ec.00002-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Steryl esters are stored in intracellular lipid droplets from which they are mobilized upon demand and hydrolyzed to yield free sterols and fatty acids. The mechanisms that control steryl ester mobilization are not well understood. We have previously identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester hydrolysis, Yeh1, Yeh2, and Tgl1 (R. Köffel, R. Tiwari, L. Falquet, and R. Schneiter, Mol. Cell. Biol. 25:1655-1668, 2005). Both Yeh1 and Tgl1 localize to lipid droplets, whereas Yeh2 is localized to the plasma membrane. To characterize the precise function of these three partially redundant lipases, we examined steryl ester mobilization under heme-deficient conditions. S. cerevisiae is a facultative anaerobic organism that becomes auxotrophic for sterols and unsaturated fatty acids in the absence of molecular oxygen. Anaerobic conditions can be mimicked in cells that are deficient for heme synthesis. We here report that Yeh1 is the sole active steryl ester hydrolase under such heme-deficient conditions, indicating that Yeh1 is activated whereas Yeh2 and Tgl1 are inactivated by the lack of heme. The heme-dependent activation of Yeh1 is mediated at least in part by an increase in steady-state levels of Yeh1 at the expense of Yeh2 and Tgl1 in exponentially growing cells. This increase in steady-state levels of Yeh1 requires Rox3, a component of the mediator complex that regulates transcription by RNA polymerase II. These data thus provide the first link between fat degradation and the transcriptional control of lipase activity in yeast.
Collapse
Affiliation(s)
- René Köffel
- Department of Medicine, Division of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
46
|
Polevoda B, Panciera Y, Brown SP, Wei J, Sherman F. Phenotypes of yeast mutants lacking the mitochondrial protein Pet20p. Yeast 2006; 23:127-39. [PMID: 16491469 DOI: 10.1002/yea.1340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The pet20-delta deletion in Saccharomyces cerevisiae causes diminished growth on media containing non-fermentable carbon sources when incubated at both above and below the 30 degrees C optimal growth temperature. Furthermore, the pet20-delta strain has a greatly reduced level of cytochrome c, especially at 37 degrees C. The pet20-delta strain was sensitive to high NaCl and CaCl2 concentrations, hydrogen peroxide, oligomycin, polymixin B, amphotericin B and fluconazole. Biochemical fractionation and immunofluorescence staining demonstrated that Pet20p is located primarily in the mitochondria. Rhodamine B staining of pet20-delta cells showed an altered mitochondrial staining, indicating the possible lack of the mitochondrial membrane potential. We suggest that PET20 encodes a protein required for proper assembly or maintenance of mitochondrial components, but does not serve an enzymatic role. It is also possible that Pet20p may constitute a non-catalytic subunit of an uncharacterized mitochondrial complex or serve as a transporter or a coupling factor.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
47
|
Reiner S, Micolod D, Zellnig G, Schneiter R. A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast. Mol Biol Cell 2005; 17:90-103. [PMID: 16251356 PMCID: PMC1345649 DOI: 10.1091/mbc.e05-06-0515] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that govern intracellular transport of sterols in eukaryotic cells are not well understood. Saccharomyces cerevisiae is a facultative anaerobic organism that becomes auxotroph for sterols and unsaturated fatty acids in the absence of oxygen. To identify pathways that are required for uptake and transport of sterols, we performed a systematic screen of the yeast deletion mutant collection for genes that are required for growth under anaerobic conditions. Of the approximately 4800 nonessential genes represented in the deletion collection, 37 were essential for growth under anaerobic conditions. These affect a wide range of cellular functions, including biosynthetic pathways for certain amino acids and cofactors, reprogramming of transcription and translation, mitochondrial function and biogenesis, and membrane trafficking. Thirty-three of these mutants failed to grow on lipid-supplemented media when combined with a mutation in HEM1, which mimics anaerobic conditions in the presence of oxygen. Uptake assays with radio- and fluorescently labeled cholesterol revealed that 17 of the 33 mutants strongly affect uptake and/or esterification of exogenously supplied cholesterol. Examination of the subcellular distribution of sterols in these uptake mutants by cell fractionation and fluorescence microscopy indicates that some of the mutants block incorporation of cholesterol into the plasma membrane, a presumably early step in sterol uptake. Unexpectedly, the largest class of uptake mutants is affected in mitochondrial functions, and many of the uptake mutants show electron-dense mitochondrial inclusions. These results indicate that a hitherto uncharacterized mitochondrial function is required for sterol uptake and/or transport under anaerobic conditions and are discussed in light of the fact that mitochondrial import of cholesterol is required for steroidogenesis in vertebrate cells.
Collapse
Affiliation(s)
- Sonja Reiner
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | | | | | | |
Collapse
|
48
|
Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms that govern intracellular transport of sterols in eukaryotic cells are only poorly understood. Saccharomyces cerevisiae is a facultative anaerobic organism that requires supplementation with unsaturated fatty acids and sterols to grow in the absence of oxygen, as the synthesis of these lipids requires molecular oxygen. The fact that yeast grows well under anaerobic conditions indicates that lipid uptake is rapid and efficient. To identify components in this lipid uptake and transport pathway, we screened the yeast mutant collection for genes that are essential under anaerobic conditions. Out of the approx. 4800 non-essential genes represented in the mutant collection, 37 were required for growth under anaerobic conditions. Uptake assays using radiolabelled cholesterol revealed that 16 of these genes are required for cholesterol uptake/transport and esterification. Further characterization of the precise role of these genes is likely to advance our understanding of this elusive pathway in yeast and may prove to be relevant to understand sterol homoeostasis in higher eukaryotic cells.
Collapse
|
49
|
Gaigg B, Timischl B, Corbino L, Schneiter R. Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J Biol Chem 2005; 280:22515-22. [PMID: 15817474 DOI: 10.1074/jbc.m413472200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proton pumping H(+)-ATPase, Pma1p, is an abundant and very long-lived polytopic protein of the Saccharomyces cerevisiae plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as an excellent model to study plasma membrane biogenesis. We have previously shown that newly synthesized Pma1p is mistargeted to the vacuole in an elo3Delta mutant that affects the synthesis of the ceramide-bound C26 very long chain fatty acid (Eisenkolb, M., Zenzmaier, C., Leitner, E., and Schneiter, R. (2002) Mol. Biol. Cell 13, 4414-4428) and now describe a more detailed analysis of the role of lipids in Pma1p biogenesis. Remarkably, a block at various steps of sterol biosynthesis, a complete block in sterol synthesis, or the substitution of internally synthesized ergosterol by externally supplied ergosterol or even by cholesterol does not affect Pma1p biogenesis or its association with detergent-resistant membrane domains (lipid "rafts"). However, a block in sphingolipid synthesis or any perturbation in the synthesis of the ceramide-bound C26 very long chain fatty acid results in mistargeting of newly synthesized Pma1p to the vacuole. Mistargeting correlates with a lack of newly synthesized Pma1p to acquire detergent resistance, suggesting that sphingolipids with very long acyl chains affect sorting of Pma1p to the cell surface.
Collapse
Affiliation(s)
- Barbara Gaigg
- Division of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
50
|
Sakano Y, Mutsuga M, Tanaka R, Suganuma H, Inakuma T, Toyoda M, Goda Y, Shibuya M, Ebizuka Y. Inhibition of Human Lanosterol Synthase by the Constituents of Colocasia esculenta (Taro). Biol Pharm Bull 2005; 28:299-304. [PMID: 15684488 DOI: 10.1248/bpb.28.299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol extracts of lyophilized vegetables were tested for inhibition of human lanosterol synthase (hOSC) in order to find the compounds to suppress cholesterol biosynthesis. Of 130 samples tested, twelve samples showed significant inhibition. Among them, Colocasia esculenta (taro) showed the highest inhibition (55% inhibition at 300 microg/ml). Examination of activity variation among eight taro cultivars indicated that "Aichi-wase" and "Yatsugashira" had the most potent activity for hOSC inhibition. In order to identify the active constituent of taro, ethanol extracts of "Aichi-wase" were partitioned with hexane and aqueous methanol, and fractionated by silica gel column chromatography. Inhibitory activity was concentrated in two major active fractions. Further purification of these fractions by preparative HPLC gave three monogalactosyldiacylglycerols and five digalactosyldiacylglycerols as active compounds that showed 28 to 67% inhibitory activities at the concentration 300 microg/ml.
Collapse
Affiliation(s)
- Yuichi Sakano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|